Comparison of the Time to Extubation and Length of Stay in the PACU after Sugammadex and Neostigmine Use in Two Types of Surgery: A Monocentric Retrospective Analysis
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- de Boer, H.D. Neuromuscular transmission: New concepts and agents. J. Crit. Care 2009, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Savic, L.; Savic, S.; Hopkins, P.M. Sugammadex: The sting in the tail? Br. J. Anaesth. 2018, 121, 694–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristovska, A.M.; Duch, P.; Allingstrup, M.; Afshari, A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst. Rev. 2017, 8, CD012763. [Google Scholar] [CrossRef] [PubMed]
- Hristovska, A.M.; Duch, P.; Allingstrup, M.; Afshari, A. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2018, 73, 631–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.K.; Caldwell, J.E.; Brull, S.J.; Soto, R.G. Reversal of profound rocuronium-induced blockade with sugammadex: A randomized comparison with neostigmine. Anesthesiology 2008, 109, 816–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carron, M.; Veronese, S.; Foletto, M.; Ori, C. Sugammadex allows fast-track bariatric surgery. Obes. Surg. 2013, 23, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Carron, M.; Zarantonello, F.; Lazzarotto, N.; Tellaroli, P.; Ori, C. Role of sugammadex in accelerating postoperative discharge: A meta-analysis. J. Clin. Anesth. 2017, 39, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.S.; Reznik, S.; Pak, T.; Jan, K.; Pruszynski, J.; Kim, A.; Smith, M.; Lu, R.; Chen, J.; Gasanova, I.; et al. Sugammadex versus neostigmine for reversal of rocuronium-induced neuromuscular blockade: A randomized, double-blinded study of thoracic surgical patients evaluating hypoxic episodes in the early postoperative period. J. Clin. Anesth. 2020, 64, 109804. [Google Scholar] [CrossRef] [PubMed]
- Motamed, C.; Bourgain, J.L. An anaesthesia information management system as a tool for a quality assurance program: 10 years of experience. Anaesth. Crit. Care Pain Med. 2016, 35, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Motamed, C.; Bourgain, J.L.; D’Hollander, A. Survey of muscle relaxant effects management with a kinemyographic-based data archiving system: A retrospective quantitative and contextual quality control approach. J. Clin. Monit. Comput. 2013, 27, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Plaud, B.; Baillard, C.; Bourgain, J.L.; Bouroche, G.; Desplanque, L.; Devys, J.M.; Fletcher, D.; Fuchs-Buder, T.; Lebuffe, G.; Meistelman, C.; et al. Guidelines on muscle relaxants and reversal in anaesthesia. Anaesth. Crit. Care Pain Med. 2020, 39, 125–142. [Google Scholar]
- Nemes, R.; Fulesdi, B.; Pongracz, A.; Asztalos, L.; Szabo-Maak, Z.; Lengyel, S.; Tassonyi, E. Impact of reversal strategies on the incidence of postoperative residual paralysis after rocuronium relaxation without neuromuscular monitoring: A partially randomised placebo controlled trial. Eur. J. Anaesthesiol. 2017, 34, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Dutu, M.; Ivascu, R.; Tudorache, O.; Morlova, D.; Stanca, A.; Negoita, S.; Corneci, D. Neuromuscular monitoring: An update. Rom. J. Anaesth. Intensive Care 2018, 25, 55–60. [Google Scholar]
