Immunological Risk Factors in Recurrent Pregnancy Loss: Guidelines Versus Current State of the Art
Abstract
:1. Introduction
2. Autoimmunity
2.1. Antinuclear Antibodies
2.2. Antiphospholipid Syndrome
2.3. Thyroid-Antibodies
3. Alloimmunity
3.1. Natural Killer Cells
3.2. Dendritic Cells
3.3. Plasma Cells
3.4. Regulatory T-Cells
4. Human Leukocyte Antigen System
5. Therapeutic Options
5.1. Corticosteroids
5.2. Intralipids
5.3. IVIG
5.4. LMWH/ASS
5.5. Further Immunotherapies
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Acta Obs. Gynecol. Scand. 1977, 56, 247–253. [Google Scholar]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss. Fertil. Steril. 2008, 90, S60. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Regan, L. Recurrent miscarriage. Lancet 2006, 368, 601–611. [Google Scholar] [CrossRef]
- Eshre Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Nelen, W.; Peramo, B.; Quenby, S.; et al. Eshre guideline: Recurrent pregnancy loss. Hum. Reprod. Open 2018, 2018, hoy004. [Google Scholar] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012, 98, 1103–1111. [Google Scholar] [CrossRef]
- Toth, B.; Wurfel, W.; Bohlmann, M.; Zschocke, J.; Rudnik-Schoneborn, S.; Nawroth, F.; Schleussner, E.; Rogenhofer, N.; Wischmann, T.; von Wolff, M.; et al. Recurrent miscarriage: Diagnostic and therapeutic procedures. Guideline of the dggg, oeggg and sggg (s2k-level, awmf registry number 015/050). Geburtshilfe Frauenheilkd 2018, 78, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Royal College of Obstetricians and Gynaecologists. The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. Rcog Green Top. Guidel. 2011, 17, 1–17. [Google Scholar]
- Carrington, B.; Sacks, G.; Regan, L. Recurrent miscarriage: Pathophysiology and outcome. Curr. Opin. Obs. Gynecol. 2005, 17, 591–597. [Google Scholar] [CrossRef]
- Seshadri, S.; Sunkara, S.K. Natural killer cells in female infertility and recurrent miscarriage: A systematic review and meta-analysis. Hum. Reprod. Update 2014, 20, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.; Goldman-Wohl, D.; Hamani, Y.; Avraham, I.; Greenfield, C.; Natanson-Yaron, S.; Prus, D.; Cohen-Daniel, L.; Arnon, T.I.; Manaster, I.; et al. Decidual nk cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006, 12, 1065–1074. [Google Scholar] [CrossRef]
- Tang, A.W.; Alfirevic, Z.; Quenby, S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: A systematic review. Hum. Reprod. (Oxf. Engl.) 2011, 26, 1971–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuckerman, E.; Mariee, N.; Prakash, A.; Li, T.C.; Laird, S. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after ivf. J. Reprod. Immunol. 2010, 87, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Leber, A.; Teles, A.; Zenclussen, A.C. Regulatory t cells and their role in pregnancy. Am. J. Reprod. Immunol. 2010, 63, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.P.; Chen, Q.Y.; Zhang, T.; Guo, P.F.; Li, D.J. The cd4+cd25 bright regulatory t cells and ctla-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin. Immunol. 2009, 133, 402–410. [Google Scholar] [CrossRef]
- Hiby, S.E.; Regan, L.; Lo, W.; Farrell, L.; Carrington, M.; Moffett, A. Association of maternal killer-cell immunoglobulin-like receptors and parental hla-c genotypes with recurrent miscarriage. Hum. Reprod. (Oxf. Engl.) 2008, 23, 972–976. [Google Scholar] [CrossRef]
- Hong Li, Y.; Marren, A. Recurrent pregnancy loss: A summary of international evidence-based guidelines and practice. Aust J. Gen. Pr. 2018, 47, 432–436. [Google Scholar]
- Youssef, A.; Vermeulen, N.; Lashley, E.; Goddijn, M.; van der Hoorn, M.L.P. Comparison and appraisal of (inter)national recurrent pregnancy loss guidelines. Reprod Biomed. Online 2019, 39, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, Y.; Zhong, Y.P.; Zhou, C.Q.; Xu, Y.W.; Wang, Q.; Li, J.; Shen, X.T.; Wu, H.T. Antinuclear antibodies predicts a poor ivf-et outcome: Impaired egg and embryo development and reduced pregnancy rate. Immunol. Investig. 2012, 41, 458–468. [Google Scholar] [CrossRef]
- Ying, Y.; Zhong, Y.P.; Zhou, C.Q.; Xu, Y.W.; Ding, C.H.; Wang, Q.; Li, J.; Shen, X.T. A further exploration of the impact of antinuclear antibodies on in vitro fertilization-embryo transfer outcome. Am. J. Reprod. Immunol. 2013, 70, 221–229. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Ticconi, C.; Tersigni, C.; Garofalo, S.; Martino, C.; Lanzone, A.; Scambia, G.; Di Simone, N. The pathogenic role of autoantibodies in recurrent pregnancy loss. Am. J. Reprod. Immunol. 2020, 83, e13200. [Google Scholar] [CrossRef]
- Veglia, M.; D’Ippolito, S.; Marana, R.; Di Nicuolo, F.; Castellani, R.; Bruno, V.; Fiorelli, A.; Ria, F.; Maulucci, G.; De Spirito, M.; et al. Human igg antinuclear antibodies induce pregnancy loss in mice by increasing immune complex deposition in placental tissue: In vivo study. Am. J. Reprod. Immunol. 2015, 74, 542–552. [Google Scholar] [CrossRef]
- Zeng, M.; Wen, P.; Duan, J. Association of antinuclear antibody with clinical outcome of patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment: A meta-analysis. Am. J. Reprod. Immunol. 2019, 82, e13158. [Google Scholar] [CrossRef]
- Cavalcante, M.B.; Cavalcante, C.; Sarno, M.; da Silva, A.C.B.; Barini, R. Antinuclear antibodies and recurrent miscarriage: Systematic review and meta-analysis. Am. J. Reprod. Immunol. 2020, 83, e13215. [Google Scholar] [CrossRef]
- Hefler-Frischmuth, K.; Walch, K.; Hefler, L.; Tempfer, C.; Grimm, C. Serologic markers of autoimmunity in women with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2017, 77. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, G.; Wu, P.; Sun, Y.; Dai, F.; He, Y.; Qian, H.; Liu, Y.; Shi, G. Antinuclear antibodies positivity is a risk factor of recurrent pregnancy loss: A meta-analysis. Semin. Arthritis Rheum. 2020, 50, 534–543. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Zhao, Y.; Cheung, W.C.; Zhang, T.; Qi, R.; Chung, J.P.W.; Wang, C.C.; Li, T.C. Association between chronic endometritis and uterine natural killer cell density in women with recurrent miscarriage: Clinical implications. J. Obs. Gynaecol Res. 2020, 46, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Harger, J.H. Frequency of positive antinuclear antibody test results in women with recurrent spontaneous abortions. Am. J. Obs. Gynecol. 1992, 166, 1021–1022. [Google Scholar] [CrossRef]
- Branch, D.W.; Gibson, M.; Silver, R.M. Clinical practice. Recurrent miscarriage. N. Engl. J. Med. 2010, 363, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Vomstein, K.; Herzog, A.; Voss, P.; Feil, K.; Goeggl, T.; Strowitzki, T.; Toth, B.; Kuon, R.J. Recurrent miscarriage is not associated with a higher prevalence of inherited and acquired thrombophilia. Am. J. Reprod. Immunol. 2020, 85, e13327. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.R. Hughes syndrome (the antiphospholipid syndrome): A disease of our time. Inflammopharmacology 2011, 19, 69–73. [Google Scholar] [CrossRef]
