Relapsed Rhabdomyosarcoma
Abstract
:1. Introduction
2. RMS Relapse: A Historical Perspective
3. Timing and Pattern of Relapse
4. Risk Factors for Outcomes Post-Relapse
4.1. High Risk Clinical Features at Diagnosis
4.2. Treatment-Related Risk Factors
4.3. Features of Relapse
4.4. Risk Stratification Post-Relapse
5. Role of Early Detection of Relapse
6. Therapeutic Approach to Relapse
6.1. Assessment of Post-Relapse Prognosis
6.2. Recent and Current Clinical Trials for Relapsed RMS
6.3. Chemotherapy Regimens for Relapsed RMS
6.4. Other Systemic Approaches for Relapsed RMS
6.5. Local Control in Relapsed RMS
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- HaDuong, J.H.; Martin, A.A.; Skapek, S.X.; Mascarenhas, L. Sarcomas. Pediatr. Clin. N. Am. 2015, 62, 179–200. [Google Scholar] [CrossRef]
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Hibbitts, E.; Chi, Y.Y.; Hawkins, D.S.; Barr, F.G.; Bradley, J.A.; Dasgupta, R.; Meyer, W.H.; Rodeberg, D.A.; Rudzinski, E.R.; Spunt, S.L.; et al. Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: A report from the Children’s Oncology Group. Cancer Med. 2019, 8, 6437–6448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzoleni, S.; Bisogno, G.; Garaventa, A.; Cecchetto, G.; Ferrari, A.; Sotti, G.; Donfrancesco, A.; Madon, E.; Casula, L.; Carli, M.; et al. Outcomes and prognostic factors after recurrence in children and adolescents with nonmetastatic rhabdomyosarcoma. Cancer 2005, 104, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Dantonello, T.M.; Int-Veen, C.; Winkler, P.; Leuschner, I.; Schuck, A.; Schmidt, B.F.; Lochbuehler, H.; Kirsch, S.; Hallmen, E.; Veit-Friedrich, I.; et al. Initial patient characteristics can predict pattern and risk of relapse in localized rhabdomyosarcoma. J. Clin. Oncol. 2008, 26, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, J.C.; Marandet, J.; Rey, A.; Scopinaro, M.; de Toledo, J.S.; Merks, J.H.; O’Meara, A.; Stevens, M.C.; Oberlin, O. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: A nomogram to better define patients who can be salvaged with further therapy. J. Clin. Oncol. 2011, 29, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Raney, R.B., Jr.; Crist, W.M.; Maurer, H.M.; Foulkes, M.A. Prognosis of children with soft tissue sarcoma who relapse after achieving a complete response. A report from the Intergroup Rhabdomyosarcoma Study I. Cancer 1983, 52, 44–50. [Google Scholar] [CrossRef]
- Pappo, A.S.; Anderson, J.R.; Crist, W.M.; Wharam, M.D.; Breitfeld, P.P.; Hawkins, D.; Raney, R.B.; Womer, R.B.; Parham, D.M.; Qualman, S.J.; et al. Survival after relapse in children and adolescents with rhabdomyosarcoma: A report from the Intergroup Rhabdomyosarcoma Study Group. J. Clin. Oncol. 1999, 17, 3487–3493. [Google Scholar] [CrossRef]
- Smith, L.M.; Anderson, J.R.; Qualman, S.J.; Crist, W.M.; Paidas, C.N.; Teot, L.A.; Pappo, A.S.; Link, M.P.; Grier, H.E.; Wiener, E.S.; et al. Which patients with microscopic disease and rhabdomyosarcoma experience relapse after therapy? A report from the soft tissue sarcoma committee of the children’s oncology group. J. Clin. Oncol. 2001, 19, 4058–4064. [Google Scholar] [CrossRef]
- Dantonello, T.M.; Int-Veen, C.; Schuck, A.; Seitz, G.; Leuschner, I.; Nathrath, M.; Schlegel, P.G.; Kontny, U.; Behnisch, W.; Veit-Friedrich, I.; et al. Survival following disease recurrence of primary localized alveolar rhabdomyosarcoma. Pediatr. Blood Cancer 2013, 60, 1267–1273. [Google Scholar] [CrossRef]
- Flamant, F.; Rodary, C.; Rey, A.; Praquin, M.T.; Sommelet, D.; Quintana, E.; Theobald, S.; Brunat-Mentigny, M.; Otten, J.; Voute, P.A.; et al. Treatment of non-metastatic rhabdomyosarcomas in childhood and adolescence. Results of the second study of the International Society of Paediatric Oncology: MMT84. Eur. J. Cancer 1998, 34, 1050–1062. [Google Scholar] [CrossRef]
