Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Design
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015, 3, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.A.; Kowey, P.R.; Devereux, R.B.; Brenner, B.M.; Dahlöf, B.; Ibsen, H.; Lindholm, L.H.; Lyle, P.A.; Snapinn, S.M.; Zhang, Z.; et al. Hospitalizations for new heart failure among subjects with diabetes mellitus in the RENAAL and LIFE studies. Am. J. Cardiol. 2005, 96, 1530–1536. [Google Scholar] [CrossRef]
- Zareini, B.; Blanche, P.; D’Souza, M.; Elmegaard Malik, M.; Nørgaard, C.H.; Selmer, C.; Gislason, G.; Kristensen, S.L.; Køber, L.; Torp-Pedersen, C.; et al. Type 2 diabetes mellitus and impact of heart failure on prognosis compared to other cardiovascular diseases: A nationwide study. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006260. [Google Scholar] [CrossRef] [PubMed]
- McAllister, D.A.; Read, S.H.; Kerssens, J.; Livingstone, S.; McGurnaghan, S.; Jhund, P.; Petrie, J.; Sattar, N.; Fischbacher, C.; Kristensen, S.L.; et al. Incidence of hospitalization for heart failure and case-fatality among 3.25 million people with and without diabetes mellitus. Circulation 2018, 138, 2774–2786. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Ho, C.A.; Li, C.Y. Risk of heart failure in a population with type 2 diabetes versus a population without diabetes with and without coronary heart disease. Diabetes Obes. Metab. 2019, 21, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol. 1974, 34, 29–34. [Google Scholar] [CrossRef]
- Klajda, M.D.; Scott, C.G.; Rodeheffer, R.J.; Chen, H.H. Diabetes mellitus is an independent predictor for the development of heart failure: A population study. Mayo Clin. Proc. 2020, 95, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Iribarren, C.; Karter, A.J.; Go, A.S.; Ferrara, A.; Liu, J.Y.; Sidney, S.; Selby, J.V. Glycemic control and heart failure among adult patients with diabetes. Circulation 2001, 103, 2668–2673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazin-Filho, A.; Kottgen, A.; Bertoni, A.G.; Russell, S.D.; Selvin, E.; Rosamond, W.D.; Coresh, J. HbA 1c as a risk factor for heart failure in persons with diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2008, 51, 2197–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, M.; Olsson, M.; Rosengren, A.; Svensson, A.M.; Bounias, I.; Gudbjörnsdottir, S. The relationship between glycaemic control and heart failure in 83,021 patients with type 2 diabetes. Diabetologia 2012, 55, 2946–2953. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Katzmarzyk, P.T.; Horswell, R.; Wang, Y.; Johnson, J.; Hu, G. HbA1c and heart failure risk among diabetic patients. J Clin. Endocrinol. Metab. 2014, 99, e263–e267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erqou, S.; Lee, C.T.; Suffoletto, M.; Echouffo-Tcheugui, J.B.; de Boer, R.A.; van Melle, J.P.; Adler, A.I. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: Systematic review and meta-analysis. Eur. J. Heart Fail. 2013, 15, 185–193. [Google Scholar] [CrossRef]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, Y.; Arima, H.; Zoungas, S.; Ninomiya, T.; Cooper, M.; Hamet, P.; Mancia, G.; Poulter, N.; Harrap, S.; Woodward, M.; et al. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: The ADVANCE trial. Diabetes Care. 2014, 37, 2359–2365. [Google Scholar] [CrossRef] [Green Version]