- Esteve-Valverde, E.; Ferrer-Oliveras, R.; Alijotas-Reig, J. Obstetric antiphospholipid syndrome. Rev. Clin. Esp. 2016, 216, 135–145. [Google Scholar] [CrossRef]
- Taraborelli, M.; Reggia, R.; Dall’Ara, F.; Fredi, M.; Andreoli, L.; Gerosa, M.; Hoxha, A.; Massaro, L.; Tonello, M.; Costedoat-Chalumeau, N.; et al. Longterm outcome of patients with primary antiphospholipid syndrome: A retrospective multicenter study. J. Rheumatol. 2017, 44, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; LLurba, E.; Ruffatti, A.; Tincani, A.; Lefkou, E.; Bertero, M.T.; Espinosa, G.; de Carolis, S.; et al. Comparative study between obstetric antiphospholipid syndrome and obstetric morbidity related with antiphospholipid antibodies. Med. Clin. 2018, 151, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Alijotas-Reig, J.; Ferrer-Oliveras, R.; Group, E.S. The european registry on obstetric antiphospholipid syndrome (euroaps): A preliminary first year report. Lupus 2012, 21, 766–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arachchillage, D.R.; Machin, S.J.; Mackie, I.J.; Cohen, H. Diagnosis and management of non-criteria obstetric antiphospholipid syndrome. Thromb Haemost 2015, 113, 13–19. [Google Scholar] [PubMed] [Green Version]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Saez-Comet, L.; Lefkou, E.; Mekinian, A.; Belizna, C.; Ruffatti, A.; Hoxha, A.; Tincani, A.; et al. Comparative study of obstetric antiphospholipid syndrome (oaps) and non-criteria obstetric aps (nc-oaps): Report of 1640 cases from the euroaps registry. Rheumatology (Oxf.) 2020, 59, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Perricone, C.; de Carolis, C.; Perricone, R. Pregnancy and autoimmunity: A common problem. Best Pr. Res. Clin. Rheumatol. 2012, 26, 47–60. [Google Scholar] [CrossRef]
- Abrahams, V.M.; Chamley, L.W.; Salmon, J.E. Emerging treatment models in rheumatology: Antiphospholipid syndrome and pregnancy: Pathogenesis to translation. Arthritis Rheumatol. 2017, 69, 1710–1721. [Google Scholar] [CrossRef] [Green Version]
- Girardi, G.; Berman, J.; Redecha, P.; Spruce, L.; Thurman, J.M.; Kraus, D.; Hollmann, T.J.; Casali, P.; Caroll, M.C.; Wetsel, R.A.; et al. Complement c5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Investig. 2003, 112, 1644–1654. [Google Scholar] [CrossRef] [Green Version]
- Viall, C.A.; Chamley, L.W. Histopathology in the placentae of women with antiphospholipid antibodies: A systematic review of the literature. Autoimmun Rev. 2015, 14, 446–471. [Google Scholar] [CrossRef]
- Christiansen, O.B. Evidence-based investigations and treatments of recurrent pregnancy loss. Curr. Opin. Obs. Gynecol. 2006, 18, 304–312. [Google Scholar] [CrossRef]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.; PG, D.E.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (aps). J. Thromb Haemost 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 guidelines of the american thyroid association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [Green Version]
- Ticconi, C.; Rotondi, F.; Veglia, M.; Pietropolli, A.; Bernardini, S.; Ria, F.; Caruso, A.; Di Simone, N. Antinuclear autoantibodies in women with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2010, 64, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Rushworth, F.H.; Backos, M.; Rai, R.; Chilcott, I.T.; Baxter, N.; Regan, L. Prospective pregnancy outcome in untreated recurrent miscarriers with thyroid autoantibodies. Hum. Reprod. (Oxf. Engl.) 2000, 15, 1637–1639. [Google Scholar] [CrossRef] [Green Version]
- Thangaratinam, S.; Tan, A.; Knox, E.; Kilby, M.D.; Franklyn, J.; Coomarasamy, A. Association between thyroid autoantibodies and miscarriage and preterm birth: Meta-analysis of evidence. BMJ 2011, 342, d2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Hu, R. Thyroid autoimmunity and miscarriage: A meta-analysis. Clin. Endocrinol. (Oxf.) 2011, 74, 513–519. [Google Scholar] [CrossRef]
- Plowden, T.C.; Schisterman, E.F.; Sjaarda, L.A.; Zarek, S.M.; Perkins, N.J.; Silver, R.; Galai, N.; DeCherney, A.H.; Mumford, S.L. Subclinical hypothyroidism and thyroid autoimmunity are not associated with fecundity, pregnancy loss, or live birth. J. Clin. Endocrinol. Metab. 2016, 101, 2358–2365. [Google Scholar] [CrossRef] [Green Version]
- Unuane, D.; Velkeniers, B.; Deridder, S.; Bravenboer, B.; Tournaye, H.; De Brucker, M. Impact of thyroid autoimmunity on cumulative delivery rates in in vitro fertilization/intracytoplasmic sperm injection patients. Fertil. Steril. 2016, 106, 144–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliddal, S.; Feldt-Rasmussen, U.; Rasmussen, A.K.; Kolte, A.M.; Hilsted, L.M.; Christiansen, O.B.; Nielsen, C.H.; Nielsen, H.S. Thyroid peroxidase antibodies and prospective live birth rate: A cohort study of women with recurrent pregnancy loss. Thyroid 2019, 29, 1465–1474. [Google Scholar] [CrossRef]
- Peeters, R.P. Subclinical hypothyroidism. N. Engl. J. Med. 2017, 376, 2556–2565. [Google Scholar] [CrossRef]
- Huber, G.; Staub, J.J.; Meier, C.; Mitrache, C.; Guglielmetti, M.; Huber, P.; Braverman, L.E. Prospective study of the spontaneous course of subclinical hypothyroidism: Prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. J. Clin. Endocrinol. Metab. 2002, 87, 3221–3226. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.J.; Ritz, J. Biology and clinical relevance of human natural killer cells. Blood 1990, 76, 2421–2438. [Google Scholar] [CrossRef] [Green Version]
- Lash, G.E.; Bulmer, J.N. Do uterine natural killer (unk) cells contribute to female reproductive disorders? J. Reprod. Immunol. 2011, 88, 156–164. [Google Scholar] [CrossRef]
- Guerrero, B.; Hassouneh, F.; Delgado, E.; Casado, J.G.; Tarazona, R. Natural killer cells in recurrent miscarriage: An overview. J. Reprod. Immunol. 2020, 142, 103209. [Google Scholar] [CrossRef]
- Karami, N.; Boroujerdnia, M.G.; Nikbakht, R.; Khodadadi, A. Enhancement of peripheral blood cd56(dim) cell and nk cell cytotoxicity in women with recurrent spontaneous abortion or in vitro fertilization failure. J. Reprod. Immunol. 2012, 95, 87–92. [Google Scholar] [CrossRef]