- Mattke, A.C.; Bailey, E.J.; Schuck, A.; Dantonello, T.; Leuschner, I.; Klingebiel, T.; Treuner, J.; Koscielniak, E. Does the time-point of relapse influence outcome in pediatric rhabdomyosarcomas? Pediatr. Blood Cancer 2009, 52, 772–776. [Google Scholar] [CrossRef]
- Sparber-Sauer, M.; Stegmaier, S.; Vokuhl, C.; Seitz, G.; von Kalle, T.; Scheer, M.; Munter, M.; Bielack, S.S.; Weclawek-Tompol, J.; Ladenstein, R.; et al. Rhabdomyosarcoma diagnosed in the first year of life: Localized, metastatic, and relapsed disease. Outcome data from five trials and one registry of the Cooperative Weichteilsarkom Studiengruppe (CWS). Pediatr. Blood Cancer 2019, 66, e27652. [Google Scholar] [CrossRef]
- Malempati, S.; Rodeberg, D.A.; Donaldson, S.S.; Lyden, E.R.; Anderson, J.R.; Hawkins, D.S.; Arndt, C.A. Rhabdomyosarcoma in infants younger than 1 year: A report from the Children’s Oncology Group. Cancer 2011, 117, 3493–3501. [Google Scholar] [CrossRef] [Green Version]
- Ragab, A.H.; Heyn, R.; Tefft, M.; Hays, D.N.; Newton, W.A., Jr.; Beltangady, M. Infants younger than 1 year of age with rhabdomyosarcoma. Cancer 1986, 58, 2606–2610. [Google Scholar] [CrossRef]
- Ferrari, A.; Casanova, M.; Bisogno, G.; Zanetti, I.; Cecchetto, G.; De Bernardi, B.; Riccardi, R.; Tamaro, P.; Meazza, C.; Alaggio, R.; et al. Rhabdomyosarcoma in infants younger than one year old: A report from the Italian Cooperative Group. Cancer 2003, 97, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.A.; Kayton, M.L.; Chi, Y.Y.; Hawkins, D.S.; Tian, J.; Breneman, J.; Wolden, S.L.; Walterhouse, D.; Rodeberg, D.A.; Donaldson, S.S. Treatment Approach and Outcomes in Infants With Localized Rhabdomyosarcoma: A Report From the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 19–27. [Google Scholar] [CrossRef]
- Davicioni, E.; Finckenstein, F.G.; Shahbazian, V.; Buckley, J.D.; Triche, T.J.; Anderson, M.J. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res. 2006, 66, 6936–6946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davicioni, E.; Anderson, M.J.; Finckenstein, F.G.; Lynch, J.C.; Qualman, S.J.; Shimada, H.; Schofield, D.E.; Buckley, J.D.; Meyer, W.H.; Sorensen, P.H.; et al. Molecular classification of rhabdomyosarcoma—Genotypic and phenotypic determinants of diagnosis: A report from the Children’s Oncology Group. Am. J. Pathol. 2009, 174, 550–564. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Chatterjee, B.; Shern, J.F.; Patidar, R.; Song, Y.; Wang, Y.; Walker, R.L.; Pawel, B.R.; Linardic, C.M.; Houghton, P.; et al. Relationship of DNA methylation to mutational changes and transcriptional organization in fusion-positive and fusion-negative rhabdomyosarcoma. Int. J. Cancer 2019, 144, 2707–2717. [Google Scholar] [CrossRef] [PubMed]
- Rudzinski, E.R.; Teot, L.A.; Anderson, J.R.; Moore, J.; Bridge, J.A.; Barr, F.G.; Gastier-Foster, J.M.; Skapek, S.X.; Hawkins, D.S.; Parham, D.M. Dense pattern of embryonal rhabdomyosarcoma, a lesion easily confused with alveolar rhabdomyosarcoma: A report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Am. J. Clin. Pathol. 2013, 140, 82–90. [Google Scholar] [CrossRef]
- Arnold, M.A.; Anderson, J.R.; Gastier-Foster, J.M.; Barr, F.G.; Skapek, S.X.; Hawkins, D.S.; Raney, R.B., Jr.; Parham, D.M.; Teot, L.A.; Rudzinski, E.R.; et al. Histology, Fusion Status, and Outcome in Alveolar Rhabdomyosarcoma With Low-Risk Clinical Features: A Report From the Children’s Oncology Group. Pediatr. Blood Cancer 2016, 63, 634–639. [Google Scholar] [CrossRef] [Green Version]
- Rogers, T.; Minard-Colin, V.; Cozic, N.; Jenney, M.; Merks, J.H.M.; Gallego, S.; Devalck, C.; Gaze, M.N.; Kelsey, A.; Oberlin, O.; et al. Paratesticular rhabdomyosarcoma in children and adolescents-Outcome and patterns of relapse when utilizing a nonsurgical strategy for lymph node staging: Report from the International Society of Paediatric Oncology (SIOP) Malignant Mesenchymal Tumour 89 and 95 studies. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef]
