The Clinical and Histopathological Features of Cutaneous Immune-Related Adverse Events and Their Outcomes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics, Underlying Malignancies, and Medications
3.2. Clinical Presentations, Histopathological Diagnoses, and Grade of Rash
3.3. Rash Characteristics
3.4. Treatment and Impact on Immunotherapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Yang, J.C.; Atkins, M.B.; Disis, M.L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. 2015, 33, 2092–2099. [Google Scholar] [CrossRef]
- Villadolid, J.; Amin, A. Immune checkpoint inhibitors in clinical practice: Update on management of immune-related toxicities. Transl. Lung Cancer Res. 2015, 4, 560–575. [Google Scholar]
- Okura, N.; Asano, M.; Uchino, J.; Morimoto, Y.; Iwasaku, M.; Kaneko, Y.; Yamada, T.; Fukui, M.; Takayama, K. Endocrinopathies associated with immune checkpoint inhibitor cancer treatment: A review. J. Clin. Med. 2020, 9, 2033. [Google Scholar] [CrossRef] [PubMed]
- Coleman, E.; Ko, C.; Dai, F.; Tomayko, M.M.; Kluger, H.; Leventhal, J.S. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J. Am. Acad. Derm. 2018, 80, 990–997. [Google Scholar] [CrossRef]
- Curry, J.L.; Tetzlaff, M.T.; Nagarajan, P.; Drucker, C.; Diab, A.; Hymes, S.R.; Duvic, M.; Hwu, W.-J.; Wargo, J.A.; Torres-Cabala, C.A.; et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J. Cutan. Pathol. 2017, 44, 158–176. [Google Scholar] [CrossRef] [PubMed]
- Shi, V.J.; Rodic, N.; Gettinger, S.; Leventhal, J.S.; Neckman, J.P.; Girardi, M.; Bosenberg, M.; Choi, J.N. Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell death 1 and anti-programmed cell death ligand 1 immunotherapy. JAMA Derm. 2016, 152, 1128–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibaud, V.; Meyer, N.; Lamant, L.; Vigarios, E.; Mazieres, J.; Delord, J.P. Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol. 2016, 28, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Sibaud, V. Dermatologic reactions to immune checkpoint inhibitors: Skin toxicities and immunotherapy. Am. J. Clin. Derm. 2018, 19, 345–361. [Google Scholar] [CrossRef]
- Lomax, A.J.; McQuillan, P.A.; Hall, A.; McArthur, G.A. Acute toxic epidermal necrolysis reaction post single dose pembrolizumab with preceding cephalosporin exposure: Successful rechallange with anti-PD-1 therapy. J. Intern Med. 2019, 49, 1051–1053. [Google Scholar] [CrossRef]
- Vivar, K.L.; Deschaine, M.; Messina, J.; Divine, J.M.; Rabionet, A.; Patel, N.; Harrington, M.A.; Seminario-Vidal, L. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J. Cutan. Pathol. 2017, 44, 381–384. [Google Scholar] [CrossRef]
- Coleman, E.L.; Olamiju, B.; Leventhal, J.S. The life-threatening eruptions of immune checkpoint inhibitor therapy. Clin. Derm. 2020, 38, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Phillips, G.S.; Wu, J.; Hellmann, M.D.; Postow, M.A.; Rizvi, N.A.; Freites-Martinez, A.; Chan, D.; Dusza, S.; Motzer, R.J.; Rosenberg, J.E.; et al. Treatment outcomes of immune-related cutaneous adverse events. J. Clin. Oncol. 2019, 37, JCO.18.02141. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Hwang, S.J.; Byth, K.; Kyaw, M.; Carlino, M.S.; Chou, S.; Fernandez-Penas, P. Survival and prognosis of individuals receiving programmed cell death 1 inhibitor with and without immunologic cutaneous adverse events. J. Am. Acad. Derm. 2020, 82, 311–316. [Google Scholar] [CrossRef]
- Suozzi, K.C.; Stahl, M.; Ko, C.J.; Chiang, A.; Gettinger, S.N.; Siegel, M.D.; Bunick, C.G. Immune-related sarcoidosis observed in combination ipilimumab and nivolumab therapy. JAAD Case Rep. 2016, 2, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Munoz, J.; Guillot, B.; Girard, C.; Dereure, O.; Du-Thanh, A. First report of ipilimumab induced-Grover disease. Br. J. Derm. 2014, 171, 1236–1237. [Google Scholar] [CrossRef] [PubMed]