- Kuon, R.J.; Muller, F.; Vomstein, K.; Weber, M.; Hudalla, H.; Rosner, S.; Strowitzki, T.; Markert, U.; Daniel, V.; Toth, B. Pre-pregnancy levels of peripheral natural killer cells as markers for immunomodulatory treatment in patients with recurrent miscarriage. Arch. Immunol. Exp. (Warsz) 2017, 65, 339–346. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Smith, S.; Chapman, M.; Sacks, G. Detailed analysis of peripheral blood natural killer (nk) cells in women with recurrent miscarriage. Hum. Reprod. (Oxf. Engl.) 2010, 25, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Kuon, R.J.; Vomstein, K.; Weber, M.; Muller, F.; Seitz, C.; Wallwiener, S.; Strowitzki, T.; Schleussner, E.; Markert, U.R.; Daniel, V.; et al. The “killer cell story” in recurrent miscarriage: Association between activated peripheral lymphocytes and uterine natural killer cells. J. Reprod. Immunol. 2017, 119, 9–14. [Google Scholar] [CrossRef]
- Shakhar, K.; Ben-Eliyahu, S.; Loewenthal, R.; Rosenne, E.; Carp, H. Differences in number and activity of peripheral natural killer cells in primary versus secondary recurrent miscarriage. Fertil. Steril. 2003, 80, 368–375. [Google Scholar] [CrossRef]
- Strobel, L.; Vomstein, K.; Kyvelidou, C.; Hofer-Tollinger, S.; Feil, K.; Kuon, R.J.; Ebner, S.; Troppmair, J.; Toth, B. Different background: Natural killer cell profiles in secondary versus primary recurrent pregnancy loss. J. Clin. Med. 2021, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Rani, R.; Agrawal, S. An update in recurrent spontaneous abortion. Arch. Gynecol. Obstet. 2005, 272, 95–108. [Google Scholar] [CrossRef]
- Aoki, K.; Kajiura, S.; Matsumoto, Y.; Ogasawara, M.; Okada, S.; Yagami, Y.; Gleicher, N. Preconceptional natural-killer-cell activity as a predictor of miscarriage. Lancet 1995, 345, 1340–1342. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Shida, M.; Kondo, A.; Suzuki, T.; Sugi, T.; Izumi, S.; Hosaka, T.; Makino, T. Preconception peripheral natural killer cell activity as a predictor of pregnancy outcome in patients with unexplained infertility. Am. J. Reprod. Immunol. 2005, 53, 126–131. [Google Scholar] [CrossRef]
- Emmer, P.M.; Nelen, W.L.; Steegers, E.A.; Hendriks, J.C.; Veerhoek, M.; Joosten, I. Peripheral natural killer cytotoxicity and cd56(pos)cd16(pos) cells increase during early pregnancy in women with a history of recurrent spontaneous abortion. Hum. Reprod. (Oxf. Engl.) 2000, 15, 1163–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, H.; Morikawa, M.; Kato, E.H.; Shimada, S.; Kobashi, G.; Minakami, H. Pre-conceptional natural killer cell activity and percentage as predictors of biochemical pregnancy and spontaneous abortion with normal chromosome karyotype. Am. J. Reprod. Immunol. 2003, 50, 351–354. [Google Scholar] [CrossRef]
- Higuchi, K.; Aoki, K.; Kimbara, T.; Hosoi, N.; Yamamoto, T.; Okada, H. Suppression of natural killer cell activity by monocytes following immunotherapy for recurrent spontaneous aborters. Am. J. Reprod. Immunol. 1995, 33, 221–227. [Google Scholar] [CrossRef]
- Katano, K.; Suzuki, S.; Ozaki, Y.; Suzumori, N.; Kitaori, T.; Sugiura-Ogasawara, M. Peripheral natural killer cell activity as a predictor of recurrent pregnancy loss: A large cohort study. Fertil. Steril. 2013, 100, 1629–1634. [Google Scholar] [CrossRef]
- Sokolov, D.I.; Mikhailova, V.A.; Agnayeva, A.O.; Bazhenov, D.O.; Khokhlova, E.V.; Bespalova, O.N.; Gzgzyan, A.M.; Selkov, S.A. Nk and trophoblast cells interaction: Cytotoxic activity on recurrent pregnancy loss. Gynecol. Endocrinol. 2019, 35, 5–10. [Google Scholar] [CrossRef]
- Chen, X.; Mariee, N.; Jiang, L.; Liu, Y.; Wang, C.C.; Li, T.C.; Laird, S. Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: Establishment of a reference range. Am. J. Obstet. Gynecol. 2017, 217, 680.e1–680.e6. [Google Scholar] [CrossRef] [PubMed]
- Tuckerman, E.; Laird, S.M.; Prakash, A.; Li, T.C. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum. Reprod. (Oxf. Engl.) 2007, 22, 2208–2213. [Google Scholar] [CrossRef]
- Clifford, K.; Flanagan, A.M.; Regan, L. Endometrial cd56+ natural killer cells in women with recurrent miscarriage: A histomorphometric study. Hum. Reprod. (Oxf. Engl.) 1999, 14, 2727–2730. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, P.L. Increased cd56(+) nk cells and enhanced th1 responses in human unexplained recurrent spontaneous abortion. Genet. Mol. Res. 2015, 14, 18103–18109. [Google Scholar] [CrossRef] [PubMed]
- Michimata, T.; Ogasawara, M.S.; Tsuda, H.; Suzumori, K.; Aoki, K.; Sakai, M.; Fujimura, M.; Nagata, K.; Nakamura, M.; Saito, S. Distributions of endometrial nk cells, b cells, t cells, and th2/tc2 cells fail to predict pregnancy outcome following recurrent abortion. Am. J. Reprod. Immunol. 2002, 47, 196–202. [Google Scholar] [CrossRef]
- Tuckerman, E.; Laird, S.M.; Stewart, R.; Wells, M.; Li, T.C. Markers of endometrial function in women with unexplained recurrent pregnancy loss: A comparison between morphologically normal and retarded endometrium. Hum. Reprod. 2004, 19, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinman, R.M. Decisions about dendritic cells: Past, present, and future. Annu. Rev. Immunol. 2012, 30, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Teles, A.; Zenclussen, A.C.; Schumacher, A. Regulatory t cells are baby’s best friends. Am. J. Reprod. Immunol. 2013, 69, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Craenmehr, M.H.; Heidt, S.; Eikmans, M.; Claas, F.H. What is wrong with the regulatory t cells and foetomaternal tolerance in women with recurrent miscarriages? HLA 2016, 87, 69–78. [Google Scholar] [CrossRef]
- Bulmer, J.N.; Williams, P.J.; Lash, G.E. Immune cells in the placental bed. Int. J. Dev. Biol 2010, 54, 281–294. [Google Scholar] [CrossRef]
- Mansouri-Attia, N.; Oliveira, L.J.; Forde, N.; Fahey, A.G.; Browne, J.A.; Roche, J.F.; Sandra, O.; Reinaud, P.; Lonergan, P.; Fair, T. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol. Reprod. 2012, 87, 123. [Google Scholar] [CrossRef]
- Askelund, K.; Liddell, H.S.; Zanderigo, A.M.; Fernando, N.S.; Khong, T.Y.; Stone, P.R.; Chamley, L.W. Cd83(+)dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta 2004, 25, 140–145. [Google Scholar] [CrossRef]
- Blois, S.; Alba Soto, C.D.; Olmos, S.; Chuluyan, E.; Gentile, T.; Arck, P.C.; Margni, R.A. Therapy with dendritic cells influences the spontaneous resorption rate in the cba/j x dba/2j mouse model. Am. J. Reprod. Immunol. 2004, 51, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, H.; Li, Y.; Huang, C.; Lian, R.; Xu, J.; Chen, L.; Zeng, Y. Downregulation of ilt4(+) dendritic cells in recurrent miscarriage and recurrent implantation failure. Am. J. Reprod. Immunol. 2018, 80, e12998. [Google Scholar] [CrossRef]
- Kitaya, K.; Matsubayashi, H.; Yamaguchi, K.; Nishiyama, R.; Takaya, Y.; Ishikawa, T.; Yasuo, T.; Yamada, H. Chronic endometritis: Potential cause of infertility and obstetric and neonatal complications. Am. J. Reprod. Immunol. 2016, 75, 13–22. [Google Scholar] [CrossRef]
- McQueen, D.B.; Perfetto, C.O.; Hazard, F.K.; Lathi, R.B. Pregnancy outcomes in women with chronic endometritis and recurrent pregnancy loss. Fertil. Steril. 2015, 104, 927–931. [Google Scholar] [CrossRef] [Green Version]