- Raney, R.B.; Maurer, H.M.; Anderson, J.R.; Andrassy, R.J.; Donaldson, S.S.; Qualman, S.J.; Wharam, M.D.; Wiener, E.S.; Crist, W.M. The Intergroup Rhabdomyosarcoma Study Group (IRSG): Major Lessons From the IRS-I Through IRS-IV Studies as Background for the Current IRS-V Treatment Protocols. Sarcoma 2001, 5, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Affinita, M.C.; Ferrari, A.; Chiaravalli, S.; Melchionda, F.; Quaglietta, L.; Casanova, M.; Zanetti, I.; Scarzello, G.; Di Pasquale, L.; Di Cataldo, A.; et al. Defining the impact of prognostic factors at the time of relapse for nonmetastatic rhabdomyosarcoma. Pediatr. Blood Cancer 2020, 67, e28674. [Google Scholar] [CrossRef]
- Mascarenhas, L.; Lyden, E.R.; Breitfeld, P.P.; Walterhouse, D.O.; Donaldson, S.S.; Rodeberg, D.A.; Parham, D.M.; Anderson, J.R.; Meyer, W.H.; Hawkins, D.S. Risk-based treatment for patients with first relapse or progression of rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer 2019, 125, 2602–2609. [Google Scholar] [CrossRef] [PubMed]
- Malempati, S.; Hawkins, D.S. Rhabdomyosarcoma: Review of the Children’s Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr. Blood Cancer 2012, 59, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Vaarwerk, B.; Mallebranche, C.; Affinita, M.C.; van der Lee, J.H.; Ferrari, A.; Chisholm, J.C.; Defachelles, A.S.; De Salvo, G.L.; Corradini, N.; Minard-Colin, V.; et al. Is surveillance imaging in pediatric patients treated for localized rhabdomyosarcoma useful? The European experience. Cancer 2020, 126, 823–831. [Google Scholar] [CrossRef]
- Lin, J.L.; Guillerman, R.P.; Russell, H.V.; Lupo, P.J.; Nicholls, L.; Okcu, M.F. Does Routine Imaging of Patients for Progression or Relapse Improve Survival in Rhabdomyosarcoma? Pediatr. Blood Cancer 2016, 63, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Mallebranche, C.; Carton, M.; Minard-Colin, V.; Desfachelle, A.S.; Rome, A.; Brisse, H.J.; Mosseri, V.; Thebaud, E.; Pellier, I.; Boutroux, H.; et al. Relapse after rhabdomyosarcoma in childhood and adolescence: Impact of an early detection on survival. Bull. Cancer 2017, 104, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, L.; Lyden, E.R.; Breitfeld, P.P.; Walterhouse, D.O.; Donaldson, S.S.; Paidas, C.N.; Parham, D.M.; Anderson, J.R.; Meyer, W.H.; Hawkins, D.S. Randomized phase II window trial of two schedules of irinotecan with vincristine in patients with first relapse or progression of rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2010, 28, 4658–4663. [Google Scholar] [CrossRef]
- Yohe, M.E.; Heske, C.M.; Stewart, E.; Adamson, P.C.; Ahmed, N.; Antonescu, C.R.; Chen, E.; Collins, N.; Ehrlich, A.; Galindo, R.L.; et al. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr. Blood Cancer 2019, 66, e27869. [Google Scholar] [CrossRef] [PubMed]
- Casanova, M.; Ferrari, A.; Spreafico, F.; Terenziani, M.; Massimino, M.; Luksch, R.; Cefalo, G.; Polastri, D.; Marcon, I.; Bellani, F.F. Vinorelbine in previously treated advanced childhood sarcomas: Evidence of activity in rhabdomyosarcoma. Cancer 2002, 94, 3263–3268. [Google Scholar] [CrossRef] [PubMed]
- Kuttesch, J.F., Jr.; Krailo, M.D.; Madden, T.; Johansen, M.; Bleyer, A.; Children’s Oncology, G. Phase II evaluation of intravenous vinorelbine (Navelbine) in recurrent or refractory pediatric malignancies: A Children’s Oncology Group study. Pediatr. Blood Cancer 2009, 53, 590–593. [Google Scholar] [CrossRef] [Green Version]
- Casanova, M.; Ferrari, A.; Bisogno, G.; Merks, J.H.; De Salvo, G.L.; Meazza, C.; Tettoni, K.; Provenzi, M.; Mazzarino, I.; Carli, M. Vinorelbine and low-dose cyclophosphamide in the treatment of pediatric sarcomas: Pilot study for the upcoming European Rhabdomyosarcoma Protocol. Cancer 2004, 101, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Gerber, H.P.; Kowalski, J.; Sherman, D.; Eberhard, D.A.; Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 2000, 60, 6253–6258. [Google Scholar] [PubMed]
