Efficacy of Targeted Temperature Management after Pediatric Cardiac Arrest: A Meta-Analysis of 2002 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Outcomes
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Primary Outcome
3.4. Secondary Outcomes
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bistritz, J.F.; Horton, L.M.; Smaldone, A. Therapeutic Hypothermia in Children After Cardiac Arrest. Pediatr. Emerg. Care 2015, 31, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Topjian, A.; Hutchins, L.; DiLiberto, M.A.; Abend, N.S.; Ichord, R.; Helfaer, M.; Berg, R.A.; Nadkarni, V. Induction and maintenance of therapeutic hypothermia after pediatric cardiac arrest: Efficacy of a surface cooling protocol*. Pediatr. Crit. Care Med. 2011, 12, e127–e135. [Google Scholar] [CrossRef] [Green Version]
- Tibballs, J.; Kinney, S. Reduction of hospital mortality and of preventable cardiac arrest and death on introduction of a pediatric medical emergency team*. Pediatr. Crit. Care Med. 2009, 10, 306–312. [Google Scholar] [CrossRef]
- Szarpak, L.; Filipiak, K.J.; Mosteller, L.; Jaguszewski, M.; Smereka, J.; Ruetzler, K.; Ahuja, S.; Ladny, J.R. Survival, neurological and safety outcomes after out of hospital cardiac arrests treated by using prehospital therapeutic hypothermia: A systematic review and meta-analysis. Am. J. Emerg. Med. 2020, 0735. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Shin, S.D.; Ro, Y.S.; Song, K.J.; Lee, E.J.; Park, C.B.; Hwang, S.S. Post-resuscitation care and outcomes of out-of-hospital cardiac arrest: A nationwide propensity score-matching analysis. Resuscitation 2013, 84, 1068–1077. [Google Scholar] [CrossRef]
- Topjian, A.A.; Telford, R.; Holubkov, R.; Nadkarni, V.M.; Berg, R.A.; Dean, J.M.; Moler, F.W. Therapeutic Hypothermia After Pediatric Cardiac Arrest (THAPCA) Trial Investigators. Association of early postresuscitation hypotension with survival to discharge after targeted temperature management for pediatric out-of-hospital cardiac arrest: Secondary analysis of a randomized clinical trial. JAMA Pediatr. 2018, 172, 143–153. [Google Scholar] [CrossRef]
- Scholefield, B.R.; Morris, K.P.; Duncan, H.P.; Perkins, G.D.; Gosney, J.; Skone, R.; Sanders, V.; Gao, F. Evolution, safety and efficacy of targeted temperature management after pediatric cardiac arrest. Resuscitation 2015, 92, 19–25. [Google Scholar] [CrossRef]
- Peberdy, M.A.; Callaway, C.W.; Neumar, R.W.; Geocadin, R.G.; Zimmerman, J.L.; Donnino, M.; Gabrielli, A.; Silvers, S.M.; Zaritsky, A.L.; Merchant, R.; et al. Part 9: Post-Cardiac Arrest Care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122, S768–S786. [Google Scholar] [CrossRef] [Green Version]
- Duff, J.P.; Topjian, A.A.; Berg, M.D.; Chan, M.; Haskell, S.E.; Joyner, B.L.; Lasa, J.J.; Ley, S.J.; Raymond, T.T.; Sutton, R.M.; et al. 2019 American Heart Association Focused Update on Pediatric Advanced Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2019, 140, e904–e914. [Google Scholar] [CrossRef]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted Temperature Management at 33 °C versus 36 °C after Cardiac Arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, M.; Servillo, G.; Sutherasan, Y.; Rodríguez-González, R.; Brunetti, I.; Pelosi, P. Effects of in-hospital low targeted temperature after out of hospital cardiac arrest: A systematic review with meta-analysis of randomized clinical trials. Resuscitation 2015, 91, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Lascarrou, J.-B.; Merdji, H.; Le Gouge, A.; Colin, G.; Grillet, G.; Girardie, P.; Coupez, E.; Dequin, P.-F.; Cariou, A.; Boulain, T.; et al. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. N. Engl. J. Med. 2019, 381, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic Encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, D.V.; Strohm, B.; Edwards, A.D.; Dyet, L.; Halliday, H.L.; Juszczak, E.; Kapellou, O.; Levene, M.; Marlow, N.; Porter, E.; et al. Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. N. Engl. J. Med. 2009, 361, 1349–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluckman, P.D.; Wyatt, J.S.; Azzopardi, D.; Ballard, R.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; Whitelaw, A.; et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 2005, 365, 663–670. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Morley, C.J.; Inder, T.E.; Stewart, M.J.; Smith, K.R.; McNamara, P.J.; Wright, I.M.R.; Kirpalani, H.M.; Darlow, B.A.; Doyle, L.W.; et al. Whole-Body Hypothermia for Term and Near-Term Newborns With Hypoxic-Ischemic Encephalopathy. Arch. Pediatr. Adolesc. Med. 2011, 165, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef] [PubMed]