- Buzzaccarini, G.; Vitagliano, A.; Andrisani, A.; Santarsiero, C.M.; Cicinelli, R.; Nardelli, C.; Ambrosini, G.; Cicinelli, E. Chronic endometritis and altered embryo implantation: A unified pathophysiological theory from a literature systematic review. J. Assist. Reprod. Genet. 2020, 37, 2897–2911. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, B.; He, Y.; Xie, Y.; Liang, T.; Bi, Y.; Yuan, L.; Qin, A.; Wang, Y.; Yang, Y. Variation of diagnostic criteria in women with chronic endometritis and its effect on reproductive outcomes: A systematic review and meta-analysis. J. Reprod. Immunol. 2020, 140, 103146. [Google Scholar] [CrossRef]
- Kitaya, K.; Yasuo, T. Immunohistochemistrical and clinicopathological characterization of chronic endometritis. Am. J. Reprod. Immunol. 2011, 66, 410–415. [Google Scholar] [CrossRef]
- Song, D.; Feng, X.; Zhang, Q.; Xia, E.; Xiao, Y.; Xie, W.; Li, T.C. Prevalence and confounders of chronic endometritis in premenopausal women with abnormal bleeding or reproductive failure. Reprod Biomed. Online 2018, 36, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Punnonen, R.; Lehtinen, M.; Teisala, K.; Aine, R.; Rantala, I.; Heinonen, P.K.; Miettinen, A.; Laine, S.; Paavonen, J. The relation between serum sex steroid levels and plasma cell infiltrates in endometritis. Arch. Gynecol. Obstet. 1989, 244, 185–191. [Google Scholar] [CrossRef]
- Eckert, L.O.; Hawes, S.E.; Wolner-Hanssen, P.K.; Kiviat, N.B.; Wasserheit, J.N.; Paavonen, J.A.; Eschenbach, D.A.; Holmes, K.K. Endometritis: The clinical-pathologic syndrome. Am. J. Obs. Gynecol 2002, 186, 690–695. [Google Scholar] [CrossRef]
- Wang, W.J.; Zhang, H.; Chen, Z.Q.; Zhang, W.; Liu, X.M.; Fang, J.Y.; Liu, F.J.; Kwak-Kim, J. Endometrial tgf-beta, il-10, il-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod. Biol. Endocrinol. 2019, 17, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yu, S.; Huang, C.; Lian, R.; Chen, C.; Liu, S.; Li, L.; Diao, L.; Markert, U.R.; Zeng, Y. Evaluation of peripheral and uterine immune status of chronic endometritis in patients with recurrent reproductive failure. Fertil. Steril. 2020, 113, 187–196.e1. [Google Scholar] [CrossRef]
- Cicinelli, E.; Matteo, M.; Tinelli, R.; Pinto, V.; Marinaccio, M.; Indraccolo, U.; De Ziegler, D.; Resta, L. Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment. Reprod. Sci. (Thousand Oaks Calif.) 2014, 21, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Kitaya, K. Prevalence of chronic endometritis in recurrent miscarriages. Fertil. Steril. 2011, 95, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Matsubayashi, H.; Takaya, Y.; Nishiyama, R.; Yamaguchi, K.; Takeuchi, T.; Ishikawa, T. Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am. J. Reprod. Immunol. 2017, 78. [Google Scholar] [CrossRef]
- Johnston-MacAnanny, E.B.; Hartnett, J.; Engmann, L.L.; Nulsen, J.C.; Sanders, M.M.; Benadiva, C.A. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil. Steril. 2010, 93, 437–441. [Google Scholar] [CrossRef]
- Freitag, N.; Pour, S.J.; Fehm, T.N.; Toth, B.; Markert, U.R.; Weber, M.; Togawa, R.; Kruessel, J.S.; Baston-Buest, D.M.; Bielfeld, A.P. Are uterine natural killer and plasma cells in infertility patients associated with endometriosis, repeated implantation failure, or recurrent pregnancy loss? Arch. Gynecol. Obstet. 2020, 302, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Bestard, O.; Cruzado, J.M.; Mestre, M.; Caldes, A.; Bas, J.; Carrera, M.; Torras, J.; Rama, I.; Moreso, F.; Seron, D.; et al. Achieving donor-specific hyporesponsiveness is associated with foxp3+ regulatory t cell recruitment in human renal allograft infiltrates. J. Immunol. 2007, 179, 4901–4909. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, A.; Ito, A.; Li, Y.; Koshiba, T.; Sakaguchi, S.; Wood, K.J.; Tanaka, K. The roles of cd25+cd4+ regulatory t cells in operational tolerance after living donor liver transplantation. Transplant. Proc. 2005, 37, 37–39. [Google Scholar] [CrossRef]
- Waldmann, H.; Graca, L.; Cobbold, S.; Adams, E.; Tone, M.; Tone, Y. Regulatory t cells and organ transplantation. Semin. Immunol. 2004, 16, 119–126. [Google Scholar] [CrossRef]
- Adorini, L.; Penna, G.; Giarratana, N.; Uskokovic, M. Tolerogenic dendritic cells induced by vitamin d receptor ligands enhance regulatory t cells inhibiting allograft rejection and autoimmune diseases. J. Cell. Biochem. 2003, 88, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, C.I.; Karim, M.; Bushell, A.R.; Wood, K.J. Cd25+cd4+ regulatory t cells prevent graft rejection: Ctla-4- and il-10-dependent immunoregulation of alloresponses. J. Immunol. 2002, 168, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venken, K.; Hellings, N.; Broekmans, T.; Hensen, K.; Rummens, J.L.; Stinissen, P. Natural naive cd4+cd25+cd127low regulatory t cell (treg) development and function are disturbed in multiple sclerosis patients: Recovery of memory treg homeostasis during disease progression. J. Immunol. 2008, 180, 6411–6420. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, S. Naturally arising cd4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004, 22, 531–562. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Immunologic self-tolerance maintained by activated t cells expressing il-2 receptor alpha-chains (cd25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995, 155, 1151–1164. [Google Scholar] [PubMed]
- Huber, S.; Schramm, C.; Lehr, H.A.; Mann, A.; Schmitt, S.; Becker, C.; Protschka, M.; Galle, P.R.; Neurath, M.F.; Blessing, M. Cutting edge: Tgf-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory cd4+cd25+ t cells. J. Immunol. 2004, 173, 6526–6531. [Google Scholar] [CrossRef] [Green Version]
- Groux, H. Type 1 t-regulatory cells: Their role in the control of immune responses. Transplantation 2003, 75, 8S–12S. [Google Scholar] [CrossRef]
- Nagaeva, O.; Jonsson, L.; Mincheva-Nilsson, L. Dominant il-10 and tgf-beta mrna expression in gammadeltat cells of human early pregnancy decidua suggests immunoregulatory potential. Am. J. Reprod. Immunol. 2002, 48, 9–17. [Google Scholar] [CrossRef]
- Hara, M.; Kingsley, C.I.; Niimi, M.; Read, S.; Turvey, S.E.; Bushell, A.R.; Morris, P.J.; Powrie, F.; Wood, K.J. Il-10 is required for regulatory t cells to mediate tolerance to alloantigens in vivo. J. Immunol. 2001, 166, 3789–3796. [Google Scholar] [CrossRef] [PubMed]
- Josien, R.; Douillard, P.; Guillot, C.; Muschen, M.; Anegon, I.; Chetritt, J.; Menoret, S.; Vignes, C.; Soulillou, J.P.; Cuturi, M.C. A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance. J. Clin. Investig. 1998, 102, 1920–1926. [Google Scholar] [CrossRef] [Green Version]