- Petricoin, E.F., 3rd; Espina, V.; Araujo, R.P.; Midura, B.; Yeung, C.; Wan, X.; Eichler, G.S.; Johann, D.J., Jr.; Qualman, S.; Tsokos, M.; et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 2007, 67, 3431–3440. [Google Scholar] [CrossRef] [Green Version]
- Houghton, P.J.; Morton, C.L.; Kolb, E.A.; Gorlick, R.; Lock, R.; Carol, H.; Reynolds, C.P.; Maris, J.M.; Keir, S.T.; Billups, C.A.; et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr. Blood Cancer 2008, 50, 799–805. [Google Scholar] [CrossRef]
- Glade Bender, J.L.; Adamson, P.C.; Reid, J.M.; Xu, L.; Baruchel, S.; Shaked, Y.; Kerbel, R.S.; Cooney-Qualter, E.M.; Stempak, D.; Chen, H.X.; et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: A Children’s Oncology Group Study. J. Clin. Oncol. 2008, 26, 399–405. [Google Scholar] [CrossRef]
- Spunt, S.L.; Grupp, S.A.; Vik, T.A.; Santana, V.M.; Greenblatt, D.J.; Clancy, J.; Berkenblit, A.; Krygowski, M.; Ananthakrishnan, R.; Boni, J.P.; et al. Phase I study of temsirolimus in pediatric patients with recurrent/refractory solid tumors. J. Clin. Oncol. 2011, 29, 2933–2940. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, L.; Chi, Y.Y.; Hingorani, P.; Anderson, J.R.; Lyden, E.R.; Rodeberg, D.A.; Indelicato, D.J.; Kao, S.C.; Dasgupta, R.; Spunt, S.L.; et al. Randomized Phase II Trial of Bevacizumab or Temsirolimus in Combination With Chemotherapy for First Relapse Rhabdomyosarcoma: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2019, 37, 2866–2874. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Cheshire, P.J.; Hallman, J.C.; Bissery, M.C.; Mathieu-Boue, A.; Houghton, J.A. Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against human tumor xenografts: Lack of cross-resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9-dimethylaminomethyl-10-hydroxycamptothecin. Cancer Res. 1993, 53, 2823–2829. [Google Scholar] [PubMed]
- Houghton, P.J.; Cheshire, P.J.; Hallman, J.D., 2nd; Lutz, L.; Friedman, H.S.; Danks, M.K.; Houghton, J.A. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother. Pharmacol. 1995, 36, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Stewart, C.F.; Cheshire, P.J.; Richmond, L.B.; Kirstein, M.N.; Poquette, C.A.; Tan, M.; Friedman, H.S.; Brent, T.P. Antitumor activity of temozolomide combined with irinotecan is partly independent of O6-methylguanine-DNA methyltransferase and mismatch repair phenotypes in xenograft models. Clin. Cancer Res. 2000, 6, 4110–4118. [Google Scholar] [PubMed]
- Weigel, B.J.; Lyden, E.; Anderson, J.R.; Meyer, W.H.; Parham, D.M.; Rodeberg, D.A.; Michalski, J.M.; Hawkins, D.S.; Arndt, C.A. Intensive Multiagent Therapy, Including Dose-Compressed Cycles of Ifosfamide/Etoposide and Vincristine/Doxorubicin/Cyclophosphamide, Irinotecan, and Radiation, in Patients With High-Risk Rhabdomyosarcoma: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2016, 34, 117–122. [Google Scholar] [CrossRef]
- Furman, W.L.; Stewart, C.F.; Poquette, C.A.; Pratt, C.B.; Santana, V.M.; Zamboni, W.C.; Bowman, L.C.; Ma, M.K.; Hoffer, F.A.; Meyer, W.H.; et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J. Clin. Oncol. 1999, 17, 1815–1824. [Google Scholar] [CrossRef]
- Pappo, A.S.; Lyden, E.; Breitfeld, P.; Donaldson, S.S.; Wiener, E.; Parham, D.; Crews, K.R.; Houghton, P.; Meyer, W.H.; Children’s Oncology, G. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: The Children’s Oncology Group. J. Clin. Oncol. 2007, 25, 362–369. [Google Scholar] [CrossRef]
- Mixon, B.A.; Eckrich, M.J.; Lowas, S.; Engel, M.E. Vincristine, Irinotecan, and Temozolomide for Treatment of Relapsed Alveolar Rhabdomyosarcoma. J. Pediatr. Hematol. Oncol. 2013, 35, e163–e166. [Google Scholar] [CrossRef] [PubMed]