- Koelzer, V.H.; Buser, T.; Willi, N.; Rothschild, S.I.; Wicki, A.; Schiller, P.; Cathomas, G.; Zippelius, A.; Mertz, K.D. Grover’s-like drug eruption in a patient with metastatic melanoma under ipilimumab therapy. J. Immunother. Cancer 2016, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Uemura, M.; Fa’ak, F.; Haymaker, C.; McQuail, N.; Sirmans, E.; Hudgens, C.W.; Barbara, L.; Bernatchez, C.; Curry, J.L.; Hwu, P.; et al. A case report of Grover’s disease from immunotherapy-a skin toxicity induced by inhibition of CTLA-4 but not PD-L1. J. Immunother. Cancer 2016, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Charollais, R.; Aubin, F.; Roche-Kubler, B.; Puzenat, E. Two cases of granuloma annulare under anti-PD1 therapy. Ann. Derm. Venereol. 2018, 145, 116–119. [Google Scholar] [CrossRef]
- Ali, S.S.; Goddard, A.L.; Luke, J.J.; Donahue, H.; Todd, D.J.; Werchniak, A.; Vleugels, R.A. Drug-induced dermatomyositis following ipilimumab therapy. JAMA Derm. 2015, 151, 195–199. [Google Scholar]
- Yamaguchi, Y.; Abe, R.; Haga, N.; Shimizu, H. A case of drug-associated dermatomyositis following ipilimumab therapy. Eur. J. Derm. 2016, 26, 320–326. [Google Scholar] [CrossRef]
- Cappelli, L.C.; Gutierrez, A.K.; Baer, A.N.; Albayda, J.; Manno, R.L.; Haque, U.; Lipson, E.J.; Bleich, K.B.; Shah, A.A.; Naidoo, J.; et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann. Rheum. Dis. 2017, 76, 43–50. [Google Scholar] [CrossRef]
- Coleman, E.; Panse, G.; Haldas, J.; Gettinger, S.; Leventhal, J.S. Pityriasis rubra pilaris-like erythroderma in the setting of pembrolizumab therapy responsive to acitretin. JAAD Case Rep. 2018, 4, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.E.; Carlos, G.; Wakade, D.; Sharma, R.; Fernandez-Penas, P. Ipilimumab-induced acute generalized exanthematous pustulosis in a patient with metastatic melanoma. Melanoma Res. 2016, 26, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Page, B.; Borradori, L.; Beltraminelli, H.; Yawalkar, N.; Hunger, R.E. Acute generalized exanthematous pustulosis associated with ipilimumab and nivolumab. J. Eur. Acad. Derm. Venereol. 2018, 32, e256–e257. [Google Scholar] [CrossRef]
- Perret, R.E.; Josselin, N.; Knol, A.-C.; Khammari, A.; Cassecuel, J.; Peuvrel, L.; Dréno, B. Histopathological aspects of cutaneous erythematous-papular eruptions induced by immune checkpoint inhibitors for the treatment of metastatic melanoma. Int. J. Derm. 2017, 56, 527–533. [Google Scholar] [CrossRef]
- Ellis, S.R.; Vierra, A.T.; Millsop, J.W.; Lacouture, M.E.; Kiuru, M. Dermatologic toxicities to immune checkpoint inhibitor therapy: A review of histopathologic features. J. Am. Acad. Derm. 2020, 83, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, K.; Scotland, R.; Lee, P.; Liu, D.; Groshen, S.; Snively, J.; Sian, S.; Nichol, G.; Davis, T.; Keler, T.; et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 2005, 23, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor-related dermatologic adverse events. J. Am. Acad. Derm. 2020, 83, 1255–1268. [Google Scholar] [CrossRef]
- Weber, J.S.; Kahler, K.C.; Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 2012, 30, 2691–2697. [Google Scholar] [CrossRef]
- Collins, L.K.; Chapman, M.S.; Carter, J.B.; Samie, F.H. Cutaneous adverse effects of the immunecheckpoint inhibitors. Curr. Probl. Cancer 2017, 41, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Tetzlaff, M.T.; Nagarajan, P.; Chon, S.; Huen, A.; Diab, A.; Omar, P.; Aung, P.P.; Torres-Cabala, C.A.; Mays, S.R.; Prieto, V.G.; et al. Lichenoid dermatologic toxicity from immune checkpoint blockade therapy: A detailed examination of the clinicopathologic features. Am. J. Derm. 2017, 39, 121–129. [Google Scholar] [CrossRef]
