Biventricular Unloading with Impella and Venoarterial Extracorporeal Membrane Oxygenation in Severe Refractory Cardiogenic Shock: Implications from the Combined Use of the Devices and Prognostic Risk Factors of Survival
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Characteristics
2.2. Implantation of MCS and Management of Patients
2.3. Data Collection and Study End-Points
2.4. Statistics
3. Results
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellumkonda, L.; Gul, B.; Masri, S.C. Evolving Concepts in Diagnosis and Management of Cardiogenic Shock. Am. J. Cardiol. 2018, 122, 1104–1110. [Google Scholar] [CrossRef]
- Vahdatpour, C.; Collins, D.; Goldberg, S. Cardiogenic Shock. J. Am. Heart Assoc. 2019, 8, e011991. [Google Scholar] [CrossRef] [Green Version]
- Dünser, M.; Takala, J.; Brunauer, A.; Bakker, J. Re-thinking resuscitation: Leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit. Care 2013, 17, 326–327. [Google Scholar] [CrossRef] [Green Version]
- Verbrugge, F.H.; Dupont, M.; Steels, P.; Grieten, L.; Malbrain, M.; Tang, W.W.; Mullens, W. Abdominal Contributions to Cardiorenal Dysfunction in Congestive Heart Failure. J. Am. Coll. Cardiol. 2013, 62, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S. Cardiogenic shock complicating acute myocardial infarction: Expanding the paradigm. Circulation 2003, 107, 2998–3002. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 Acute Coronary Syndromes (ACS) in Patients Presenting without Persistent ST-Segment Elevation (Management of) Guidelines. Eur. Heart J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; De Waha, A.; Richardt, G.; Hennersdorf, M.; Empen, K.; et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): Final 12 month results of a randomised, open-label trial. Lancet 2013, 382, 1638–1645. [Google Scholar] [CrossRef]
- Markus, B.; Patsalis, N.; Chatzis, G.; Luesebrink, U.; Ahrens, H.; Schieffer, B.; Karatolios, K. Impact of microaxillar mechanical left ventricular support on renal resistive index in patients with cardiogenic shock after myocardial infarction: A pilot trial to predict renal organ dysfunction in cardiogenic shock. Eur. Hear. J. Acute Cardiovasc. Care 2020, 9, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Schiller, P.; Vikholm, P.; Hellgren, L. The Impella(R) Recover mechanical assist device in acute cardiogenic shock: A single-centre experience of 66 patients. Interact Cardiovasc. Thorac. Surg. 2016, 22, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casassus, F.; Corre, J.; Leroux, L.; Chevalereau, P.; Fresselinat, A.; Seguy, B.; Calderon, J.; Coste, P.; Ouattara, A.; Roques, X.; et al. The Use of Impella 2.5 in Severe Refractory Cardiogenic Shock Complicating an Acute Myocardial Infarction. J. Interv. Cardiol. 2015, 28, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Karatolios, K.; Chatzis, G.; Markus, B.; Luesebrink, U.; Ahrens, H.; Dersch, W.; Betz, S.; Ploeger, B.; Boesl, E.; O’Neill, W.; et al. Impella support compared to medical treatment for post-cardiac arrest shock after out of hospital cardiac arrest. Resuscitation 2018, 126, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Leprince, P.; Luyt, C.