- Kim, N.Y.; Koh, J.C.; Lee, K.Y.; Kim, S.S.; Hong, J.H.; Nam, H.J.; Bai, S.J. Influence of reversal of neuromuscular blockade with sugammadex or neostigmine on postoperative quality of recovery following a single bolus dose of rocuronium: A prospective, randomized, double-blinded, controlled study. J. Clin. Anesth. 2019, 57, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Kheterpal, S.; Vaughn, M.T. Pulmonary outcomes and sugammadex versus neostigmine: Reply. Anesthesiology 2020, 133, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Kheterpal, S.; Vaughn, M.T.; Dubovoy, T.Z.; Shah, N.J.; Bash, L.D.; Colquhoun, D.A.; Shanks, A.M.; Mathis, M.R.; Soto, R.G.; Bardia, A.; et al. Sugammadex versus neostigmine for reversal of neuromuscular blockade and postoperative pulmonary complications (STRONGER): A multicenter matched cohort analysis. Anesthesiology 2020, 132, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Cammu, G. Sugammadex: Appropriate use in the context of budgetary constraints. Curr. Anesthesiol. Rep. 2018, 8, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Domenech, G.; Kampel, M.A.; Garcia Guzzo, M.E.; Novas, D.S.; Terrasa, S.A.; Fornari, G.G. Usefulness of intra-operative neuromuscular blockade monitoring and reversal agents for postoperative residual neuromuscular blockade: A retrospective observational study. BMC Anesthesiol. 2019, 19, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breast Surgery (n = 131) | Significance p Value | ||
---|---|---|---|
Neostigmine (n = 40) | Sugammadex (n = 91) | ||
ASA (1/2/3/4/E) (%) | 6/26/1/0/3 (15/65/2/0/8) | 15/67/9/0/3 (16/73/8/0/3) | 0.1 |
Age (mean ± SD) | 54 ± 14 | 58 ± 14 | 0.13 |
Height (mean ± SD) | 163 ± 6 | 163 ± 7 | 1 |
Weight (mean ± SD) | 72 ± 18 | 76 ± 20 | 0.2 |
Hypnotics DES/SEV/PROP (%) | 10/28/2 (25/70/5) | 24/64/3 (25/69/3) | 0.8 |
ET inhalational agent (at the time of extubation) (mean ± SD) | DES 0.92 ± 0.35 SEV 0.24 ± 0.15 | DES 0.73 ± 0.36 SEV 0.22 ± 0.17 | 0.05 0.2 |
Duration of surgery (minutes) (mean ± SD) | 184 ± 120 | 146 ± 108 | 0.07 |
Temperature (°C) upon arrival in PACU (mean ± SD) | 36.5° ± 0.7° | 36.4° ± 0.5° | 0.35 |
Sedation score upon arrival in PACU (0/1/2/3/4) (%) | 68/26/5/1/0 | 71/23/5/1/0 | 0.9 |
Length of stay in PACU (minutes) (mean ± SD) | 106 ± 44 | 106 ± 60 | 1 |
Abdominal Surgery (n = 247) | |||
---|---|---|---|
Neostigmine (n = 47) | Sugammadex (n = 204) | Significance p Value | |
ASA (1/2/3/4/E) (%) | 5/29/13/0/0 (10/62/28/0/0) | 14/138/38/0/14 (7/68/18/0/7) | 0.01 |
Age (mean ± SD) | 62 ± 18 | 60 ± 15 | 0.42 |
Height (mean ± SD) | 167 ± 10 | 167 ± 10 | 1 |
Weight (mean ± SD) | 70 ± 17 | 73 ± 17 | 0.2 |
Hypnotics DES/SEV/PROP (%) | 16/31/0 (34/66/0) | 67/157/0 (28/72/0) | 0.3 |
ET inhalational agent (%) (mean ± SD) | DES 0.71 ± 0.36 SEV 0.33 ± 0.2 | DES 0.74 ± 0.3 SEV 0.27 ± 0.17 | 0.5 0.03 |
Duration of surgery (minutes) (mean ± SD) | 257 ± 166 | 318 ± 165 | 0.02 |