- Wang, L.L.; Patel, G.; Chiesa-Fuxench, Z.C.; Mcgettigan, S.; Schuchter, L.; Mitchell, T.C.; Ming, M.E.; Chu, E.Y. Timing of onset of adverse cutaneous reactions associated with programmed cell death protein 1 inhibitor therapy. JAMA Derm. 2018, 154, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.; Totonchy, M.; Damsky, W.; Berk-Krauss, J.; Castiglione, F.; Sznol, M.; Petrylak, D.P.; Fischbach, N.; Goldberg, S.B.; Decker, R.H.; et al. Bullous disorders associated with antiePD-1 and antiePD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J. Am. Acad. Derm. 2018, 79, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, V.; Sibaud, V.; Fattore, D.; Sollena, P.; Ortiz-Brugués, A.; Giacchero, D.; Romano, M.C.; Riganti, J.; Lallas, K.; Peris, K.; et al. Immune checkpoint-mediated psoriasis: A multicentric European study of 115 patients from European Network for Cutaneous ADverse Event to Oncologic drugs (ENCADO) group. J. Am. Acad. Derm. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Otsuka, A.; Miyachi, Y.; Kabashima, K. Exacerbation of psoriasis vulgaris during nivolumab for oral mucosal melanoma. J. Eur. Acad. Derm. Venereol. 2016, 30, e89–e91. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Ohtsuka, M.; Kikuchi, N.; Yamamoto, T. Exacerbation of psoriasis during nivolumab therapy for metastatic melanoma. Acta Derm. Venereol. 2016, 96, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Schaberg, K.B.; Novoa, R.A.; Wakelee, H.A.; Kim, J.; Cheung, C.; Srinivas, S.; Kwong, B.Y. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J. Cutan. Pathol. 2016, 43, 339–346. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
Parameter | Value (%) |
---|---|
Age, years | |
Range (mean ± SD) | 39–85 (65.5 ± 10.8) |
Sex | |
Male | 30 (58.8) |
Female | 21 (41.2) |
Underlying malignancy | |
Cutaneous | 19 (37.3) |
Melanoma | 12 (23.5) |
Merkel cell carcinoma | 1 (2.0) |
SCC of head and neck | 6 (11.8) |
Lung | 18 (35.3) |
Sq NSCLC | 7 (13.7) |
Non-Sq NSCLC | 10 (19.6) |
SCLC | 1 (2.0) |
Gastrointestinal | 5 (9.8) |
Esophageal SCC | 3 (5.9) |
Gastric adenocarcinoma | 2 (3.9) |
Genitourinary | 6 (11.8) |
Renal cell carcinoma | 5 (9.8) |
Urothelial carcinoma | 1 (2.0) |
Lymphoma | 3 (5.9) |
Immune checkpoint inhibitors | |
Nivolumab | 24 (47.1) |
Pembrolizumab | 13 (25.5) |
Ipilimumab | 2 (3.9) |
Nivolumab + ipilimumab | 6 (11.8) |
Atezolizumab | 4 (7.8) |
Avelumab | 2 (3.9) |
Total | 51 (100.0) |
Rash Type (n) | Clinical Presentation (n) | Corresponding Histopathological Features (n) | Grade, n | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Maculopapular (38) | Scattered edematous macules and/or red papules trunk-predominant (16), extremity-predominant (9), trunk alone (7), extremities alone (6) | Vacuolar degeneration at the DEJ (38), perivascular lymphocytic infiltration (38), eosinophilic infiltration (30), epidermal spongiosis (16), necrotic keratinocytes (15), small abscess in the epidermis (2) | 23 | 10 | 5 | 0 |
EM (2) | Erythematous macules with target lesion or iris formation, scattered on the trunk and proximal extremities (2) | Vacuolar degeneration at the DEJ (2), perivascular lymphocytic infiltration (2), eosinophilic infiltration (2), epidermal spongiosis (1), necrotic keratinocytes (1) | 0 | 2 | 0 | 0 |
Lichenoid (3) | Pink-to-violaceous papules and plaques with scales, predominantly on the extremities (3), oral ulcer and leukoplakia (1) | Dense lymphocytic infiltration at the DEJ (lichenoid infiltration) (3), infiltration of a few eosinophils (3), necrotic keratinocytes (3), acanthosis (2), thickened granular layer (2), orthohyperkeratosis (2), and epidermal spongiosis (2) | 2 | 1 | 0 | 0 |