-E.; Bonnet, N.; Trouillet, J.-L.; Léger, P.; Pavie, A.; Chastre, J. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit. Care Med. 2008, 36, 1404–1411. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lin, J.-W.; Yu, H.-Y.; Ko, W.-J.; Jerng, J.-S.; Chang, W.-T.; Chen, W.-J.; Huang, S.-C.; Chi, N.-H.; Wang, C.-H.; et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: An observational study and propensity analysis. Lancet 2008, 372, 554–561. [Google Scholar] [CrossRef]
- Soleimani, B.; Pae, E.W. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock. Perfusion 2012, 27, 326–331. [Google Scholar] [CrossRef]
- Subramaniam, A.V.; Barsness, G.W.; Vallabhajosyula, S.; Vallabhajosyula, S. Complications of Temporary Percutaneous Mechanical Circulatory Support for Cardiogenic Shock: An Appraisal of Contemporary Literature. Cardiol. Ther. 2019, 8, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Borisenko, O.; Wylie, G.; Payne, J.; Bjessmo, S.; Smith, J.; Firmin, R.; Yonan, N. The cost impact of short-term ventricular assist devices and extracorporeal life support systems therapies on the National Health Service in the UK. Interact. Cardiovasc. Thorac. Surg. 2014, 19, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentzer, J.C.; Chonde, M.D.; Dezfulian, C. Myocardial Dysfunction and Shock after Cardiac Arrest. Biomed Res. Int. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karatolios, K.; Chatzis, G.; Markus, B.; Luesebrink, U.; Richter, A.; Schieffer, B. Biventricular unloading in patients with refractory cardiogenic shock. Int. J. Cardiol. 2016, 222, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Gaudard, P.; Mourad, M.; Eliet, J.; Zeroual, N.; Culas, G.; Rouvière, P.; Albat, B.; Colson, P.H. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit. Care 2015, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappalardo, F.; Schulte, C.; Pieri, M.; Schrage, B.; Contri, R.; Soeffker, G.; Greco, T.; Lembo, R.; Müllerleile, K.; Colombo, A.; et al. Concomitant implantation of Impella((R)) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur. J. Heart. Fail. 2017, 19, 404–412. [Google Scholar] [CrossRef]
- Schrage, B.; Becher, P.M.; Bernhardt, A.; Bezerra, H.; Blankenberg, S.; Brunner, S.; Colson, P.; Cudemus Deseda, G.; Dabboura, S.; Eckner, D.; et al. Left Ventricular Unloading Is Associated with Lower Mortality in Patients with Cardiogenic Shock Treated with Venoarterial Extracorporeal Membrane Oxygenation: Results From an International, Multicenter Cohort Study. Circulation 2020, 142, 2095–2106. [Google Scholar] [CrossRef]
