Accuracy of Computer-Assisted Surgery in Maxillary Reconstruction: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection of Articles
2.3. Data Extraction
2.4. Risk of Bias
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. CAS Process
3.4. Evaluation Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammond, J. Dental care of edentulous patients after resection of maxilla. Br. Dent. J. 1966, 120, 591–594. [Google Scholar]
- Brown, J.S.; Shaw, R.J. Reconstruction of the maxilla and midface: Introducing a new classification. Lancet Oncol. 2010, 11, 1001–1008. [Google Scholar] [CrossRef]
- Rogers, S.N.; Lowe, D.; McNally, D.; Brown, J.S.; Vaughan, E.D. Health-related quality of life after maxillectomy: A comparison between prosthetic obturation and free flap. J. Oral. Maxillofac. Surg. 2003, 61, 174–181. [Google Scholar] [CrossRef]
- Peng, X.; Mao, C.; Yu, G.Y.; Guo, C.B.; Huang, M.X.; Zhang, Y. Maxillary reconstruction with the free fibula flap. Plast. Reconstr. Surg. 2005, 115, 1562–1569. [Google Scholar] [CrossRef]
- Garvey, P.B.; Chang, E.I.; Selber, J.C.; Skoracki, R.J.; Madewell, J.E.; Liu, J.; Yu, P.; Hanasono, M.M. A prospective study of preoperative computed tomographic angiographic mapping of free fibula osteocutaneous flaps for head and neck reconstruction. Plast. Reconstr. Surg. 2012, 130, 541e–549e. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzaffar, A.R.; Adams, W.P., Jr.; Hartog, J.M.; Rohrich, R.J.; Byrd, H.S. Maxillary reconstruction: Functional and aesthetic considerations. Plast. Reconstr. Surg. 1999, 104, 2172–2183. [Google Scholar] [CrossRef] [PubMed]
- Winters, H.A.H.; Harten, S.M. Maxillary reconstruction using a horizontally placed iliac crest flap. Eur. J. Plast. Surg. 2003, 25, 410–414. [Google Scholar] [CrossRef]
- Schepers, R.H.; Kraeima, J.; Vissink, A.; Lahoda, L.U.; Roodenburg, J.L.; Reintsema, H.; Raghoebar, G.M.; Witjes, M.J. Accuracy of secondary maxillofacial reconstruction with prefabricated fibula grafts using 3D planning and guided reconstruction. J. Craniomaxillofac. Surg. 2016, 44, 392–399. [Google Scholar] [CrossRef]
- Seikaly, H.; Idris, S.; Chuka, R.; Jeffery, C.; Dzioba, A.; Makki, F.; Logan, H.; O’Connell, D.A.; Harris, J.; Ansari, K.; et al. The Alberta Reconstructive Technique: An Occlusion-Driven and Digitally Based Jaw Reconstruction. Laryngoscope 2019. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, D.L.; Garfein, E.S.; Christensen, A.M.; Weimer, K.A.; Saddeh, P.B.; Levine, J.P. Use of computer-aided design and computer-aided manufacturing to produce orthognathically ideal surgical outcomes: A paradigm shift in head and neck reconstruction. J. Oral. Maxillofac. Surg. 2009, 67, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Fan, S.; Zhang, H.Q.; Lin, Z.Y.; Ye, J.T.; Li, J.S. Virtual Surgical Planning in Precise Maxillary Reconstruction With Vascularized Fibular Graft After Tumor Ablation. J. Oral. Maxillofac. Surg. 2016, 74, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Van Baar, G.J.C.; Liberton, N.; Forouzanfar, T.; Winters, H.A.H.; Leusink, F.K.J. Accuracy of computer-assisted surgery in mandibular reconstruction: A postoperative evaluation guideline. Oral. Oncol. 2019, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Van Baar, G.J.C.; Forouzanfar, T.; Liberton, N.; Winters, H.A.H.; Leusink, F.K.J. Accuracy of computer-assisted surgery in mandibular reconstruction: A systematic review. Oral. Oncol. 2018, 84, 52–60. [Google Scholar] [CrossRef]