Temperature (°C) upon arrival in PACU (mean ± SD) | 36.6° ± 0.6° | 36.6° ± 0.6° | 1 |
Sedation score (0/1/2/3/4) upon arrival in PACU (%) | 51/37/7/3/0 | 48/39/8/3/0 | 0.3 |
Length of stay in PACU minutes (mean ± SD) | 96 ± 47 | 91 ± 40 | 0.45 |
Breast Surgery | Significance | ||
Neostigmine (n = 40) | Sugammadex (n = 91) | ||
T4/T1 after calibration | 106 ± 19% | 103 ± 28% | 0.5 |
Number of patients with the recorded number of twitches before injection (0/1/2/3/4) % | 0/1/1/0/35 0/2.5/2.5/0/87.7 | 3/30/15/2/31 3/32/16/2/34 | p < 0.05 |
Recorded T4/T1 recovery profile after reversal (%) (mean ± SD) Time to TOF ratio 90% mean (min–max) | 60 ± 35 77 ± 30 97 ± 22 10 (6–20) (n = 22) | 46 ± 43 69 ± 43 107 ± 23 2 (1.5–7) | NA NA NA p < 0.05 |
No T4/T1 recorded at extubation | n = 4 (10%) | n = 18 (20%) | 0.2 |
T4/T1 at extubation | <90% n = 14 (35%) >90% n =22 (55%) | <90% n = 12 (13%) >90% n = 62 (68%) | p < 0.05 |
Time to extubation after reversal (mean ± SD) | 14 ± 7 | 13 ± 8 | 0.4 |
Time to operating room discharge (mean ± SD) | 20 ± 9 | 19 ± 10 | 0.5 |
Abdominal Surgery | |||
Neostigmine (n = 47) | Sugammadex (n = 204) | ||
T4/T1 after calibration | 119 ± 21% | 110 ± 25% | 0.02 |
Number of patients with the recorded number of twitches before injection 0/1/2/3/4 % | 0/1/4/4/38 (0//2/8/8/82) | 3/92/32/10/45 (1/45/15/5/22) | p < 0.05 |
Recorded T4/T1 profile after reversal (%) time to TOF ratio 90% minute mean (min–max) | 58 ± 30 72 ± 23 89 ± 19 9 (5–20) | 40 ± 45 70 ± 45 112 ± 20 2 (1.5–8) | NA NA NA p < 0.05 |
T4/T1 recorded at extubation: number (%) | 2 (4) | 4 (0) | 0.05 |
T4 /T1 at extubation Number (%) | <90% 20 (42) >90% 25 (53) | <90%, 0 >90% 204 (100) | p < 0.05 p < 0.05 |
Time to extubation after reversal (minutes) (mean ± SD) | 17 ± 10 | 15 ± 8 | 0.1 |
Time to operating room discharge (minutes) (mean ± SD) | 23 ± 11 | 24 ± 11 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motamed, C.; Bourgain, J.L. Comparison of the Time to Extubation and Length of Stay in the PACU after Sugammadex and Neostigmine Use in Two Types of Surgery: A Monocentric Retrospective Analysis. J. Clin. Med. 2021, 10, 815. https://doi.org/10.3390/jcm10040815
Motamed C, Bourgain JL. Comparison of the Time to Extubation and Length of Stay in the PACU after Sugammadex and Neostigmine Use in Two Types of Surgery: A Monocentric Retrospective Analysis. Journal of Clinical Medicine. 2021; 10(4):815. https://doi.org/10.3390/jcm10040815
Chicago/Turabian StyleMotamed, Cyrus, and Jean Louis Bourgain. 2021. "Comparison of the Time to Extubation and Length of Stay in the PACU after Sugammadex and Neostigmine Use in Two Types of Surgery: A Monocentric Retrospective Analysis" Journal of Clinical Medicine 10, no. 4: 815. https://doi.org/10.3390/jcm10040815
APA StyleMotamed, C., & Bourgain, J. L. (2021). Comparison of the Time to Extubation and Length of Stay in the PACU after Sugammadex and Neostigmine Use in Two Types of Surgery: A Monocentric Retrospective Analysis. Journal of Clinical Medicine, 10(4), 815. https://doi.org/10.3390/jcm10040815