- Schrage, B.; Ibrahim, K.; Loehn, T.; Werner, N.; Sinning, J.-M.; Pappalardo, F.; Pieri, M.; Skurk, C.; Lauten, A.; Landmesser, U.; et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. Circulation 2019, 139, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Alushi, B.; Douedari, A.; Froehlig, G.; Knie, W.; Wurster, T.H.; Leistner, D.M.; Staehli, B.-E.; Mochmann, H.-C.; Pieske, B.; Landmesser, U.; et al. Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Open Hear. 2019, 6, e000987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauten, A.; Engström, A.E.; Jung, C.; Empen, K.; Erne, P.; Cook, S.; Windecker, S.; Bergmann, M.W.; Klingenberg, R.; Lüscher, T.F.; et al. Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: Results of the Impella-EUROSHOCK-registry. Circ. Heart. Fail. 2013, 6, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engström, A.E.; Cocchieri, R.; Driessen, A.H.; Sjauw, K.D.; Vis, M.M.; Baan, J.; De Jong, M.; Lagrand, W.K.; Van Der Sloot, J.A.P.; Tijssen, J.G.; et al. The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: The Academic Medical Center intensive care unit experience. Crit. Care Med. 2011, 39, 2072–2079. [Google Scholar] [CrossRef] [Green Version]
- Aubin, H.; Petrov, G.; Dalyanoglu, H.; Saeed, D.; Akhyari, P.; Paprotny, G.; Richter, M.; Westenfeld, R.; Schelzig, H.; Kelm, M.; et al. A Suprainstitutional Network for Remote Extracorporeal Life Support: A Retrospective Cohort Study. Jacc Heart. Fail. 2016, 4, 698–708. [Google Scholar] [CrossRef]
- Guenther, S.P.; Brunner, S.; Born, F.; Fischer, M.; Schramm, R.; Pichlmaier, M.; Massberg, S.; Hagl, C.; Khaladj, N. When all else fails: Extracorporeal life support in therapy-refractory cardiogenic shock. Eur. J. Cardio-Thorac. Surg. 2015, 49, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Burrell, A.; Roberts, L.; Bailey, M.; Sheldrake, J.; Rycus, P.T.; Hodgson, C.; Scheinkestel, C.; Cooper, D.J.; Thiagarajan, R.R.; et al. Predicting survival after ECMO for refractory cardiogenic shock: The survival after veno-arterial-ECMO (SAVE)-score. Eur. Hear. J. 2015, 36, 2246–2256. [Google Scholar] [CrossRef]
- Thiagarajan, R.R.; Barbaro, R.P.; Rycus, P.T.; McMullan, D.M.; Conrad, S.A.; Fortenberry, J.D.; Paden, M.L. Extracorporeal Life Support Organization Registry International Report 2016. Asaio J. 2017, 63, 60–67. [Google Scholar] [CrossRef]
- Sattler, S.; Khaladj, N.; Zaruba, M.; Fischer, M.; Hausleiter, J.; Mehilli, J.; Kääb, S.; Hagl, C.; Massberg, S.; Theiss, H. Extracorporal life support (ECLS) in acute ischaemic cardiogenic shock. Int. J. Clin. Pract. 2014, 68, 529–531. [Google Scholar] [CrossRef]
- Kapur, N.K.; Paruchuri, V.; Urbano-Morales, J.A.; Mackey, E.E.; Daly, G.H.; Qiao, X.; Pandian, N.; Perides, G.; Karas, R.H. Mechanically Unloading the Left Ventricle Before Coronary Reperfusion Reduces Left Ventricular Wall Stress and Myocardial Infarct Size. Circulation 2013, 128, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Ostadal, P.; Mlcek, M.; Gorhan, H.; Simundic, I.; Strunina, S.; Hrachovina, M.; Kruger, A.; Vondrakova, D.; Janotka, M.; Hala, P.; et al. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS ONE 2018, 13, e0196321. [Google Scholar] [CrossRef] [Green Version]
- Brunner, S.; Guenther, S.P.; Lackermair, K.; Peterss, S.; Orban, M.; Boulesteix, A.L.; Michel, S.; Hausleiter, J.; Massberg, S.; Hagl, C. Extracorporeal Life Support in Cardiogenic Shock Complicating Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2355–2357. [Google Scholar] [CrossRef]