- Van Baar, G.J.C.; Liberton, N.; Winters, H.A.H.; Leeuwrik, L.; Forouzanfar, T.; Leusink, F.K.J. A Postoperative Evaluation Guideline for Computer-Assisted Reconstruction of the Mandible. J. Vis. Exp. 2020, 155. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Moga, C.; Harstall, C.; Schopflocher, D. A principal component analysis is conducted for a case series quality appraisal checklist. J. Clin. Epidemiol. 2016, 69, 199–207 e2. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Gui, L.; Mao, C.; Peng, X.; Yu, G.Y. Applying computer techniques in maxillofacial reconstruction using a fibula flap: A messenger and an evaluation method. J. Craniofac. Surg. 2009, 20, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melville, J.C.; Manis, C.S.; Shum, J.W.; Alsuwied, D. Single-Unit 3D-Printed Titanium Reconstruction Plate for Maxillary Reconstruction: The Evolution of Surgical Reconstruction for Maxillary Defects-A Case Report and Review of Current Techniques. J. Oral. Maxillofac. Surg. 2019, 77, 874.e1–874.e13. [Google Scholar] [CrossRef] [PubMed]
- Morita, D.; Numajiri, T.; Nakamura, H.; Tsujiko, S.; Sowa, Y.; Yasuda, M.; Hirano, S. Intraoperative Change in Defect Size during Maxillary Reconstruction Using Surgical Guides Created by CAD/CAM. Plast. Reconstr. Surg. Glob. Open. 2017, 5, e1309. [Google Scholar] [CrossRef] [PubMed]
- Numajiri, T.; Morita, D.; Nakamura, H.; Tsujiko, S.; Yamochi, R.; Sowa, Y.; Toyoda, K.; Tsujikawa, T.; Arai, A.; Yasuda, M.; et al. Using an In-House Approach to Computer-Assisted Design and Computer-Aided Manufacturing Reconstruction of the Maxilla. J. Oral. Maxillofac. Surg. 2018, 76, 1361–1369. [Google Scholar] [CrossRef]
- Tarsitano, A.; Battaglia, S.; Ciocca, L.; Scotti, R.; Cipriani, R.; Marchetti, C. Surgical reconstruction of maxillary defects using a computer-assisted design/computer-assisted manufacturing-produced titanium mesh supporting a free flap. J. Craniomaxillofac. Surg. 2016, 44, 1320–1326. [Google Scholar] [CrossRef]
- Yang, W.F.; Choi, W.S.; Leung, Y.Y.; Curtin, J.P.; Du, R.; Zhang, C.Y.; Chen, X.S.; Su, Y.X. Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: A prospective pilot study. Oral. Oncol. 2018, 78, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.B.; Wang, Y.; Liu, X.J.; Mao, C.; Guo, C.B.; Yu, G.Y.; Peng, X. Reconstruction of maxillary defects with free fibula flap assisted by computer techniques. J. Craniomaxillofac. Surg. 2015, 43, 630–636. [Google Scholar] [CrossRef]
- Zheng, G.S.; Wang, L.; Su, Y.X.; Liao, G.Q.; Zhang, S.E.; Lao, X.M. Maxillary reconstruction assisted by preoperative planning and accurate surgical templates. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2016, 121, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Swendseid, B.P.; Roden, D.F.; Vimawala, S.; Richa, T.; Sweeny, L.; Goldman, R.A.; Luginbuhl, A.; Heffelfinger, R.N.; Khanna, S.; Curry, J.M. Virtual Surgical Planning in Subscapular System Free Flap Reconstruction of Midface Defects. Oral. Oncol. 2020, 101, 104508. [Google Scholar] [CrossRef]
- Cuéllar, C.N.; Martínez, E.B.; Cuéllar, I.N.; López, A.M.L.; Rial, M.T.; Pérez, A.S.; Escobar, J.I.S. Primary Maxillary Reconstruction With Fibula Flap and Dental Implants: A Comparative Study Between Virtual Surgical Planning and Standard Surgery in Class IIC Defects. J. Oral. Maxillofac. Surg. 2021, 79, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, A.; Ghassemi, M.; Riediger, D.; Hilgers, R.D.; Gerressen, M. Comparison of donor-site engraftment after harvesting vascularized and nonvascularized iliac bone grafts. J. Oral. Maxillofac. Surg. 2009, 67, 1589–1594. [Google Scholar] [CrossRef] [PubMed]