- Somerset, D.A.; Zheng, Y.; Kilby, M.D.; Sansom, D.M.; Drayson, M.T. Normal human pregnancy is associated with an elevation in the immune suppressive cd25+ cd4+ regulatory t-cell subset. Immunology 2004, 112, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Sakai, M.; Miyazaki, S.; Higuma, S.; Shiozaki, A.; Saito, S. Decidual and peripheral blood cd4+cd25+ regulatory t cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod 2004, 10, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikkinen, J.; Mottonen, M.; Alanen, A.; Lassila, O. Phenotypic characterization of regulatory t cells in the human decidua. Clin. Exp. Immunol. 2004, 136, 373–378. [Google Scholar] [CrossRef]
- Bao, S.H.; Wang, X.P.; De Lin, Q.; Wang, W.J.; Yin, G.J.; Qiu, L.H. Decidual cd4+cd25+cd127dim/- regulatory t cells in patients with unexplained recurrent spontaneous miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 155, 94–98. [Google Scholar] [CrossRef]
- Mei, S.; Tan, J.; Chen, H.; Chen, Y.; Zhang, J. Changes of cd4+cd25high regulatory t cells and foxp3 expression in unexplained recurrent spontaneous abortion patients. Fertil. Steril. 2010, 94, 2244–2247. [Google Scholar] [CrossRef]
- Inada, K.; Shima, T.; Nakashima, A.; Aoki, K.; Ito, M.; Saito, S. Characterization of regulatory t cells in decidua of miscarriage cases with abnormal or normal fetal chromosomal content. J. Reprod. Immunol. 2013, 97, 104–111. [Google Scholar] [CrossRef]
- Keller, C.C.; Eikmans, M.; van der Hoorn, M.P.; Lashley, L. Recurrent miscarriages and the association with regulatory t cells; a systematic review. J. Reprod. Immunol. 2020, 139, 103105. [Google Scholar] [CrossRef]
- Huang, N.; Chi, H.; Qiao, J. Role of regulatory t cells in regulating fetal-maternal immune tolerance in healthy pregnancies and reproductive diseases. Front. Immunol. 2020, 11, 1023. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, R.J.; Weitzel, R.P.; Feng, Y.; Segars, J.H.; Tisdale, J.F.; Wolff, E.F. Maternal t regulatory cell depletion impairs embryo implantation which can be corrected with adoptive t regulatory cell transfer. Reprod. Sci. (Thousand OaksCalif.) 2017, 24, 1014–1024. [Google Scholar] [CrossRef]
- Christiansen, O.B. A fresh look at the causes and treatments of recurrent miscarriage, especially its immunological aspects. Hum. Reprod. Update 1996, 2, 271–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghraby, J.S.; Tamim, H.; Anacan, V.; Al Khalaf, H.; Moghraby, S.A. Hla sharing among couples appears unrelated to idiopathic recurrent fetal loss in saudi arabia. Hum. Reprod. (Oxf. Engl.) 2010, 25, 1900–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beydoun, H.; Saftlas, A.F. Association of human leucocyte antigen sharing with recurrent spontaneous abortions. Tissue Antigens 2005, 65, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, O.B.; Riisom, K.; Lauritsen, J.G.; Grunnet, N.; Jersild, C. Association of maternal hla haplotypes with recurrent spontaneous abortions. Tissue Antigens 1989, 34, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Aruna, M.; Nagaraja, T.; Andal Bhaskar, S.; Tarakeswari, S.; Reddy, A.G.; Thangaraj, K.; Singh, L.; Reddy, B.M. Novel alleles of hla-dq and -dr loci show association with recurrent miscarriages among south indian women. Hum. Reprod. (Oxf. Engl.) 2011, 26, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Hiby, S.E.; Apps, R.; Sharkey, A.M.; Farrell, L.E.; Gardner, L.; Mulder, A.; Claas, F.H.; Walker, J.J.; Redman, C.W.; Morgan, L.; et al. Maternal activating kirs protect against human reproductive failure mediated by fetal hla-c2. J. Clin. Investig. 2010, 120, 4102–4110. [Google Scholar] [CrossRef]
- Moffett, A.; Chazara, O.; Colucci, F.; Johnson, M.H. Variation of maternal kir and fetal hla-c genes in reproductive failure: Too early for clinical intervention. Reprod. Biomed. Online 2016, 33, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Thielens, A.; Vivier, E.; Romagné, F. Nk cell mhc class i specific receptors (kir): From biology to clinical intervention. Curr. Opin. Immunol. 2012, 24, 239–245. [Google Scholar] [CrossRef]
- Parham, P. Mhc class i molecules and kirs in human history, health and survival. Nat. Rev. Immunol. 2005, 5, 201–214. [Google Scholar] [CrossRef]
- Yang, X.; Yang, E.; Wang, W.-J.; He, Q.; Jubiz, G.; Katukurundage, D.; Dambaeva, S.; Beaman, K.; Kwak-Kim, J. Decreased hla-c1 alleles in couples of kir2dl2 positive women with recurrent pregnancy loss. J. Reprod. Immunol. 2020, 142, 103186. [Google Scholar] [CrossRef]
- Bashirova, A.A.; Martin, M.P.; McVicar, D.W.; Carrington, M. The killer immunoglobulin-like receptor gene cluster: Tuning the genome for defense. Annu. Rev. Genom. Hum. Genet. 2006, 7, 277–300. [Google Scholar] [CrossRef] [PubMed]
- Hiby, S.E.; Walker, J.J.; O’Shaughnessy, K.M.; Redman, C.W.; Carrington, M.; Trowsdale, J.; Moffett, A. Combinations of maternal kir and fetal hla-c genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 2004, 200, 957–965. [Google Scholar] [CrossRef]
- Nielsen, H.S.; Andersen, A.M.; Kolte, A.M.; Christiansen, O.B. A firstborn boy is suggestive of a strong prognostic factor in secondary recurrent miscarriage: A confirmatory study. Fertil. Steril. 2008, 89, 907–911. [Google Scholar] [CrossRef]
- Nielsen, H.S.; Steffensen, R.; Varming, K.; Van Halteren, A.G.; Spierings, E.; Ryder, L.P.; Goulmy, E.; Christiansen, O.B. Association of hy-restricting hla class ii alleles with pregnancy outcome in patients with recurrent miscarriage subsequent to a firstborn boy. Hum. Mol. Genet. 2009, 18, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. Eular recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef]
- Michael, A.E.; Papageorghiou, A.T. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum. Reprod. Update 2008, 14, 497–517. [Google Scholar] [CrossRef] [Green Version]
- Empson, M.; Lassere, M.; Craig, J.; Scott, J. Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochrane Database Syst. Rev. 2005, 2005, CD002859. [Google Scholar] [CrossRef]
- Quenby, S.; Kalumbi, C.; Bates, M.; Farquharson, R.; Vince, G. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil. Steril. 2005, 84, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.; Shokeir, T.; El-Tatongy, M.; Warda, O.; El-Refaiey, A.A.; Mosbah, A. Treatment options and pregnancy outcome in women with idiopathic recurrent miscarriage: A randomized placebo-controlled study. Arch. Gynecol. Obstet. 2008, 278, 33–38. [Google Scholar] [CrossRef]