- Luk, A.O.; Ma, R.C.; Lau, E.S.; Yang, X.; Lau, W.W.; Yu, L.W.; Chow, F.C.; Chan, J.C.; So, W.Y. Risk association of HbA1c variability with chronic kidney disease and cardiovascular disease in type 2 diabetes: Prospective analysis of the Hong Kong Diabetes Registry. Diabetes Metab. Res. Rev. 2013, 29, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Zhou, J.; Ma, X.; Zhu, W.; Zhang, L.; Li, J.; Lu, J.; Hu, C.; Bao, Y.; Jia, W. Haemoglobin A1c variability as an independent correlate of atherosclerosis and cardiovascular disease in Chinese type 2 diabetes. Diab. Vasc. Dis. Res. 2018, 15, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, J.Y.; Chen, H.H.; Huang, K.C.; Hsu, S.P.; Chen, C.C. Effect of mean HbA1c on the association of HbA1c variability and all-cause mortality in patients with type 2 diabetes. Diabetes Obes. Metab. 2020, 22, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, E.S.; Rigby, A.S.; Atkin, S.L. A1C variability and the risk of microvascular complications in type 1 diabetes: Data from the Diabetes Control and Complications Trial. Diabetes Care 2008, 31, 2198–2202. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Fan, Y.Q.; Zhang, J.F.; Wang, C.Q. Association of hemoglobin A1c variability and the incidence of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and arterial hypertension. Hellenic J. Cardiol. 2018, 59, 91–97. [Google Scholar] [CrossRef]
- Parry, H.M.; Deshmukh, H.; Levin, D.; Van Zuydam, N.; Elder, D.H.; Morris, A.D.; Struthers, A.D.; Palmer, C.N.; Doney, A.S.; Lang, C.C. Both high and low HbA1c predict incident heart failure in type 2 diabetes mellitus. Circ. Heart Fail. 2015, 8, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Segar, M.W.; Patel, K.V.; Vaduganathan, M.; Caughey, M.C.; Butler, J.; Fonarow, G.C.; Grodin, J.L.; McGuire, D.K.; Pandey, A. Association of long-term change and variability in glycemia with risk of incident heart failure among patients with type 2 diabetes: A secondary analysis of the ACCORD trial. Diabetes Care 2020, 43, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Ofstad, A.P.; Zwiener, I.; Kaspers, S.; George, J.; Nicolucci, A. Empagliflozin reduced long-term HbA1c variability and cardiovascular death: Insights from the EMPA-REG OUTCOME trial. Cardiovasc. Diabetol. 2020, 19, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.H.; Hwang, Y.C.; Won, J.C.; Bae, J.C.; Kim, H.J.; Suh, S.; Lee, E.Y.; Lee, S.; Kim, S.Y.; Kim, J.H. Comparison of the effects of gemigliptin and dapagliflozin on glycaemic variability in type 2 diabetes: A randomized, open-label, active-controlled, 12-week study (STABLE II study). Diabetes Obes. Metab. 2020, 22, 173–181. [Google Scholar] [CrossRef]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, 2181–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.P.; Colette, C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006, 295, 1681–1687. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
Non-HF | HF | ||
---|---|---|---|
Variables | (n = 3509) | (n = 315) | p-Value |
Man | 1785 (50.9%) | 134 (42.5%) | 0.005 |
Age, years | 57.3 (10.7) | 63.9 (9.4) | <0.001 |