- Winters, H.A.H.; Smeele, L.E. Reduction of donor site morbidity of the iliac crest free flap by preservation of the anterior superior iliac spine. Eur. J. Plast. Surg. 2000, 23, 183–184. [Google Scholar] [CrossRef]
- Witjes, M.J.H.; Schepers, R.H.; Kraeima, J. Impact of 3D virtual planning on reconstruction of mandibular and maxillary surgical defects in head and neck oncology. Curr. Opin. Otolaryngol. Head Neck Surg. 2018, 26, 108–114. [Google Scholar] [CrossRef]
- Kraeima, J.; Steenbakkers, R.; Spijkervet, F.K.L.; Roodenburg, J.L.N.; Witjes, M.J.H. Secondary surgical management of osteoradionecrosis using three-dimensional isodose curve visualization: A report of three cases. Int. J. Oral. Maxillofac. Surg. 2018, 47, 214–219. [Google Scholar] [CrossRef]
- Avraham, T.; Franco, P.; Brecht, L.E.; Ceradini, D.J.; Saadeh, P.B.; Hirsch, D.L.; Levine, J.P. Functional outcomes of virtually planned free fibula flap reconstruction of the mandible. Plast. Reconstr. Surg. 2014, 134, 628e–634e. [Google Scholar] [CrossRef] [PubMed]
- Schepers, R.H.; Raghoebar, G.M.; Vissink, A.; Lahoda, L.U.; Van der Meer, W.J.; Roodenburg, J.L.; Reintsema, H.; Witjes, M.J. Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck 2013, 35, E109–E114. [Google Scholar] [CrossRef] [PubMed]
- Ch’Ng, S.; Skoracki, R.J.; Selber, J.C.; Yu, P.; Martin, J.W.; Hofstede, T.M.; Chambers, M.S.; Liu, J.; Hanasono, M.M. Osseointegrated implant-based dental rehabilitation in head and neck reconstruction patients. Head Neck 2016, 38 (Suppl. 1), E321–E327. [Google Scholar] [CrossRef]
- Regulation (EU). 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC. Off. J. Eur. Union 2017, 60, 1–332. [Google Scholar]
Author | No. CAS Cases (n = 67) | Reconstruction | Defect Size | Flap Type | No. Segments (Class) | Plate Type | Orbital Floor Reconstruction |
---|---|---|---|---|---|---|---|
Liu et al. (2009) [18] | 2 | Primary (1) and secondary (1) | Lower maxilla (2) | FFF (2) | N/A | N/A | N/A |
Melville et al. (2019) [19] | 1 | Primary | Brown class IId | FFF | 2 | PSRP | No |
Morita et al. (2017) [20] | 1 | Primary | N/A | FFF | 3 | Pre-bent mini-plates | No |
Navarro Cuéllar et al. (2021) [27] | 6 (vs. 6 control) | Primary | Brown class IIc | FFF (6) | 3 | Pre-bent mini-plates | No |
Numajiri et al. (2018) [21] | 4 | Primary (2) and secondary (2) | N/A | FFF (4) | N/A | Pre-bent mini-plates | Yes (1), pre-bent TM |
Schepers et al. (2016) [8] | 5 | Secondary (5) | Partial maxillectomy (1) | FFF (5) | 3, 2, and 1 (partial maxillectomy) | Mini-plates | No |
Swendseid et al. (2019) [26] | 9 (vs. 14 control) | Primary | Brown classes II (2), III (2), IV (1), and V (4)/Cordeiro classes II (2), IIIa (2), IIIb (3), and IV (2) | SOFF (9) | 1.8 (mean) | PSRP (3) Mini-plates | N/A |
Tarsitano et al. (2016) [22] | 4 | Primary (4) | Brown classes II (2) and III (2) | FFF (4) | 2 (Brown classes II and III) | PSTM | Yes (2), 3D printed PSTM |
Wang et al. (2016) [11] | 18 | Primary (18) | Brown classes I (1), II (9), III (5), and IV (3) | FFF (18) | N/A (mean 2.8 ± 0.91) | Pre-bent mini-plates | N/A |
Yang et al. (2018) [23] | 3 | Secondary (3) | Left maxilla (1), right maxilla (1), and anterior maxilla (1) | FFF (3) | 3 (left maxilla), 1 (right maxilla), and 2 (anterior maxilla) | PSRP | N/A |
Zhang et al. (2015) [24] | 8 (vs. 19 control) | Primary (8) | Brown classes II (5) and III (3) | FFF (8) | N/A | Pre-bent mini-plates | Yes (3), pre-bent TM |
Zheng et al. (2016) [25] | 6 | Primary (4) and secondary (2) | Brown classes Ib, IIc, IId, IIIb, IIId, and IVb | FFF (6) | 1 (Brown class Ib), 3 (Brown classes IIc, IId, IIIb, IIId, and IVb) | N/A | N/A |