- Setty, B.A.; Stanek, J.R.; Mascarenhas, L.; Miller, A.; Bagatell, R.; Okcu, F.; Nicholls, L.; Lysecki, D.; Gupta, A.A. VIncristine, irinotecan, and temozolomide in children and adolescents with relapsed rhabdomyosarcoma. Pediatr. Blood Cancer 2018, 65, e26728. [Google Scholar] [CrossRef]
- McNall-Knapp, R.Y.; Williams, C.N.; Reeves, E.N.; Heideman, R.L.; Meyer, W.H. Extended phase I evaluation of vincristine, irinotecan, temozolomide, and antibiotic in children with refractory solid tumors. Pediatr. Blood Cancer 2010, 54, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Defachelles, A.S.; Bogart, E.; Casanova, M.; Merks, H.; Bisogno, G.; Calareso, G.; Melcon, S.G.; Gatz, S.; Deley, M.-C.L.; McHugh, K.; et al. Randomized phase 2 trial of the combination of vincristine and irinotecan with or without temozolomide, in children and adults with refractory or relapsed rhabdomyosarcoma (RMS). J. Clin. Oncol. 2019, 37, 10000. [Google Scholar] [CrossRef]
- Wan, X.; Helman, L.J. Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 2003, 22, 8205–8211. [Google Scholar] [CrossRef] [Green Version]
- Pappo, A.S.; Vassal, G.; Crowley, J.J.; Bolejack, V.; Hogendoorn, P.C.; Chugh, R.; Ladanyi, M.; Grippo, J.F.; Dall, G.; Staddon, A.P.; et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: Results of a Sarcoma Alliance for Research Through Collaboration study. Cancer 2014, 120, 2448–2456. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Yeung, C.; Heske, C.; Mendoza, A.; Helman, L.J. IGF-1R Inhibition Activates a YES/SFK Bypass Resistance Pathway: Rational Basis for Co-Targeting IGF-1R and Yes/SFK Kinase in Rhabdomyosarcoma. Neoplasia 2015, 17, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heske, C.M.; Yeung, C.; Mendoza, A.; Baumgart, J.T.; Edessa, L.D.; Wan, X.; Helman, L.J. The Role of PDGFR-beta Activation in Acquired Resistance to IGF-1R Blockade in Preclinical Models of Rhabdomyosarcoma. Transl. Oncol. 2016, 9, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Malempati, S.; Weigel, B.J.; Chi, Y.Y.; Tian, J.; Anderson, J.R.; Parham, D.M.; Teot, L.A.; Rodeberg, D.A.; Yock, T.I.; Shulkin, B.L.; et al. The addition of cixutumumab or temozolomide to intensive multiagent chemotherapy is feasible but does not improve outcome for patients with metastatic rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer 2019, 125, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryder, B.E.; Pomella, S.; Sayers, C.; Wu, X.S.; Song, Y.; Chiarella, A.M.; Bagchi, S.; Chou, H.C.; Sinniah, R.S.; Walton, A.; et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat. Genet. 2019, 51, 1714–1722. [Google Scholar] [CrossRef]
- Bharathy, N.; Berlow, N.E.; Wang, E.; Abraham, J.; Settelmeyer, T.P.; Hooper, J.E.; Svalina, M.N.; Ishikawa, Y.; Zientek, K.; Bajwa, Z.; et al. The HDAC3-SMARCA4-miR-27a axis promotes expression of the PAX3:FOXO1 fusion oncogene in rhabdomyosarcoma. Sci. Signal. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Vleeshouwer-Neumann, T.; Phelps, M.; Bammler, T.K.; MacDonald, J.W.; Jenkins, I.; Chen, E.Y. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma. PLoS ONE 2015, 10, e0144320. [Google Scholar] [CrossRef] [Green Version]
- Bharathy, N.; Berlow, N.E.; Wang, E.; Abraham, J.; Settelmeyer, T.P.; Hooper, J.E.; Svalina, M.N.; Bajwa, Z.; Goros, M.W.; Hernandez, B.S.; et al. Preclinical rationale for entinostat in embryonal rhabdomyosarcoma. Skelet. Muscle 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Lowery, C.D.; Dowless, M.; Renschler, M.; Blosser, W.; VanWye, A.B.; Stephens, J.R.; Iversen, P.W.; Lin, A.B.; Beckmann, R.P.; Krytska, K.; et al. Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clin. Cancer Res. 2019, 25, 2278–2289. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Reynolds, C.P.; Kang, M.H.; Kolb, E.A.; Gorlick, R.; Carol, H.; Lock, R.B.; Keir, S.T.; Maris, J.M.; Billups, C.A.; et al. Synergistic activity of PARP inhibition by talazoparib (BMN 673) with temozolomide in pediatric cancer models in the pediatric preclinical testing program. Clin. Cancer Res. 2015, 21, 819–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Brunson, D.C.; Tang, Q.; Do, D.; Iftimia, N.A.; Moore, J.C.; Hayes, M.N.; Welker, A.M.; Garcia, E.G.; Dubash, T.D.; et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell 2019, 177, 1903–1914 e1914. [Google Scholar] [CrossRef] [PubMed]