- Bougouin, W.; Aissaoui, N.; Combes, A.; Deye, N.; Lamhaut, L.; Jost, D.; Maupain, C.; Beganton, F.; Bouglé, A.; Karam, N.; et al. Post-cardiac arrest shock treated with veno-arterial extracorporeal membrane oxygenation: An observational study and propensity-score analysis. Resuscitation 2017, 110, 126–132. [Google Scholar] [CrossRef]
- Kern, K.B.; Hilwig, R.W.; Rhee, K.H.; Berg, R.A. Myocardial dysfunction after resuscitation from cardiac arrest: An example of global myocardial stunning. J. Am. Coll. Cardiol. 1996, 28, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Baldetti, L.; Gramegna, M.; Beneduce, A.; Melillo, F.; Moroni, F.; Calvo, F.; Melisurgo, G.; Ajello, S.; Fominskiy, E.; Pappalardo, F.; et al. Strategies of left ventricular unloading during VA-ECMO support: A network meta-analysis. Int. J. Cardiol. 2020, 312, 16–21. [Google Scholar] [CrossRef]
- Russo, J.J.; Aleksova, N.; Pitcher, I.; Couture, E.; Parlow, S.; Faraz, M.; Visintini, S.; Simard, T.; Di Santo, P.; Mathew, R.; et al. Left Ventricular Unloading During Extracorporeal Membrane Oxygenation in Patients with Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 654–662. [Google Scholar] [CrossRef]
- Colombier, S.; Quessard, A.; Mastroianni, C.; Schmidt, M.; Amour, J.; Leprince, P.; Lebreton, G. Benefits of Impella and Peripheral Veno-Arterial Extra Corporeal Life Support Alliance. Asaio J. 2019, 65, 837–844. [Google Scholar] [CrossRef]
- Harjola, V.-P.; Lassus, J.; Sionis, A.; Køber, L.; Tarvasmäki, T.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Hear. Fail. 2015, 17, 501–509. [Google Scholar] [CrossRef]
- Attanà, P.; Lazzeri, C.; Picariello, C.; Dini, C.S.; Gensini, G.F.; Valente, S. Lactate and lactate clearance in acute cardiac care patients. Eur. Hear. J. Acute Cardiovasc. Care 2012, 1, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Fuernau, G.; Desch, S.; de Waha-Thiele, S.; Eitel, I.; Neumann, F.J.; Hennersdorf, M.; Felix, S.B.; Fach, A.; Böhm, M.; Pöss, J.; et al. Arterial Lactate in Cardiogenic Shock: Prognostic Value of Clearance Versus Single Values. Jacc Cardiovasc. Interv. 2020, 13, 2208–2216. [Google Scholar] [CrossRef]
- Scolari, F.L.; Schneider, D.; Fogazzi, D.V.; Gus, M.; Rover, M.M.; Bonatto, M.G.; De Araújo, G.N.; Zimerman, A.; Sganzerla, D.; Goldraich, L.A.; et al. Association between serum lactate levels and mortality in patients with cardiogenic shock receiving mechanical circulatory support: A multicenter retrospective cohort study. Bmc Cardiovasc. Disord. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Tongers, J.; Sieweke, J.-T.; Kühn, C.; Napp, L.C.; Flierl, U.; Röntgen, P.; Schmitto, J.D.; Sedding, D.G.; Haverich, A.; Bauersachs, J.; et al. Early Escalation of Mechanical Circulatory Support Stabilizes and Potentially Rescues Patients in Refractory Cardiogenic Shock. Circ. Hear. Fail. 2020, 13, e005853. [Google Scholar] [CrossRef]