Author | No. CAS Cases (n = 67) | Pre-op Craniofacial Imaging | Pre-op Donor Site Imaging | CAS Software | Mirroring Tool | 3D Printed Devices | CAS Dental Implants | Surgical Navigation | Post-op Imaging |
---|---|---|---|---|---|---|---|---|---|
Liu et al. (2009) [18] | 2 | CT (FOV 20cm, pitch 1.0, 0.75 mm ST, 120–280mA) | N/A | Surfacer 1 | N/A | Model neomaxilla | No | No | CT |
Melville et al. (2019) [19] | 1 | CT | CT | Proplan CMF 2 | N/A | Cutting guides maxilla Cutting guide fibula | No | No | CBCT |
Morita et al. (2017) [20] | 1 | N/A | N/A | Free software | N/A | Cutting guide fibula Model osteotomized fibula Model osteotomized maxilla | No | No | CT |
Navarro Cuéllar et al. (2021) [27] | 6 (vs. 6 control) | CT | CT | ProPlan CMF 2 | No | Cutting guide fibula Cutting guide maxilla Model neomaxilla | No | No | CT |
Numajiri et al. (2018) [21] | 4 | N/A | N/A | InVesalius 3 | N/A | Cutting guide fibula Cutting guides maxilla Model native maxilla Model native fibula | No | No | CT |
Schepers et al. (2016) [8] | 5 | CBCT (120 kV, 5 mA, 0.4 voxel, FOV 23 × 16 cm) | CTA (0.6 mm collimation, 30 f kernel) | Proplan CMF 1.3 2, Simplant Pro 2011 2, 3-matic 7.0 2 | N/A | Cutting guide fibula Cutting guides maxilla Drill guide dental implants Model neomaxilla Titanium bridge abutment | Yes (5) | No | CBCT |
Swendseid et al. (2019) [26] | 9 (vs. 14 control) | N/A | N/A | ProPlan CMF 2, Stryker CMF 5, IPS CaseDesigner 7 | Yes (1) | Cutting guide scapula Cutting guide maxilla Model neomaxilla | Yes (1) | No | N/A |
Tarsitano et al. (2016) [22] | 4 | CT (0.6 mm ST, 120 kV, 225 mA, 0.5 pitch, 1 s rotation time, 0.6 mm collimation, 512 × 512 matrix size) | CTA (soft tissue kernel 2.5 mm ST) | Rhino 4.0 4 | Yes | Cutting guide fibula Cutting guides maxilla | No | Yes, Nlite Stryker 5 | CT |
Wang et al. (2016) [11] | 18 | CT | CT | Proplan CMF 2 | N/A | Cutting guide fibula Cutting guides maxilla Model neomaxilla Shape template neomaxilla | No | No | CT |
Yang et al. (2018) [23] | 3 | CT | CT | Mimics 2, Proplan CMF 2 | N/A | Cutting guide fibula Cutting guides maxilla | No | No | CT |
Zhang et al. (2015) [24] | 8 (vs. 19 control) | CT (FOV 20 cm, pitch 1.0, 0.7 5 mm ST, 120Y280mA) | CT (FOV 20cm, pitch 1.0, 0.75 mm ST, 120Y280mA) | iPlan CMF 2, Proplan CMF 2 | Yes | Model mirrored maxilla Shape template neomaxilla | No | Yes, Brainlab 6 | CT |
Zheng et al. (2016) [25] | 6 | CT | CT | Mimics 2 | N/A | Cutting guide fibula Cutting guides maxilla Shape template neomaxilla | No | No | N/A |
Author | No. CAS Cases (n = 67) | Measurement Software | Comparison | Methodology | Results |
---|---|---|---|---|---|
Liu et al. (2009) [18] | 2 | N/A | STL post-op vs. STL pre-op revised | Deviation fibula | Mandibular and maxillary results merged |
Melville et al. (2019) [19] | 1 | N/A | STL post-op vs. STL pre-op revised | Anterior and posterior width (neo)maxilla difference | 2.2 mm/7.8 mm |
Fibular segment dimension differences: | |||||
Height posterior section | 0.9 mm | ||||
Height anterior section | 1.6 mm | ||||
Height medial section | 2.0 mm | ||||
Greatest discrepancy fibula | 2.2 mm | ||||
Morita et al. (2017) [20] | 1 | N/A | STL post-op vs. STL pre-op revised | Deviation fibula | 2–4 mm |
Navarro Cuéllar et al. (2021) [27] | 6 (vs. 6 control) | N/A | STL post-op vs. STL pre-op revised | CAS vs. control | |
Anatomical position of bone (%) | 100% vs. 66.6% (p = 0.028) | ||||
Bone contact (%) | 100% vs. 83.3% (p = 0.041) | ||||