- Kolb, E.A.; Gorlick, R.; Reynolds, C.P.; Kang, M.H.; Carol, H.; Lock, R.; Keir, S.T.; Maris, J.M.; Billups, C.A.; Desjardins, C.; et al. Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatr. Blood Cancer 2013, 60, 1325–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, P.J.; Kurmasheva, R.T.; Kolb, E.A.; Gorlick, R.; Maris, J.M.; Wu, J.; Tong, Z.; Arnold, M.A.; Chatterjee, M.; Williams, T.M.; et al. Initial testing (stage 1) of the tubulin binding agent nanoparticle albumin-bound (nab) paclitaxel (Abraxane((R))) by the Pediatric Preclinical Testing Program (PPTP). Pediatr. Blood Cancer 2015, 62, 1214–1221. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.J.; Gill, J.D.; Roth, M.E.; Zhang, W.; Teicher, B.; Erickson, S.; Gatto, G.; Kurmasheva, R.T.; Houghton, P.J.; Smith, M.A.; et al. Initial in vivo testing of a multitarget kinase inhibitor, regorafenib, by the Pediatric Preclinical Testing Consortium. Pediatr. Blood Cancer 2020, 67, e28222. [Google Scholar] [CrossRef]
- Saab, R.; Bills, J.L.; Miceli, A.P.; Anderson, C.M.; Khoury, J.D.; Fry, D.W.; Navid, F.; Houghton, P.J.; Skapek, S.X. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol. Cancer Ther. 2006, 5, 1299–1308. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, T.; Venier, R.; Yohe, M.; Sindiri, S.; Gryder, B.E.; Shern, J.F.; Kabaroff, L.; Dickson, B.; Schleicher, K.; Chouinard-Pelletier, G.; et al. Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene 2018, 37, 2630–2644. [Google Scholar] [CrossRef]
- Minard-Colin, V.; Ichante, J.L.; Nguyen, L.; Paci, A.; Orbach, D.; Bergeron, C.; Defachelles, A.S.; Andre, N.; Corradini, N.; Schmitt, C.; et al. Phase II study of vinorelbine and continuous low doses cyclophosphamide in children and young adults with a relapsed or refractory malignant solid tumour: Good tolerance profile and efficacy in rhabdomyosarcoma—A report from the Societe Francaise des Cancers et leucemies de l’Enfant et de l’adolescent (SFCE). Eur. J. Cancer 2012, 48, 2409–2416. [Google Scholar] [CrossRef]
- Winter, S.; Fasola, S.; Brisse, H.; Mosseri, V.; Orbach, D. Relapse after localized rhabdomyosarcoma: Evaluation of the efficacy of second-line chemotherapy. Pediatr. Blood Cancer 2015, 62, 1935–1941. [Google Scholar] [CrossRef]
- Saylors, R.L., 3rd; Stine, K.C.; Sullivan, J.; Kepner, J.L.; Wall, D.A.; Bernstein, M.L.; Harris, M.B.; Hayashi, R.; Vietti, T.J.; Pediatric Oncology, G. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: A Pediatric Oncology Group phase II study. J. Clin. Oncol. 2001, 19, 3463–3469. [Google Scholar] [CrossRef] [PubMed]
- Blanchette, P.; Hogg, D.; Ferguson, P.; Wunder, J.S.; Swallow, C.; Gladdy, R.; Chung, P.; O’Sullivan, B.; Blackstein, M.E.; Catton, C.; et al. Topotecan and cyclophosphamide in adults with relapsed sarcoma. Sarcoma 2012, 2012, 749067. [Google Scholar] [CrossRef]
- Van Winkle, P.; Angiolillo, A.; Krailo, M.; Cheung, Y.K.; Anderson, B.; Davenport, V.; Reaman, G.; Cairo, M.S. Ifosfamide, carboplatin, and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/refractory sarcoma: The Children’s Cancer Group (CCG) experience. Pediatr. Blood Cancer 2005, 44, 338–347. [Google Scholar] [CrossRef]