- Wengenmayer, T.; Duerschmied, D.; Graf, E.; Chiabudini, M.; Benk, C.; Mühlschlegel, S.; Philipp, A.; Lubnow, M.; Bode, C.; Staudacher, D.L. Development and validation of a prognostic model for survival in patients treated with venoarterial extracorporeal membrane oxygenation: The Predict Va-Ecmo score. Eur. Hear. J. Acute Cardiovasc. Care 2019, 8, 350–359. [Google Scholar] [CrossRef]
- Tseng, L.-J.; Yu, H.-Y.; Wang, C.-H.; Chi, N.-H.; Huang, S.-C.; Chou, H.-W.; Shih, H.-C.; Chou, N.-K.; Chen, Y.-S. Impact of Age-Adjusted Charlson Comorbidity on Hospital Survival and Short-Term Outcome of Patients with Extracorporeal Cardiopulmonary Resuscitation. J. Clin. Med. 2018, 7, 313. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | Total Cohort (n = 67) | Survivors (n = 22) | Non-Survivors (n = 45) | p-Value |
---|---|---|---|---|
Age (years) | 61.06 ± 10.7 | 55.68 ± 10.02 | 63.63 ± 10.14 | 0.003 |
Weight (kg) | 86.17 ± 13.29 | 87.64 ± 10.67 | 85.65 ± 14.68 | 0.57 |
BMI (kg/m2) | 27.64 ± 4 | 27.59 ± 2.86 | 27.67 ± 4.47 | 0.94 |
Male/female, n (%) | 54 (80.6)/13 (19.4) | 17 (77.3)/5 (22.7) | 28 (62.2)/8 (37.8) | 0.27 |
Etiology of cardiogenic shock | ||||
Acute myocardial infarction, n (%) | 50 (74.6) | 17 (77.3) | 33 (73.3) | 1 |
STEMI/NSTEMI, n (%) | 36 (72)/14 (18) | 16 (94.1)/1 (5.9) | 20 (60.6)/13 (39.4) | 0.04 |
Dilative cardiomyopathy-myocarditis, n (%) | 7 (10.4) | 4 (18.2) | 3 (6.7) | 0.21 |
Aortic stenosis, n (%) | 2 (2.9) | 0 | 2 (4.4) | 1 |
Sepsis/MOF, n (%) | 5 (7.5) | 0 | 5 (11.4) | 0.16 |
Other (RVOT trauma, postpartum cardiomyopathy, TakoTsubo), n (%) | 3 (4.4) | 1 (4.5) | 2 (4.4) | 1 |
Impella first/VA-ECMO first, n (%) | 28 (41.8)/39 (58.2) | 14 (63.6)/8 (36.4) | 14 (31.1)/31 (68.9) | 0.02 |
Impella 2.5/CP, n (%) | 45 (67.2)/22 (32.8) | 17 (77.3)/5 (22.7) | 28 (62.2)/17 (37.8) | 0.18 |
Prior cardiac arrest, n (%) | 44 (65.7) | 9 (41) | 35 (77.8) | 0.005 |
OHCA | 26 (59.1) | 6 (66.7) | 20 (57.1) | |
IHCA | 18 (13.6)) | 3 (33.3) | 15 (42.9) | |
Under CPR on hospital admission | 12 (27.3) | 2 (22.2) | 10 (28.6) | |
Prior CAD, n (%) | 25 (37.3) | 6 (27.3) | 19 (25.3) | 0.28 |
Prior MI, n (%) | 15 (22.4) | 2 (9.1) | 13 (28.9) | 0.12 |
Prior CABG, n (%) | 5 (7.5) | 2 (9.1) | 3 (6.5) | 1 |
Prior Hypertension, n (%) | 51 (76.1) | 18 (81.8) | 33 (73.3) | 0.55 |
Prior Diabetes, n (%) | 21 (31.3) | 4 (18.2) | 17 (37.8) | 0.16 |
Prior COPD, n (%) | 5 (7.5) | 2 (9.1) | 3 (6.5) | 1 |
Prior Stroke, n (%) | 12 (17.9) | 6 (27.3) | 6 (13) | 0.19 |
Prior PAD, n (%) | 6 (9) | 0 (0) | 6 (13) | 0.17 |
CCI | 2 (3–5) | 2 (1–4) | 3 (2–5) | 0.02 |
ICU stay (days) | 14.5 (5–28.75) | 26.27 ± 14.44 | 9.5 (4–24) | 0.001 |
Hemodynamic variables on ICU admission | ||||
Heart rate (bpm) | 93.68 ± 27.31 | 90.9 ± 29.1 | 95 ± 26.7 | 0.56 |
Systolic blood pressure (mmHg) | 88.49 ± 26.6 | 95 ± 25.54 | 85.37 ± 26.8 | 0.16 |
Diastolic blood pressure (mmHg) | 55.09 ± 14.93 | 55.91 ± 14.28 | 54.7 ± 15.36 | 0.76 |
Noradrenaline | ||||
n (%) | 67 (100) | 22 (100) | 45 (100) | 1 |
(μg/kg/min) | 0.5 (0.14–0.79) | 0.33 (0.2–1.3) | 0.5 (0.2–0.77) | 0.21 |
Dobutamine | ||||
n (%) | 34 (50.7) | 12 (64.5) | 22 (48.9) | 0.8 |
(μg/kg/min) * | 5.79 ± 2.44 | 5.35 ± 1.1 | 6 ± 2.9 | 0.45 |