Diabetes duration, years | 6.1 (6.5) | 10.1 (7.3) | <0.001 |
Body mass index, kg/m2 | 25.4 (3.8) | 25.8 (4.2) | 0.083 |
Systolic blood pressure, mmHg | 134.6 (17.4) | 140.6 (18.0) | <0.001 |
Fasting plasma glucose, mg/dL | 162.7 (58.9) | 170.6 (66.7) | 0.043 |
Mean HbA1c | 7.7 (1.3) | 8.2 (1.6) | <0.001 |
Total Cholesterol | 195.5 (43.2) | 201.5 (45.1) | 0.018 |
Triglyceride | 160.3 (194.0) | 177.2 (120.1) | 0.025 |
HDL-cholesterol, mg/dL | 41.3 (11.5) | 39.7 (9.5) | 0.004 |
LDL-cholesterol, mg/dL | 120.0 (35.6) | 121.7 (37.1) | 0.422 |
Creatinine, mg/dL | 0.9 (0.3) | 1.0 (0.3) | <0.001 |
eGFR, mL/min/1.73 m2 | <0.001 | ||
30–59 | 451 (12.9%) | 105 (33.3%) | |
≥60 | 3058 (87.1%) | 210 (66.7%) | |
mean | 87.3 (24.6) | 72.7 (24.7) | <0.001 |
Exercise | 1676 (59.1%) | 142 (58.9%) | 0.952 |
Smoking | 636 (18.1%) | 41 (13.0%) | 0.023 |
Alcohol-drinking | 417 (11.9%) | 24 (7.6%) | 0.024 |
Coronary heart disease | 361 (10.3%) | 70 (22.2%) | <0.001 |
Hypertension | 1636 (46.6%) | 219 (69.5%) | <0.001 |
Stroke | 409 (11.7%) | 73 (23.2%) | <0.001 |
Medications | |||
sulfonylureas | 2805 (79.9%) | 267 (84.8%) | 0.039 |
metformin | 1255 (35.8%) | 108 (34.3%) | 0.599 |
thiazolidinediones | 727 (20.7%) | 90 (28.6%) | 0.001 |
insulin | 727 (20.7%) | 90 (28.6%) | 0.001 |
statin | 739 (21.1%) | 91 (28.9%) | 0.001 |
antiplatelet agents | 317 (9.0%) | 65 (20.6%) | <0.001 |
warfarin | 14 (0.4%) | 6 (1.9%) | 0.004 |
angiotensin converting enzyme inhibitors | 1107 (31.5%) | 151 (47.9%) | <0.001 |
angiotensin II receptor blockers | 640 (18.2%) | 106 (33.7%) | <0.001 |
HbA1c-SD | 0.011 | ||
tertile1 | 1215 (34.6%) | 84 (26.7%) | |
tertile2 | 1138 (32.4%) | 122 (38.7%) | |
tertile3 | 1156 (32.9%) | 109 (34.6%) | |
HbA1c-adjSD | 0.037 | ||
tertile1 | 1181 (33.7%) | 84 (26.7%) | |
tertile2 | 1174 (33.5%) | 120 (38.1%) | |
tertile3 | 1154 (32.9%) | 111 (35.2%) | |
HbA1c-Mean | <0.001 | ||
<7% | 1098 (31.3%) | 70 (22.2%) | |
7–7.9% | 1216 (34.7%) | 97 (30.8%) | |
≥8% | 1195 (34.1%) | 148 (47.0%) |
Adjusted | ||||||
---|---|---|---|---|---|---|
Crude | Model 1 | Model 2 | ||||
Variable | HR [95%CI] | p-Value | HR [95%CI] | p-Value | HR [95%CI] | p-Value |
tertile 1 | 1.00 [ref.] | 1.00 [ref.] | 1.00 [ref.] | |||
tertile 2 | 1.53 [1.16–2.02] | 0.002 | 1.39 [1.04–1.85] | 0.024 | 1.29 [0.96–1.73] | 0.095 |
tertile 3 | 1.38 [1.04–1.83] | 0.026 | 1.42 [1.04–1.92] | 0.025 | 1.17 [0.84–1.64] | 0.350 |
HbA1c-adjSD | ||||||
tertile 1 | 1.00 [ref.] | 1.00 [ref.] | 1.00 [ref.] | |||
tertile 2 | 1.43 [1.08–1.89] | 0.012 | 1.29 [0.97–1.72] | 0.086 | 1.19 [0.89–1.60] | 0.239 |
tertile 3 | 1.37 [1.03–1.82] | 0.029 | 1.39 [1.03–1.88] | 0.032 | 1.16 [0.83–1.61] | 0.386 |
HbA1c-Mean | ||||||
<7% | 1.00 [ref.] | 1.00 [ref.] | ★ 1.00 [ref.] | |||
7–7.9% | 1.22 [0.90–1.66] | 0.204 | 1.20 [0.88–1.65] | 0.259 | ★ 1.15 [0.83–1.58] | 0.411 |
≥8% | 1.85 [1.39–2.46] | <0.001 | 1.66 [1.20–2.29] | 0.002 | ★ 1.56 [1.09–2.22] | 0.015 |
HbA1c-Mean | ||||||
<7% | 1.00 [ref.] | 1.00 [ref.] | # 1.00 [ref.] | |||
7–7.9% | 1.22 [0.90–1.66] | 0.204 | 1.20 [0.88–1.65] | 0.259 | # 1.16 [0.84–1.59] | 0.376 |
≥8% | 1.85 [1.39–2.46] | <0.001 | 1.66 [1.20–2.29] | 0.002 | # 1.57 [1.10–2.23] | 0.013 |