- Compostella, A.; Affinita, M.C.; Casanova, M.; Milano, G.M.; Scagnellato, A.; Dall’Igna, P.; Chiaravalli, S.; Pierobon, M.; Manzitti, C.; Zanetti, I.; et al. Topotecan/carboplatin regimen for refractory/recurrent rhabdomyosarcoma in children: Report from the AIEOP Soft Tissue Sarcoma Committee. Tumori 2019, 105, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Rapkin, L.; Qayed, M.; Brill, P.; Martin, M.; Clark, D.; George, B.A.; Olson, T.A.; Wasilewski-Masker, K.; Alazraki, A.; Katzenstein, H.M. Gemcitabine and docetaxel (GEMDOX) for the treatment of relapsed and refractory pediatric sarcomas. Pediatr. Blood Cancer 2012, 59, 854–858. [Google Scholar] [CrossRef]
- Kanamitsu, K.; Ishida, H.; Fujiwara, K.; Washio, K.; Shimada, A.; Tsukahara, H. A case of alveolar rhabdomyosarcoma showing concurrent responsive bone marrow lesions and refractory pancreatic lesions to pazopanib monotherapy. Pediatr. Blood Cancer 2020, 67, e28323. [Google Scholar] [CrossRef] [PubMed]
- Peinemann, F.; Kroger, N.; Bartel, C.; Grouven, U.; Pittler, M.; Erttmann, R.; Kulig, M. High-dose chemotherapy followed by autologous stem cell transplantation for metastatic rhabdomyosarcoma—A systematic review. PLoS ONE 2011, 6, e17127. [Google Scholar] [CrossRef] [Green Version]
- Thiel, U.; Koscielniak, E.; Blaeschke, F.; Grunewald, T.G.; Badoglio, M.; Diaz, M.A.; Paillard, C.; Prete, A.; Ussowicz, M.; Lang, P.; et al. Allogeneic stem cell transplantation for patients with advanced rhabdomyosarcoma: A retrospective assessment. Br. J. Cancer 2013, 109, 2523–2532. [Google Scholar] [CrossRef] [Green Version]
- Borinstein, S.C.; Steppan, D.; Hayashi, M.; Loeb, D.M.; Isakoff, M.S.; Binitie, O.; Brohl, A.S.; Bridge, J.A.; Stavas, M.; Shinohara, E.T.; et al. Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr. Blood Cancer 2018, 65. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dorado Garcia, H.; Scheer, M.; Henssen, A.G. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front. Oncol. 2019, 9, 1458. [Google Scholar] [CrossRef]
- Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tsuchiya, H. Recent Advances and Challenges in the Treatment of Rhabdomyosarcoma. Cancers 2020, 12, 1758. [Google Scholar] [CrossRef]
- De Corti, F.; Bisogno, G.; Dall’Igna, P.; Ferrari, A.; Buffa, P.; De Paoli, A.; Cecchetto, G. Does surgery have a role in the treatment of local relapses of non-metastatic rhabdomyosarcoma? Pediatr. Blood Cancer 2011, 57, 1261–1265. [Google Scholar] [CrossRef]
- Hayes-Jordan, A.; Doherty, D.K.; West, S.D.; Raney, R.B.; Blakely, M.L.; Cox, C.S., Jr.; Andrassy, R.J.; Lally, K.P. Outcome after surgical resection of recurrent rhabdomyosarcoma. J. Pediatr. Surg. 2006, 41, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Klingebiel, T.; Pertl, U.; Hess, C.F.; Jurgens, H.; Koscielniak, E.; Potter, R.; van Heek-Romanowski, R.; Rossi, R.; Schott, C.; Spaar, H.J.; et al. Treatment of children with relapsed soft tissue sarcoma: Report of the German CESS/CWS REZ 91 trial. Med. Pediatr. Oncol. 1998, 30, 269–275. [Google Scholar] [CrossRef]
- Wakefield, D.V.; Eaton, B.R.; Dove, A.P.H.; Hsu, C.Y.; Merchant, T.E.; Pappo, A.; Davidoff, A.M.; Esiashvili, N.; Krasin, M.J.; Lucas, J.T., Jr. Is there a role for salvage re-irradiation in pediatric patients with locoregional recurrent rhabdomyosarcoma? Clinical outcomes from a multi-institutional cohort. Radiother. Oncol. 2018, 129, 513–519. [Google Scholar] [CrossRef]
- Vaarwerk, B.; Hol, M.L.F.; Schoot, R.A.; Breunis, W.B.; de Win, M.M.L.; Westerveld, H.; Fajardo, R.D.; Saeed, P.; van den Brekel, M.W.; Pieters, B.R.; et al. AMORE treatment as salvage treatment in children and young adults with relapsed head-neck rhabdomyosarcoma. Radiother. Oncol. 2019, 131, 21–26. [Google Scholar] [CrossRef] [PubMed]
Intervention | Class | Study Population | NCT | Phase |
---|---|---|---|---|
Vincristine/Irinotecan +/−Temozolomide (FaR-RMS) | Cytotoxic | RMS | 04625907 | 2 |
Ganitumab + Dasatinib | IGF-1R antibody + multikinase inhibitor | RMS | 03041701 | 1/2 |
Vinorelbine + Mocetinostat | HDAC inhibitor + cytotoxic | RMS | 04299113 | 1 |