- Böttiger, B.W.; Schneider, A.; Popp, E. Number needed to treat = six: Therapeutic hypothermia following cardiac arrest – an effective and cheap approach to save lives. Crit. Care 2007, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Moler, F.W.; Silverstein, F.S.; Holubkov, R.; Slomine, B.S.; Christensen, J.R.; Nadkarni, V.M.; Meert, K.L.; Browning, B.; Pemberton, V.L.; Page, K.; et al. Therapeutic Hypothermia after In-Hospital Cardiac Arrest in Children. N. Engl. J. Med. 2017, 376, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Moler, F.W.; Silverstein, F.S.; Holubkov, R.; Slomine, B.S.; Christensen, J.R.; Nadkarni, V.M.; Meert, K.L.; Clark, A.E.; Browning, B.; Pemberton, V.L.; et al. Therapeutic Hypothermia after Out-of-Hospital Cardiac Arrest in Children. N. Engl. J. Med. 2015, 372, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Scholefield, B.R.; Silverstein, F.S.; Telford, R.; Holubkov, R.; Slomine, B.S.; Meert, K.L.; Christensen, J.R.; Nadkarni, V.M.; Dean, J.M.; Moler, F.W. Therapeutic hypothermia after paediatric cardiac arrest: Pooled randomized controlled trials. Resuscitation 2018, 133, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Taccone, F.S. Difficulty interpreting the results of some trials: The case of therapeutic hypothermia after pediatric cardiac arrest. Crit. Care 2015, 19, 391. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, J.M.; Simpson, B.S.; Ball, R.; Freeman, A.; Kirkham, A.; Parry, M.A.; Moore, C.M.; Whitaker, H.C.; Emberton, M. A Modified Newcastle-Ottawa Scale for Assessment of Study Quality in Genetic Urological Research. Eur. Urol. 2021, 79, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Neumann, I.; Pantoja, T.; Penaloza, B.; Cifuentes, L.; Rada, G. El sistema GRADE: Un cambio en la forma de evaluar la calidad de la evidencia y la fuerza de recomendaciones. Revista Médica Chile 2014, 142, 630–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Safiejko, K.; Smereka, J.; Filipiak, K.J.; Szarpak, A.; Dabrowski, M.; Ladny, J.R.; Jaguszewski, M.J.; Szarpak, L. Effectiveness and safety of hypotension fluid resuscitation in traumatic hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials. Cardiol. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Kwak, Y.H.; Shin, S.D.; Ro, Y.S.; Lee, E.J.; Ahn, K.O.; Kim, D.K. Therapeutic hypothermia and outcomes in paediatric out-of-hospital cardiac arrest: A nationwide observational study. Resuscitation 2016, 105, 8–15. [Google Scholar] [CrossRef]
- Cheng, H.H.; Rajagopal, S.K.; Sansevere, A.J.; McDavitt, E.; Wigmore, D.; Mecklosky, J.; Andren, K.; Williams, K.A.; Danehy, A.; Soul, J.S. Post-arrest therapeutic hypothermia in pediatric patients with congenital heart disease. Resuscitation 2018, 126, 83–89. [Google Scholar] [CrossRef]
- Doherty, D.R.; Parshuram, C.S.; Gaboury, I.; Hoskote, A.; Lacroix, J.; Tucci, M.; Joffe, A.; Choong, K.; Farrell, R.; Bohn, D.J.; et al. Hypothermia Therapy After Pediatric Cardiac Arrest. Circulation 2009, 119, 1492–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, E.L.; Clark, R.S.B.; Kochanek, P.M.; Bell, M.J.; Watson, R.S. A tertiary care centerʼs experience with therapeutic hypothermia after pediatric cardiac arrest*. Pediatr. Crit. Care Med. 2010, 11, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.-J.; Hsia, S.-H.; Wang, H.-S.; Chiang, M.-C.; Lin, K.-L. Therapeutic Hypothermia Associated With Increased Survival After Resuscitation in Children. Pediatr. Neurol. 2013, 48, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-J.; Lin, C.-Y.; Hsia, S.-H.; Wang, H.-S.; Chiang, M.-C.; Lin, K.