Psoriasiform (3) | Plaque psoriasis on the trunk and extremities, with no pustulosis, scalp lesions, or arthritis (3) | Parakeratosis, acanthosis, diminished granular layer, elongated rete ridges, intraepidermal bullae containing neutrophils, mild vacuolar degeneration at the DEJ, and perivascular infiltration of lymphocytes, eosinophils, and neutrophils in the upper dermis (3) | 2 | 1 | 0 | 0 |
BP (3) | Eroded bullae with erythematous macules on the chest and abdomen (3) | Subepidermal bulla containing eosinophils, perivascular infiltration of lymphocytes and eosinophils (3), linear deposition of IgG and C3 at the DEJ on DIF (3) | 1 | 2 | 0 | 0 |
Scleroderma-like (1) | Skin sclerosis of the fingers (1) | Increased thick collagen bundles packing sweat glands (1) | 0 | 1 | 0 | 0 |
SJS (1) | Erythematous macules scattered on the trunk and proximal extremities, mucosal ulcerations, the Nikolsky sign (1) | Epidermal necrosis with numerous necrotic keratinocytes, acantholytic bullae, infiltration of lymphocytes and eosinophils, and parakeratotic hyperkeratosis (1) | 0 | 0 | 1 | 0 |
Total | 28 | 17 | 6 | 0 |
Rash Type (n) | Demographics | Immunotherapy Class, n | Rash Characteristics | Other irAEs, n | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age, years, Mean | Sex, Male, n | Anti-PD-1 | Anti-PD-L1 | Anti-CTLA-4 | Combined Anti-PD-1 and Anti-CTLA-4 | Latency to irAEs, Days, Median (Range) | Pruritus, n | Mucosal Lesion, n | Median Blood eos, % | ||
Maculopapular (38) | 64.2 | 19 | 26 | 5 | 2 | 5 | 24.5 (0–509) | 22 | 2 | 5.1 | 9 |
EM (2) | 74.0 | 2 | 2 | 0 | 0 | 0 | 94.5 (49–140) | 1 | 0 | 5.2 | 0 |
Licehnoid (3) | 67.0 | 1 | 3 | 0 | 0 | 0 | 169.0 (120–255) | 1 | 1 | 5.2 | 2 |
Psoriasiform (3) | 65.0 | 3 | 1 | 1 | 0 | 1 | 185.0 (4–344) | 2 | 0 | 10.9 | 0 |
BP (3) | 71.2 | 3 | 3 | 0 | 0 | 0 | 231.0 (139–365) | 2 | 1 | 4.8 | 0 |
Sclerodermoid (1) | 73.0 | 1 | 1 | 0 | 0 | 0 | 140.0 | 0 | 0 | 0.9 | 0 |
SJS (1) | 69.0 | 1 | 1 | 0 | 0 | 0 | 11.0 | 1 | 1 | 19.8 | 0 |
Total (51) | 65.5 | 30 | 37 | 6 | 2 | 6 | 50 (0–509) | 29 | 5 | 5.3 | 11 |
Rash Grade (n) | Immunotherapy Class, n | Rash Treatment †, n | Impact on Immunotherapy, n | Rash Improved, n, yes/no | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anti-PD-1 | Anti-PD-L1 | Anti-CTLA-4 | Combined Anti-PD-1 and Anti-CTLA-4 | 1 | 2 | 3 | 4 | None | Temporarily Interrupted | Permanently Discontinued | ||||
DCI | DOC | DCI | DOC | |||||||||||
1 (28) | 21 | 4 | 2 | 2 | 23 | 5 | 0 | 0 | 22 | 2 | 1 | 0 | 3 | 27/1 |
2 (17) | 12 | 2 | 0 | 2 | 5 | 2 | 8 | 2 | 3 | 4 | 1 | 3 | 6 | 17/0 |
3 (6) | 4 | 0 | 0 | 2 | 0 | 0 | 1 | 5 | 0 | 1 | 1 | 4 | 0 | 6/0 |
4 (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0/0 |
Total (51) | 37 | 6 | 2 | 6 | 28 | 7 | 9 | 7 | 25 | 7 | 3 | 7 | 9 | 50/1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, H.; Ito, T.; Ichiki, T.; Yamada, Y.; Oda, Y.; Furue, M. The Clinical and Histopathological Features of Cutaneous Immune-Related Adverse Events and Their Outcomes. J. Clin. Med. 2021, 10, 728. https://doi.org/10.3390/jcm10040728
Hashimoto H, Ito T, Ichiki T, Yamada Y, Oda Y, Furue M. The Clinical and Histopathological Features of Cutaneous Immune-Related Adverse Events and Their Outcomes. Journal of Clinical Medicine. 2021; 10(4):728. https://doi.org/10.3390/jcm10040728
Chicago/Turabian StyleHashimoto, Hiroki, Takamichi Ito, Toshio Ichiki, Yuichi Yamada, Yoshinao Oda, and Masutaka Furue. 2021. "The Clinical and Histopathological Features of Cutaneous Immune-Related Adverse Events and Their Outcomes" Journal of Clinical Medicine 10, no. 4: 728. https://doi.org/10.3390/jcm10040728
APA StyleHashimoto, H., Ito, T., Ichiki, T., Yamada, Y., Oda, Y., & Furue, M. (2021). The Clinical and Histopathological Features of Cutaneous Immune-Related Adverse Events and Their Outcomes. Journal of Clinical Medicine, 10(4), 728. https://doi.org/10.3390/jcm10040728