Prexasertib + Irinotecan | CHEK2 inhibitor + cytotoxic | RMS, DSRCT | 04095221 | 1/2 |
Olaparib + Temozolomide | PARP inhibitor + cytotoxic | RMS, EWS | 01858168 | 1 |
Eribulin mesylate | Cytotoxic | RMS, NRSTS, EWS | 03441360 | 2 |
Eribulin mesylate + Irinotecan | Cytotoxic | Solid tumors | 03245450 | 1/2 |
Nab-paclitaxel + Gemcitabine | Cytotoxic | RMS, NRSTS, OST, EWS | 02945800 | 2 |
Nab-paclitaxel + Gemcitabine | Cytotoxic | Pediatric solid tumors | 03507491 | 1 |
Regorafenib | Multikinase inhibitor | RMS, EWS, OST, LPS, MCS | 02048371 | 2 |
Abemaciclib | CDK4/6 inhibitor | Pediatric solid tumors | 02644460 | 1 |
Abemaciclib + Irinotecan or Irinotecan/Temozolomide | CDK4/6 inhibitor + cytotoxic | Pediatric solid tumors | 04238819 | 1 |
Copanlisib | PI3K inhibitor | Pediatric solid tumors | 03458728 | 1/2 |
Vorinostat + chemotherapy | HDAC inhibitor + cytotoxic | Solid tumors | 04308330 | 1 |
Sirolimus + metronomic chemotherapy | mTOR inhibitor + cytotoxic | Pediatric solid tumors | 02574728 | 2 |
High-dose alkylator chemotherapy + autologous transplant | Cytotoxic + cellular rescue | Solid tumors | 01505569 | 2 |
Pediatric MATCH | Personalized | Pediatric solid tumors | Multiple | 2 |
ESMART | Personalized | Pediatric malignancies | 02813135 | 1/2 |
B7H3 CAR T Cells | Immunotherapy | Pediatric solid tumors | 04483778 | 1 |
GD2 CAR T Cells | Immunotherapy | Pediatric solid tumors | 03635632 | 1 |
EGFR CAR T Cells | Immunotherapy | Pediatric solid tumors | 03618381 | 1 |
Allogeneic HSCT | Transplant | Pediatric solid tumors | 04530487 | 2 |
Haploidentical HSCT + Zometa | Transplant | Pediatric malignancies | 02508038 | 1 |
Reduced intensity haploidentical HSCT | Transplant | Solid tumors | 01804634 | 2 |
Haploidentical NK cells | Transplant | RMS, EWS | 02409576 | 1/2 |
Universal donor NK cells + ALT803 | Transplant | Malignancies | 02890758 | 1 |
High intensity focused ultrasound (HIFU) | Local control | Pediatric solid tumors | 02076906 | 1 |
HIFU + thermosensitive liposomal doxorubicin | Local control | Pediatric solid tumors | 02536183 | 1 |
CLR-131 | Local control | Pediatric solid tumors | 03478462 | 1 |
Regimen | Outcome Data | Study Design; Number of Patients |
---|---|---|
Doxorubicin, cyclophosphamide, ifosfamide, etoposide | Favorable risk: 3-year FFS 79% Unfavorable risk: 3-year FFS 17% | RCT [26] Favorable: n = 14 Unfavorable: n = 122 |
Vinorelbine, cyclophosphamide, temsirolimus | 6-month EFS: 69% RR: 47% | RCT (v. vinorelbine, cyclophosphamide, bevacizumab) [41] n = 87 |
Vinorelbine, oral cyclophosphamide | Median survival: 9 months RR: 36% | Phase 2 single arm [69] n = 50 |
Vincristine, irinotecan, temozolomide | 3-month PFS: 23% DCR: 27% | Retrospective analysis [49] n = 19 |
RR: 43% | Retrospective analysis [70] n = 7 | |
RR: 25% | Retrospective analysis (ARMS) [48] n = 4 | |
Vincristine, irinotecan | 1-year FFS: 37–38% RR: 26–37% | Randomized phase 2 window (two schedules) [31] n = 92 |
Cyclophosphamide, topotecan | Median time to progression: 2 months RR: 67% | Phase 2 single arm [71] n = 15 |
RR: 67% | Retrospective analysis [72] n = 6 | |
Ifosfamide, carboplatin, etoposide | 2-year OS: 26% 2-year OS for ERMS: 46% RR: 67% | Retrospective analysis [73] n = 27 |
Topotecan, carboplatin | 5-year PFS: 17% RR: 28% | Single arm [74] n = 38 |
Gemcitabine, docetaxel | RR: 40% | Retrospective single institution [75] n = 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heske, C.M.; Mascarenhas, L. Relapsed Rhabdomyosarcoma. J. Clin. Med. 2021, 10, 804. https://doi.org/10.3390/jcm10040804
Heske CM, Mascarenhas L. Relapsed Rhabdomyosarcoma. Journal of Clinical Medicine. 2021; 10(4):804. https://doi.org/10.3390/jcm10040804
Chicago/Turabian StyleHeske, Christine M., and Leo Mascarenhas. 2021. "Relapsed Rhabdomyosarcoma" Journal of Clinical Medicine 10, no. 4: 804. https://doi.org/10.3390/jcm10040804