-L. 72-h therapeutic hypothermia improves neurological outcomes in paediatric asphyxial out-of-hospital cardiac arrest–An exploratory investigation. Resuscitation 2018, 133, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Van Zellem, L.; De Jonge, R.; Van Rosmalen, J.; Reiss, I.; Tibboel, D.; Buysse, C. High cumulative oxygen levels are associated with improved survival of children treated with mild therapeutic hypothermia after cardiac arrest. Resuscitation 2015, 90, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Topjian, A.A.; De Caen, A.; Wainwright, M.S.; Abella, B.S.; Abend, N.S.; Atkins, D.L.; Bembea, M.M.; Fink, E.L.; Guerguerian, A.-M.; Haskell, S.E.; et al. Pediatric Post–Cardiac Arrest Care: A Scientific Statement from the American Heart Association. Circulation 2019, 140, e194–e233. [Google Scholar] [CrossRef]
- Topjian, A.A.; Raymond, T.T.; Atkins, D.; Chan, M.; Duff, J.P.; Joyner, B.L.; Lasa, J.J.; Lavonas, E.J.; Levy, A.; Mahgoub, M.; et al. Part 4: Pediatric Basic and Advanced Life Support 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2021, 147, 2020038505. [Google Scholar] [CrossRef]
- Nunan, D.; Heneghan, C.; Spencer, E.A. Catalogue of bias: Allocation bias. BMJ Evid. Based Med. 2018, 23, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.R.; Evans, D.J.; Butler, A.R.; Schofield-Robinson, O.J.; Alderson, P. Hypothermia for traumatic brain injury. Cochrane Database Syst. Rev. 2017, 9, CD001048. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Study Design | Cardiac Arrest Setting | TTM Group | Non-TTM Group | ||||
---|---|---|---|---|---|---|---|---|---|
No. | Age, Years | Males, n (%) | No. | Age, Years | Males, n (%) | ||||
Chang et al., 2016 | Korea | Cross-sectional observational | OHCA | 81 | 14.5 ± 1.3 | 25 (30.9) | 582 | 7.5 ± 2.3 | 199 (34.2) |
Cheng et al., 2018 | USA | Retrospective cohort | IHCA | 26 | 0.8 ± 0.6 | 12 (46.2) | 49 | 0.4 ± 0.3 | 33 (67.3) |
Doherty et al., 2009 | Canada/UK | Retrospective observational multicenter | OHCA and IHCA | 29 | NR | 16 (55.2) | 50 | NR | 23 (46.0) |
Fink et al., 2010 | USA | Retrospective cohort | OHCA and IHCA | 40 | 6.0 ± 6.6 | 24 (60.0) | 141 | 6.0 ± 6.2 | 80 (56.7) |
Lin et al., 2013 | Taiwan | Retrospective cohort | OHCA and IHCA | 15 | NR | 10 (66.7) | 28 | NR | 18 (64.3) |
Lin et al., 2018 | Taiwan | Retrospective cohort | OHCA | 25 | NR | 21 (84.0) | 39 | NR | 28 (71.8) |
Moler et al., 2015 | USA/Canada | RCT | OHCA | 155 | 3.7 ± 1.6 | 102 (65.8) | 140 | 2.7 ± 1.1 | 73 (52.1) |
Moler et al., 2017 | USA/Canada/UK | RCT | IHCA | 166 | 2.2 ± 0.9 | 97 (58.4) | 163 | 4.3 ± 1.8 | 99 (60.7) |
Scholefield et al., 2015 | UK | Retrospective cohort | OHCA | 38 | 2.2 ± 1.7 | 17 (44.7) | 35 | 1.5 ± 1.2 | 8 (22.9) |
Van Zellem et al., 2015 | The Netherlands | Observational cohort | OHCA | 63 | 6.5 ± 5.1 | 43 (68.3) | 137 | 6.4 ± 6.3 | 67 (48.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, W.; Meyer-Szary, J.; Jaguszewski, M.J.; Filipiak, K.J.; Cyran, M.; Smereka, J.; Gasecka, A.; Ruetzler, K.; Szarpak, L. Efficacy of Targeted Temperature Management after Pediatric Cardiac Arrest: A Meta-Analysis of 2002 Patients. J. Clin. Med. 2021, 10, 1389. https://doi.org/10.3390/jcm10071389
Wieczorek W, Meyer-Szary J, Jaguszewski MJ, Filipiak KJ, Cyran M, Smereka J, Gasecka A, Ruetzler K, Szarpak L. Efficacy of Targeted Temperature Management after Pediatric Cardiac Arrest: A Meta-Analysis of 2002 Patients. Journal of Clinical Medicine. 2021; 10(7):1389. https://doi.org/10.3390/jcm10071389
Chicago/Turabian StyleWieczorek, Wojciech, Jarosław Meyer-Szary, Milosz J. Jaguszewski, Krzysztof J. Filipiak, Maciej Cyran, Jacek Smereka, Aleksandra Gasecka, Kurt Ruetzler, and Lukasz Szarpak. 2021. "Efficacy of Targeted Temperature Management after Pediatric Cardiac Arrest: A Meta-Analysis of 2002 Patients" Journal of Clinical Medicine 10, no. 7: 1389. https://doi.org/10.3390/jcm10071389
APA StyleWieczorek, W., Meyer-Szary, J., Jaguszewski, M. J., Filipiak, K. J., Cyran, M., Smereka, J., Gasecka, A., Ruetzler, K., & Szarpak, L. (2021). Efficacy of Targeted Temperature Management after Pediatric Cardiac Arrest: A Meta-Analysis of 2002 Patients. Journal of Clinical Medicine, 10(7), 1389. https://doi.org/10.3390/jcm10071389