- Gomaa, M.F.; Elkholy, A.G.; El-Said, M.M.; Abdel-Salam, N.E. Combined oral prednisolone and heparin versus heparin: The effect on peripheral nk cells and clinical outcome in patients with unexplained recurrent miscarriage. A double-blind placebo randomized controlled trial. Arch. Gynecol. Obstet. 2014, 290, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Tempfer, C.B.; Kurz, C.; Bentz, E.K.; Unfried, G.; Walch, K.; Czizek, U.; Huber, J.C. A combination treatment of prednisone, aspirin, folate, and progesterone in women with idiopathic recurrent miscarriage: A matched-pair study. Fertil. Steril. 2006, 86, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Laskin, C.A.; Bombardier, C.; Hannah, M.E.; Mandel, F.P.; Ritchie, J.W.; Farewell, V.; Farine, D.; Spitzer, K.; Fielding, L.; Soloninka, C.A.; et al. Prednisone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N. Engl. J. Med. 1997, 337, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Bramham, K.; Thomas, M.; Nelson-Piercy, C.; Khamashta, M.; Hunt, B.J. First-trimester low-dose prednisolone in refractory antiphospholipid antibody–related pregnancy loss. Blood 2011, 117, 6948–6951. [Google Scholar] [CrossRef] [PubMed]
- Palmsten, K.; Rolland, M.; Hebert, M.F.; Clowse, M.E.B.; Schatz, M.; Xu, R.; Chambers, C.D. Patterns of prednisone use during pregnancy in women with rheumatoid arthritis: Daily and cumulative dose. Pharm. Drug Saf. 2018, 27, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Palmsten, K.; Bandoli, G.; Vazquez-Benitez, G.; Xi, M.; Johnson, D.L.; Xu, R.; Chambers, C.D. Oral corticosteroid use during pregnancy and risk of preterm birth. Rheumatology (Oxf. Engl.) 2020, 59, 1262–1271. [Google Scholar] [CrossRef]
- Gur, C.; Diav-Citrin, O.; Shechtman, S.; Arnon, J.; Ornoy, A. Pregnancy outcome after first trimester exposure to corticosteroids: A prospective controlled study. Reprod. Toxicol. 2004, 18, 93–101. [Google Scholar] [CrossRef]
- Hasbargen, U.; Reber, D.; Versmold, H.; Schulze, A. Growth and development of children to 4 years of age after repeated antenatal steroid administration. Eur. J. Pediatrics 2001, 160, 552–555. [Google Scholar] [CrossRef]
- Roussev, R.G.; Acacio, B.; Ng, S.C.; Coulam, C.B. Duration of intralipid’s suppressive effect on nk cell’s functional activity. Am. J. Reprod. Immunol. 2008, 60, 258–263. [Google Scholar] [CrossRef]
- Granato, D.; Blum, S.; Rossle, C.; Le Boucher, J.; Malnoe, A.; Dutot, G. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. Jpn. J. Parenter. Enter. Nutr. 2000, 24, 113–118. [Google Scholar] [CrossRef]
- Martini, A.E.; Jasulaitis, S.; Fogg, L.F.; Uhler, M.L.; Hirshfeld-Cytron, J.E. Evaluating the utility of intralipid infusion to improve live birth rates in patients with recurrent pregnancy loss or recurrent implantation failure. J. Hum. Reprod. Sci. 2018, 11, 261–268. [Google Scholar] [CrossRef]
- Coulam, C.B.; Acacio, B. Does immunotherapy for treatment of reproductive failure enhance live births? Am. J. Reprod. Immunol. 2012, 67, 296–304. [Google Scholar] [CrossRef]
- Meng, L.; Lin, J.; Chen, L.; Wang, Z.; Liu, M.; Liu, Y.; Chen, X.; Zhu, L.; Chen, H.; Zhang, J. Effectiveness and potential mechanisms of intralipid in treating unexplained recurrent spontaneous abortion. Arch. Gynecol. Obstet. 2016, 294, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Placais, L.; Kolanska, K.; Kraiem, Y.B.; Cohen, J.; Suner, L.; Bornes, M.; Sedille, L.; Rosefort, A.; D’Argent, E.M.; Selleret, L.; et al. Intralipid therapy for unexplained recurrent miscarriage and implantation failure: Case-series and literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 100–104. [Google Scholar] [CrossRef]
- Coulam, C.B. Intralipid treatment for women with reproductive failures. Am. J. Reprod. Immunol. 2020, e13290. [Google Scholar] [CrossRef]
- Ehrlich, R.; Hull, M.L.; Walkley, J.; Sacks, G. Intralipid immunotherapy for repeated ivf failure. Fertil. Reprod. 2019, 01, 154–160. [Google Scholar] [CrossRef]
- Perino, A.; Vassiliadis, A.; Vucetich, A.; Colacurci, N.; Menato, G.; Cignitti, M.; Semprini, A.E. Short-term therapy for recurrent abortion using intravenous immunoglobulins: Results of a double-blind placebo-controlled italian study. Hum. Reprod. (Oxf. Engl.) 1997, 12, 2388–2392. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, M.D.; Dreher, K.; Houlihan, E.; Wu, V. Prevention of unexplained recurrent spontaneous abortion using intravenous immunoglobulin: A prospective, randomized, double-blinded, placebo-controlled trial. Am. J. Reprod. Immunol. 1998, 39, 82–88. [Google Scholar] [CrossRef]
- Jablonowska, B.; Selbing, A.; Palfi, M.; Ernerudh, J.; Kjellberg, S.; Lindton, B. Prevention of recurrent spontaneous abortion by intravenous immunoglobulin: A double-blind placebo-controlled study. Hum. Reprod. (Oxf. Engl.) 1999, 14, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, O.B.; Pedersen, B.; Rosgaard, A.; Husth, M. A randomized, double-blind, placebo-controlled trial of intravenous immunoglobulin in the prevention of recurrent miscarriage: Evidence for a therapeutic effect in women with secondary recurrent miscarriage. Hum. Reprod. (Oxf. Engl.) 2002, 17, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triolo, G.; Ferrante, A.; Ciccia, F.; Accardo-Palumbo, A.; Perino, A.; Castelli, A.; Giarratano, A.; Licata, G. Randomized study of subcutaneous low molecular weight heparin plus aspirin versus intravenous immunoglobulin in the treatment of recurrent fetal loss associated with antiphospholipid antibodies. Arthritis Rheum 2003, 48, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, F.; Diejomaoh, M.; Omu, A.; Abul, H.; Haines, D. Effect of igg therapy on lymphocyte subpopulations in the peripheral blood of kuwaiti women experiencing recurrent pregnancy loss. Gynecol Obs. Investig. 2004, 58, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Dendrinos, S.; Sakkas, E.; Makrakis, E. Low-molecular-weight heparin versus intravenous immunoglobulin for recurrent abortion associated with antiphospholipid antibody syndrome. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2009, 104, 223–225. [Google Scholar] [CrossRef]
- Stephenson, M.D.; Kutteh, W.H.; Purkiss, S.; Librach, C.; Schultz, P.; Houlihan, E.; Liao, C. Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: A multicentered randomized placebo-controlled trial. Hum. Reprod. (Oxf. Engl.) 2010, 25, 2203–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, O.B.; Larsen, E.C.; Egerup, P.; Lunoee, L.; Egestad, L.; Nielsen, H.S. Intravenous immunoglobulin treatment for secondary recurrent miscarriage: A randomised, double-blind, placebo-controlled trial. BJOG 2015, 122, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K. Unexplained recurrent miscarriage: Introduction. In Treatment Strategy for Unexplained Infertility and Recurrent Miscarriage; Springer: Singapore, 2018; pp. 79–84. [Google Scholar]
- Daya, S. Leucocyte immunotherapy for recurrent miscarriage. In Recurrent Pregnancy Loss; CRC Press: Boca Raton, FL, USA, 2020; pp. 258–267. [Google Scholar]