Epinephrine | ||||
n (%) | 26 (38.8) | 10 | 16 | 0.59 |
(μg/kg/min) * | 0.4 (0.21–3.8) | 0.17 ± 0.1 | 0.33 (0.1–0.48) | 0.1 |
Vasoactive score (μg/kg/min) | 59 (19–117) | 69.6 (32.7–91.6) | 105.2 (60.5–157.5) | 0.005 |
Blood values on ICU admission | ||||
pH | 7.36 ± 0.16 | 7.38 ± 0.12 | 7.24 ± 0.18 | 0.002 |
Lactate (mmol/L) | 8.8 ± 6.7 | 5.88 ± 5.33 | 11.03 ± 7.99 | 0.008 |
Creatinine (mg/dL) | 1.78 ± 0.8 | 1.77 ± 0.44 | 1.78 ± 0.94 | 0.95 |
GFR (ml/min) | 43.6 ± 15.7 | 44.1 ± 15.2 | 43.14 ± 15.9 | 0.81 |
Bilirubin (mg/dL) | 1.2 (0.73–1.6) | 0.9 (0.6–2.9) | 1.2 (0.78–1.6) | 0.6 |
Clinical variables o ICU admission | ||||
LVEF (%) | 35.4 ± 3.9 | 34.4 ± 3.6 | 36.02 ± 3.9 | 0.12 |
Horowitz index | 222 (161–461) | 312 (192–462) | 211.7 (156–429) | 0.17 |
SOFA | 12.25 ± 2.71 | 11.95 ± 3 | 12.39 ± 2.58 | 0.54 |
SAPS II | 73.54 ± 16.03 | 71.55 ± 12.64 | 74.5 ± 17.46 | 0.48 |
Time to implantation of first device (t0) (h) | 2 (1–6) | 2 (0.97–3.5) | 2 (0.92–7.44) | 0.61 |
Time to biventricular support (tbiv) (h) | 19.8 (6.7–73.3) | 15 (7.5–65) | 22 (4–91) | 0.36 |
Time from first MCS device to biventricular support (t0-biv) (h) | 14 (1.3–72) | 11.5 (1.7–88) | 18 (0.6–68) | 0.7 |
Duration of biventricular support (h) | 96 (24–186) | 96 (24–168) | 72 (24–192) | 0.97 |
Hemodynamic Variables | Total Cohort (n = 67) | Survivors (n = 22) | Non-Survivors (n = 45) | p-Value |
---|---|---|---|---|
Heart rate (bpm) | 107.2 ± 28.59 | 117.2 ± 24.40 | 102.9 ± 29.45 | 0.046 |
Systolic blood pressure (mmHg) | 86.63 ± 19.67 | 86.18 ± 13.71 | 86.85 ± 22.09 | 0.9 |
Diastolic blood pressure (mmHg) | 55.5 ± 14 | 59.27 ± 12.06 | 53.70 ± 14.62 | 0.13 |
Mean blood pressure (mmHg) | 65.88 ± 14.08 | 68.24 ± 11.28 | 64.75 ± 15.22 | 0.34 |
Noradrenaline | ||||
n (%) (μg/kg/min) | 67 (100) 0.73 ± 0.48 | 22 (100) 57.90 ± 32.17 | 45 (100) 66.89 ± 37.66 | 1 0.36 |
Dobutamine * | ||||
n (%) (μg/kg/min) * | 54 (80.6) 6.76 ± 3.2 | 16 (72.7) 5.97 (3.7–7.87) | 38 (84.4) 7 (5.15–8.13) | 0.21 |
Epinephrine | ||||
n (%) (μg/kg/min) * | 40 (59.7) 0.2 (0.12–0.5) | 15 (6.8) 0.15 (0.07–0.43) | 25 (55.6) 0.2 (0.15–0.54) | 0.21 |
Vasoactive score (μg/kg/min) | 89 (53.99–154) | 69.62 (32.7–91.57) | 105.2 (60.3–157.5) | 0.02 |
Blood values | ||||
pH | 7.29 ± 0.17 | 7.38 ± 0.12 | 7.24 ± 0.18 | 0.001 |
Lactate (mmol/L) | 9.67 ± 7 | 4.8 (2.9–5.6) | 9 (4.4–16.2) | 0.005 |
Creatinine (mg/dL) | 1.85 ± 0.65 | 1.86 ± 0.72 | 1.84 ± 0.63 | 0.92 |
GFR (mL/min) | 39.4 ± 17.09 | 40.36 ± 16.68 | 38.93 ± 17.45 | 0.75 |
HCO3− (mmol/L) | 18.16 ± 6.2 | 20.38 ± 5.9 | 17.1 ± 6.13 | 0.05 |
Bilirubin (mg/dL) | 1.11 (0.7–1.9) | 1.11 (0.4–1.61) | 1.2 (0.92–1.9) | 0.48 |
Clinical variables | ||||
LVEF (%) | 28.5 ± 4.3 | 28.24 ± 3.32 | 28.67 ± 4.1 | 0.67 |
Horowitz index | 208 (85.5–276) | 254 (112.1–377.8) | 161 (62.5–236.4) | 0.03 |
SOFA | 13.26 ± 2.65 | 13.68 ± 2.73 | 13.07 ± 2.61 | 0.37 |
SAPS II | 87.54 ± 7.65 | 88.18 ± 8.55 | 87.24 ± 7.26 | 0.64 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Odds Ratio (5–95% C.I.) | p-Value | Odds Ratio (5–95% C.I.) | p-Value | |