Change of vertical distance (mm) | 3.28 ± 1.43 vs. 6.73 ± 2.14 (p = 0.019) | ||||
Horizontal shift > 5 mm (%) | 16.6% vs. 83.3% (p = 0.016) | ||||
Numajiri et al. (2018) [21] | 4 | CloudCompare 1 | STL post-op vs. STL pre-op revised | Average deviation fibula | 0.44 mm |
Schepers et al., (2016) [8] | 5 | Geomagic Studio 2 | STL post-op vs. STL pre-op revised | Fibula segments as reference: | |
Mean center point deviation fibula segments | 0.93 mm | ||||
Mean angulation deviation fibula segments | 2.90° | ||||
Mean center point deviation implants | 1.93 mm | ||||
Mean angulation deviation implants | 3.67° | ||||
Occlusion as reference: | |||||
Mean center point deviation fibula segments | 5.41 mm | ||||
Mean angulation deviation fibula segments | 6.96° | ||||
Mean center point deviation implants | 4.95 mm | ||||
Mean angulation deviation implants | 6.26° | ||||
Swendseid et al. (2019) [26] | 9 (vs. 15 control) | ProPlan CMF 4 | STL post-op vs. STL pre-op revised | CAS vs. control | |
Anatomical position of bone (%) | 100% vs. 71% (p = 0.035) | ||||
Bone contact (%) | 70% vs. 60% (p = 0.49) | ||||
CAS | |||||
Mean position deviation (mm) | 7.2 mm | ||||
Position deviation < 10 mm (%) | 82% | ||||
Tarsitano et al. (2016) [22] | 4 | GOM 3 SimPlant 2 | STL post-op vs. STL pre-op revised | Average deviation fibula + titanium mesh | 1.1 mm |
Wang et al. (2016) [11] | 18 | N/A | STL post-op vs. STL pre-op revised | CAS vs. control | |
Overextension of horizontal ends of fibular segments (n) | 1 (5.6%) | ||||
Overextension of vertical ends of fibular segments (n) | 1 (5.6%) | ||||
Precise bone-to-bone contact (n) | 17 (94.4%) | ||||
Yang et al. (2018) [23] | 3 | Mimics 4 | STL post-op vs. STL pre-op revised | Angulation deviation bone grafts Distance deviation bone grafts Mean absolute distance deviation | Mandibular and maxillary results merged |
Zhang et al. (2015) [24] | 8 (vs. 19 control) | Geomagic Studio 2 | STL post-op vs. STL pre-op revised | CAS vs. control | |
Change of vertical distance | 2.82 mm vs. 6.13 mm | ||||
Horizontal shift (>5 mm) (n) | 2 (25%) vs. 14 (73.6%) | ||||
Overextension of the posterior end of the fibula (n) | 1 (12.5%) vs. 10 (52.6%) | ||||
Zheng et al. (2016) [25] | 6 | N/A | STL post-op vs. STL pre-op revised | Average central point deviation | 0.58 mm |
Maximum deviation | 1.53 mm | ||||
Rotation | 6.0° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Baar, G.J.C.; Schipper, K.; Forouzanfar, T.; Leeuwrik, L.; Winters, H.A.H.; Ridwan-Pramana, A.; Leusink, F.K.J. Accuracy of Computer-Assisted Surgery in Maxillary Reconstruction: A Systematic Review. J. Clin. Med. 2021, 10, 1226. https://doi.org/10.3390/jcm10061226
van Baar GJC, Schipper K, Forouzanfar T, Leeuwrik L, Winters HAH, Ridwan-Pramana A, Leusink FKJ. Accuracy of Computer-Assisted Surgery in Maxillary Reconstruction: A Systematic Review. Journal of Clinical Medicine. 2021; 10(6):1226. https://doi.org/10.3390/jcm10061226
Chicago/Turabian Stylevan Baar, Gustaaf J. C., Kitty Schipper, Tymour Forouzanfar, Lars Leeuwrik, Henri A. H. Winters, Angela Ridwan-Pramana, and Frank K. J. Leusink. 2021. "Accuracy of Computer-Assisted Surgery in Maxillary Reconstruction: A Systematic Review" Journal of Clinical Medicine 10, no. 6: 1226. https://doi.org/10.3390/jcm10061226
APA Stylevan Baar, G. J. C., Schipper, K., Forouzanfar, T., Leeuwrik, L., Winters, H. A. H., Ridwan-Pramana, A., & Leusink, F. K. J. (2021). Accuracy of Computer-Assisted Surgery in Maxillary Reconstruction: A Systematic Review. Journal of Clinical Medicine, 10(6), 1226. https://doi.org/10.3390/jcm10061226