- Wong, L.F.; Porter, T.F.; Scott, J.R. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev. 2014, 10, CD000112. [Google Scholar] [CrossRef]
- Egerup, P.; Lindschou, J.; Gluud, C.; Christiansen, O.B.; ImmuRe, M.I.P.D.S.G. The effects of intravenous immunoglobulins in women with recurrent miscarriages: A systematic review of randomised trials with meta-analyses and trial sequential analyses including individual patient data. PLoS ONE 2015, 10, e0141588. [Google Scholar] [CrossRef] [Green Version]
- Stern, C.; Chamley, L.; Norris, H.; Hale, L.; Baker, H.W. A randomized, double-blind, placebo-controlled trial of heparin and aspirin for women with in vitro fertilization implantation failure and antiphospholipid or antinuclear antibodies. Fertil. Steril. 2003, 80, 376–383. [Google Scholar] [CrossRef]
- Hamulyak, E.N.; Scheres, L.J.; Marijnen, M.C.; Goddijn, M.; Middeldorp, S. Aspirin or heparin or both for improving pregnancy outcomes in women with persistent antiphospholipid antibodies and recurrent pregnancy loss. Cochrane Database Syst. Rev. 2020, 5, CD012852. [Google Scholar]
- Li, X.; Deng, X.; Duan, H.; Zeng, L.; Zhou, J.; Liu, C.; Guo, X.; Liu, X. Clinical features associated with pregnancy outcomes in women with positive antiphospholipid antibodies and previous adverse pregnancy outcomes: A real-world prospective study. Clin. Rheumatol. 2021, 40, 193–204. [Google Scholar] [CrossRef]
- Mekinian, A.; Alijotas-Reig, J.; Carrat, F.; Costedoat-Chalumeau, N.; Ruffatti, A.; Lazzaroni, M.G.; Tabacco, S.; Maina, A.; Masseau, A.; Morel, N.; et al. Refractory obstetrical antiphospholipid syndrome: Features, treatment and outcome in a european multicenter retrospective study. Autoimmun. Rev. 2017, 16, 730–734. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Llurba, E.; Gris, J.M. Treatment of refractory poor apl-related obstetric outcomes with tnf-alpha blockers: Maternal-fetal outcomes in a series of 18 cases. Semin. Arthritis Rheum. 2019, 49, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Achilli, C.; Duran-Retamal, M.; Saab, W.; Serhal, P.; Seshadri, S. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: A systematic review and meta-analysis. Fertil. Steril. 2018, 110, 1089–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcante, M.B.; Sarno, M.; Araujo Júnior, E.; Da Silva Costa, F.; Barini, R. Lymphocyte immunotherapy in the treatment of recurrent miscarriage: Systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016, 295, 511–518. [Google Scholar] [CrossRef]
- Beer, A.E.; Quebbeman, J.F.; Ayers, J.W.T.; Haines, R.F. Major histocompatibility complex antigens, maternal and paternal immune responses, and chronic habitual abortions in humans. Am. J. Obstet. Gynecol. 1981, 141, 987–999. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Liu, Q.; Zhang, L.; Chen, B.; Li, Y.; Bian, Y.; Huang, L.; Qiao, C. The optimal timing of immunotherapy may improve pregnancy outcome in women with unexplained recurrent pregnancy loss: A perspective follow-up study in northeastern china. Am. J. Reprod. Immunol. 2020, 83, e13225. [Google Scholar] [CrossRef]
- Liu, J.; Dong, P.; Jia, N.; Wen, X.; Luo, L.; Wang, S.; Li, J. The expression of intracellular cytokines of decidual natural killer cells in unexplained recurrent pregnancy loss. J. Matern. Fetal Neonatal Med. 2020. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Llurba, E.; Gris, J.M. Tumor necrosis factor-alpha and pregnancy: Focus on biologics. An updated and comprehensive review. Clin. Rev. Allergy Immunol. 2017, 53, 40–53. [Google Scholar] [CrossRef]
- Winger, E.E.; Reed, J.L. Treatment with tumor necrosis factor inhibitors and intravenous immunoglobulin improves live birth rates in women with recurrent spontaneous abortion. Am. J. Reprod. Immunol. 2008, 60, 8–16. [Google Scholar] [CrossRef]
- Scarpellini, F.; Sbracia, M. Use of granulocyte colony-stimulating factor for the treatment of unexplained recurrent miscarriage: A randomised controlled trial. Hum. Reprod. 2009, 24, 2703–2708. [Google Scholar] [CrossRef]
- Santjohanser, C.; Knieper, C.; Franz, C.; Hirv, K.; Meri, O.; Schleyer, M.; Würfel, W.; Toth, B. Granulocyte-colony stimulating factor as treatment option in patients with recurrent miscarriage. Arch. Immunol. Ther. Exp. 2013, 61, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Rutella, S.; Pierelli, L.; Bonanno, G.; Sica, S.; Ameglio, F.; Capoluongo, E.; Mariotti, A.; Scambia, G.; d’Onofrio, G.; Leone, G. Role for granulocyte colony–stimulating factor in the generation of human t regulatory type 1 cells. Blood 2002, 100, 2562–2571. [Google Scholar] [CrossRef]
- Taga, T.; Kariya, Y.; Shimada, M.; Uchida, A. Suppression of natural killer cell activity by granulocytes in patients with aplastic anemia: Role of granulocyte colony-stimulating factor. Immunol. Lett. 1993, 39, 65–70. [Google Scholar] [CrossRef]
- Cavalcante, M.B.; Sarno, M.; Ricardo, B. Recombinant human granulocyte–colony stimulating factor for all recurrent miscarriage patients or for a select group? Hum. Reprod. 2019, 34, 2081–2083. [Google Scholar] [CrossRef]
- van Dijk, M.M.; Kolte, A.M.; Limpens, J.; Kirk, E.; Quenby, S.; van Wely, M.; Goddijn, M. Recurrent pregnancy loss: Diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis. Hum. Reprod. Update 2020, 26, 356–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolte, A.M.; Westergaard, D.; Lidegaard, O.; Brunak, S.; Nielsen, H.S. Chance of Live Birth: A Nationwide, Registry-Based Cohort Study; Human Reproduction: Oxford, UK, 2021. [Google Scholar]
- Odendaal, J.; Quenby, S.; Sammaritano, L.; Macklon, N.; Branch, D.W.; Rosenwaks, Z. Immunologic and rheumatologic causes and treatment of recurrent pregnancy loss: What is the evidence? Fertil. Steril. 2019, 112, 1002–1012. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Q.; Fang, R.L.; Luo, Y.N.; Luo, C.Q. Analysis of the diagnostic value of cd138 for chronic endometritis, the risk factors for the pathogenesis of chronic endometritis and the effect of chronic endometritis on pregnancy: A cohort study. BMC Womens Health 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQueen, D.B.; Bernardi, L.A.; Stephenson, M.D. Chronic endometritis in women with recurrent early pregnancy loss and/or fetal demise. Fertil. Steril. 2014, 101, 1026–1030. [Google Scholar] [CrossRef]
DGGG/OEGGG/SGGG (2018) | ESHRE (2017) | ASRM (2012) | RCOG (2011) | ||
---|---|---|---|---|---|
Autoimmune Risk Factors | APLS | Testing for ACA, LAC and Anti-β2-glykoprotein I antibodies detected on 2 separate occasions at an interval of 12 weeks Testing for non-criteria APLS if clinical manifestations are present | Testing for ACA and LAC, Anti-β2-Glykoprotein I antibodies could be considered | Testing for ACA, LAC and Anti-β2-Glykoprotein I antibodies | Testing of ACA or LAC two times 12 weeks apart |