CCI > 3 | 4.29 (1.44–12.76) | 0.009 | 1.8 (1.07–3.04) | 0.03 |
VA-EMO-first | 6.78 (2.1–21.7) | 0.001 | 0.88 (0.28–2.78) | 0.8 |
Prior CPR | 7 (2.413–20.31) | 0.001 | 6.5 (1.3–33.3) | 0.03 |
pH < 7.26 | 9.5 (2.45–36.87) | 0.0005 | 4.67 (1.04–32.3) | 0.04 |
Lactate > 6 (mmol/L) | 8.37 (2.55–27.45) | 0.0002 | 11 (1.3–94.7) | 0.03 |
Heart rate > 100 (bpm) | 0.3 (0.09–0.91) | 0.04 | 0.32 (0.1–1.03) | 0.07 |
Vasoactive score > 100 | 6.16 (1.91–19.84) | 0.002 | 4.6 (1.02–28.95) | 0.047 |
HCO 3− < 19 (mmol/L) | 2.88 (1.01–8.3) | 0.05 | 0.7 (0.2–2.3) | 0.55 |
Horowitz index | 3.21 (1.1–9.44) | 0.04 | 4.4 (0.95–32.29) | 0.056 |
Survival at hospital discharge, n (%) | 22 (32.8) |
Survival at 6-months, n (%) | 21 (31.3) |
Bridged to VAD, n (%) | 5 (7.4) |
Major device malfunction, n (%) | 0 (0) |
Access site bleeding needing transfusion, n (%) | 35 (52.2) |
RBC transfusion on MCS (units per day) | 1.13 (0.68–1.88) |
Myocardial infarction, n (%) | 0 (0) |
Stroke, n (%) | 0 (0) |
Pericardial effusion requiring paracentesis, n (%) | 1 (1.5) |
Limb ischemia or bleeding needing operation or intervention, n (%) | 7 (10.4) |
Limb ischemia or bleeding needing device removal, n (%) | 6 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzis, G.; Syntila, S.; Markus, B.; Ahrens, H.; Patsalis, N.; Luesebrink, U.; Divchev, D.; Parahuleva, M.; Al Eryani, H.; Schieffer, B.; et al. Biventricular Unloading with Impella and Venoarterial Extracorporeal Membrane Oxygenation in Severe Refractory Cardiogenic Shock: Implications from the Combined Use of the Devices and Prognostic Risk Factors of Survival. J. Clin. Med. 2021, 10, 747. https://doi.org/10.3390/jcm10040747
Chatzis G, Syntila S, Markus B, Ahrens H, Patsalis N, Luesebrink U, Divchev D, Parahuleva M, Al Eryani H, Schieffer B, et al. Biventricular Unloading with Impella and Venoarterial Extracorporeal Membrane Oxygenation in Severe Refractory Cardiogenic Shock: Implications from the Combined Use of the Devices and Prognostic Risk Factors of Survival. Journal of Clinical Medicine. 2021; 10(4):747. https://doi.org/10.3390/jcm10040747
Chicago/Turabian StyleChatzis, Georgios, Styliani Syntila, Birgit Markus, Holger Ahrens, Nikolaos Patsalis, Ulrich Luesebrink, Dimitar Divchev, Mariana Parahuleva, Hanna Al Eryani, Bernhard Schieffer, and et al. 2021. "Biventricular Unloading with Impella and Venoarterial Extracorporeal Membrane Oxygenation in Severe Refractory Cardiogenic Shock: Implications from the Combined Use of the Devices and Prognostic Risk Factors of Survival" Journal of Clinical Medicine 10, no. 4: 747. https://doi.org/10.3390/jcm10040747
APA StyleChatzis, G., Syntila, S., Markus, B., Ahrens, H., Patsalis, N., Luesebrink, U., Divchev, D., Parahuleva, M., Al Eryani, H., Schieffer, B., & Karatolios, K. (2021). Biventricular Unloading with Impella and Venoarterial Extracorporeal Membrane Oxygenation in Severe Refractory Cardiogenic Shock: Implications from the Combined Use of the Devices and Prognostic Risk Factors of Survival. Journal of Clinical Medicine, 10(4), 747. https://doi.org/10.3390/jcm10040747