Reference | Year of Publication | Type of Study | Total Patients (n) | Follow-Up Year | Total Event (n) | Associated Risk |
---|---|---|---|---|---|---|
Association of mean HbA1c with heart failure | ||||||
Iribarren [8] | 2001 | Cohort | 48,858 | 2.2 years | 935 | Each 1% increase in HbA1c with an 8% increased risk of HF (95% CI 5–12). An HbA1c ≥ 10%, relative to HbA1c <7%, with 1.56-fold (95% CI 1.26–1.93) risk of HF |
Pazin-Filho [9] | 2008 | Atherosclerosis Risk in Communities (ARIC) study | 1827 | 9.9 years | 328 | Each 1% higher HbA1c, HR 1.17 (95% CI 1.11–1.25) for the non-CHD group and 1.20 (95% CI 1.04–1.40) for the CHD group |
Lind [10] | 2012 | Swedish National Diabetes Register | 83,021 | 7.2 years | 10,969 | Each 1% higher HbA1c, HR 1.12 (95% CI 1.10–1.14) for HF hospitalization |
Zhao [11] | 2014 | Cohort | 17,181 African American and 12,446 White American | 6.5 years | 5089 | HbA1c (<6.0% [reference group], 6.0–6.9%, 7.0–7.9%, 8.0–8.9%, 9.0–9.9%, and ≥10.0%,) HR 1.00, 1.02 (95% CI, 0.91–1.15), 1.21 (1.05–1.38), 1.29 (1.12–1.50), 1.37 (1.17–1.61), and 1.49 (1.31–1.69) (p trend < 0.001) for African American diabetic patients, and 1.00, 1.09 (0.96–1.22), 1.09 (0.95–1.26), 1.43 (1.22–1.67), 1.49 (1.25–1.77), and 1.61 (1.38–1.87) (p trend < 0.001) for white diabetic patients, respectively. |
Erquo [12] | 2013 | Systematic review and meta-analysis | 178,929 | N/A | 14,176 | Overall adjusted risk ratio 1.15 (95% CI 1.10–1.21) for each percentage point higher HbA1c |
Parry [20] | 2015 | Cohort | 8683 | 5.5 years | 701 | A U-shaped relationship; HbA1c < 6%, HR 1.60 (95% CI, 1.38–1.86, p < 0.0001), and HbA1c > 10%, HR 1.80 (95% CI 1.60–2.16, p < 0.0001) |
Association of HbA1c variability with heart failure | ||||||
Parry [20] | 2015 | Cohort | 8683 | 5.5 years | 701 | Less HbA1c variability (HbA1c-SD), HR 0.80 (95% CI 0.74–0.85, p < 0.0001) |
Gu [19] | 2018 | Cohort | 201 | 7.3 years | 18 | Higher HbA1c variability, HbA1c-SD, HR 1.754 (95% CI 1.003–3.104, p = 0.049; HbA1c-CV, HR 1.604 (95% CI 1.064–2.419, p = 0.024) |
Segar [21] | 2020 | Secondary Analysis of the ACCORD Trial | 8576 | 6.4 years | 3388 | ≥10% HbA1c decrease, HR 1.32 (95% CI 1.08–1.75); ≥10% HbA1c increase HR 1.55 (95% CI 1.19–2.04), using <10% HbA1c change as reference. Greater long-term HbA1c variability, HR 1.34 (95% CI 1.17–1.54) per 1 SD of average successive variability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-T.; Huang, W.-L.; Wu, H.-P.; Chang, M.-P.; Chen, C.-C. Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes. J. Clin. Med. 2021, 10, 1401. https://doi.org/10.3390/jcm10071401
Lin Y-T, Huang W-L, Wu H-P, Chang M-P, Chen C-C. Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes. Journal of Clinical Medicine. 2021; 10(7):1401. https://doi.org/10.3390/jcm10071401
Chicago/Turabian StyleLin, You-Ting, Wei-Lun Huang, Hung-Pin Wu, Man-Ping Chang, and Ching-Chu Chen. 2021. "Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes" Journal of Clinical Medicine 10, no. 7: 1401. https://doi.org/10.3390/jcm10071401
APA StyleLin, Y.-T., Huang, W.-L., Wu, H.-P., Chang, M.-P., & Chen, C.-C. (2021). Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes. Journal of Clinical Medicine, 10(7), 1401. https://doi.org/10.3390/jcm10071401