IgA antibodies Transglutaminase | Testing for IgA antibodies against Transglutaminase can be performed in women with a history of food sensitivity followed by biopsy if positive | --- | --- | --- | |
ANA | If elevated ANA titres are diagnosed in RPL patients, antibodies should be further differentiated (SS-A/RO and SS-B/ lupus anticoagulant (LAC) antibodies) to rule out a Sjögren’s syndrome or lupus erythematosus | Could be considered for explanatory purpose | Not recommended | --- | |
Thyroid Antibodies | An endocrine workup determining TSH levels is recommended in women with RPL. If TSH levels are found to be abnormal, T3, T4, and thyroid autoantibody concentrations must be determined | TPO-antibodies recommended followed by T4 testing in case of abnormal screening results | Not recommended if euthyroid | --- | |
Alloimmune Risk Factors | Immune Cells | Only if evidence of a pre-existing autoimmune disorder | Only HLA-DQBI*05:01/05:2 could be considered in Scandinavian woman with sRPL Insufficient evidence to recommend NK cell testing Testing anti-HLA antibodies in women with RPL is not recommended | Circulating CD16 NK cell testing is not recommended Controversial scientific evidence for testing mucosal CD16 NK cells Controversial scientific evidence for HLA typing | Testing for pNK/ uNK cells should not be offered routinely in the investigation of recurrent miscarriage |
Chronic Endometritis | Evaluation of chronic endometritis by endometrial biopsy with analysis of CD 138-positive plasma-cells | Further studies on the subject are necessary | - | - |
Suggested Procedure | ||
---|---|---|
Autoimmune Risk Factors | APLS | ACA, LAC, Anti-β2-glykoprotein I antibodies Analysis should be performed at two separate occasions at an interval of 12 weeks Consider a non-criteria APLS, if clinical manifestations are present (renal microangiopathy, neurological disorders, cardiac manifestations, or ulcerations of the skin) |
IgA Antibodies Transglutaminase | IgA antibodies against Transglutaminase should only be analyzed in women with a history of food sensitivity followed by colon biopsy if antibodies positive | |
ANA | Only ANA titres >1:160 are considered as positive If the ANA titres are elevated, antibodies should be further differentiated (SS-A/RO and SS-B/ lupus anticoagulant (LAC)antibodies) to rule out Sjögren’s syndrome or lupus erythematosus | |
Thyroid Antibodies | TSH level should be analysed. If TSH levels are >2.5 mU/L, T3, T4 and thyroid autoantibody concentrations should be determined | |
Alloimmune Risk Factors | Immune Cells | Controversial scientific evidence for dendritic cells or regulatory T-cells Most data available for uNKs, is controversial and testing can only be recommended within studies |
Chronic Endometritis | Evaluation of chronic endometritis by endometrial biopsy with analysis of CD 138-positive plasma-cells |
DGGG/OEGGG/SGGG (2018) | ESHRE (2017) | ASRM (2012) | RCOG (2011) | |
---|---|---|---|---|
APLS Therapy | Low dose aspirin plus unfractionated heparin or low molecular heparin starting with day of positive pregnancy test. Aspirin until GW 34+0, heparin 6 weeks post-partum (APLS and non-criteria APLS) | Low dose aspirin starting before conception plus prophylactic dose unfractionated heparin or low molecular heparin starting with a positive pregnancy test | Low dose aspirin and unfractionated heparin | Low dose aspirin plus heparin |
Thyroid Antibodies | Thyroid hormone substitution therapy can be administered in woman with RPL and latent hypothyroidism i.e., TPO antibodies | There is insufficient evidence to support treatment with levothyroxine in euthyroid women with thyroid antibodies and RPL outside a clinical trial | --- | --- |
Chronic Endometritis | Therapy of a chronic endometritis can be performed. | - | - | - |
Immunomodulatory Therapy | Glucocorticoids only in clinical studies in women with pre-existing autoimmune disorder Therapies with IVIG, allogeneic lymphocyte transfer, lipid infusions or TNF-α-blockers should not be performed outside of clinical studies | Glucocorticoids are not recommended as treatments for unexplained RPL or RPL with selected immunological biomarkers IVIG are not recommended as a treatment of RPL There is insufficient evidence to recommend intralipid therapy for improving live birth rate in women with unexplained RPL. Heparin or low dose aspirin are not recommended to improve live birth rate in women with unexplained RPL | IVIG are not recommended for pRPL | Immune treatments should not be offered routinely to women with recurrent miscarriage outside formal research studies |
Diagnose | Suggested Procedure |
---|---|
APLS Therapy |
Aspirin until GW 34+0, heparin 6 weeks post-partum (APLS and non-criteria APLS) |
Thyroid Antibodies | Thyroid hormone substitution therapy can be administered in woman with RPL and latent hypothyroidism i.e., TPO antibodies |
Chronic Endometritis | If detected, a chronic endometritis should be treated First line therapy with doxycycline 200 mg for 14 days. A test of cure should be performed after completion. Second line therapy with metronidazole and ciprofloxacin if test of cure is positive |
Other Immunomodulatory Therapies | Glucocorticoids only in clinical studies in women with pre-existing autoimmune disorder therapies with IVIG, alogeneic lymphocyte transfer, lipid infusions or TNF-α-blockers can be considered, however not outside of clinical studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vomstein, K.; Feil, K.; Strobel, L.; Aulitzky, A.; Hofer-Tollinger, S.; Kuon, R.-J.; Toth, B. Immunological Risk Factors in Recurrent Pregnancy Loss: Guidelines Versus Current State of the Art. J. Clin. Med. 2021, 10, 869. https://doi.org/10.3390/jcm10040869
Vomstein K, Feil K, Strobel L, Aulitzky A, Hofer-Tollinger S, Kuon R-J, Toth B. Immunological Risk Factors in Recurrent Pregnancy Loss: Guidelines Versus Current State of the Art. Journal of Clinical Medicine. 2021; 10(4):869. https://doi.org/10.3390/jcm10040869
Chicago/Turabian StyleVomstein, Kilian, Katharina Feil, Laura Strobel, Anna Aulitzky, Susanne Hofer-Tollinger, Ruben-Jeremias Kuon, and Bettina Toth. 2021. "Immunological Risk Factors in Recurrent Pregnancy Loss: Guidelines Versus Current State of the Art" Journal of Clinical Medicine 10, no. 4: 869. https://doi.org/10.3390/jcm10040869
APA StyleVomstein, K., Feil, K., Strobel, L., Aulitzky, A., Hofer-Tollinger, S., Kuon, R. -J., & Toth, B. (2021). Immunological Risk Factors in Recurrent Pregnancy Loss: Guidelines Versus Current State of the Art. Journal of Clinical Medicine, 10(4), 869. https://doi.org/10.3390/jcm10040869