The Impact of Temporary Stay at High Altitude on the Circulatory System
Abstract
:1. Introduction
2. Methods
3. Physiology and Pathophysiology in Healthy at High Altitude
3.1. Normal Physiological Adaptation
3.2. Acute Altitude Illnesses
3.3. Clinical Recommendations
4. Patients with Cardiovascular Diseases at Higher Altitudes
4.1. Arterial Hypertension
4.1.1. Physiology and Pathophysiology
4.1.2. Clinical Recommendations
4.2. Pulmonary Hypertension
4.2.1. Physiology and Pathophysiology
4.2.2. Clinical Recommendations
4.3. Heart Failure
4.3.1. Physiology and Pathophysiology
4.3.2. Clinical Recommendations
4.4. Coronary Artery Disease (CAD)
4.4.1. Physiology and Pathophysiology
4.4.2. Clinical Recommendations
4.5. Arrhythmias
4.5.1. Physiology and Pathophysiology
4.5.2. Clinical Recommendations
4.6. Peripheral Circulatory Disorders
4.6.1. Physiology and Pathophysiology
4.6.2. Clinical Recommendations
4.7. Ischemic Stroke
4.7.1. Physiology and Pathophysiology
4.7.2. Clinical Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parati, G.; Agostoni, P.; Basnyat, B.; Bilo, G.; Brugger, H.; Coca, A.; Festi, L.; Giardini, G.; Lironcurti, A.; Luks, A.M.; et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur. Heart J. 2018, 39, 1546–1554. [Google Scholar]
- Murray, A.J. Energy metabolism and the high-altitude environment. Exp. Physiol. 2016, 101, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Narvaez-Guerra, O.; Herrera-Enriquez, K.; Medina-Lezama, J.; Chirinos, J.A. Systemic Hypertension at High Altitude. Hypertension 2018, 72, 567–578. [Google Scholar] [CrossRef]
- Available online: https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/ (accessed on 6 October 2020).
- Galiński, C. Wybrane Zagadnienia Projektowania Samolotów; Wydawnictwa Naukowe Instytutu Lotnictwa: Warszawa, Poland, 2016. [Google Scholar]
- Ahmedzai, S.; Balfour-Lynn, I.M.; Bewick, T.; Buchdahl, R.; Coker, R.K.; Cummin, A.R.; Gradwell, D.P.; Howard, L.; Innes, J.A.; Johnson, A.O.; et al. British Thoracic Society Standards of Care Committee. Managing passengers with stable respiratory disease planning air travel: British Thoracic Society recommendations. Thorax 2011, 66 (Suppl. 1), i1–i30. [Google Scholar] [CrossRef] [Green Version]
- Samuels, M.P. The effects of flight and altitude. Arch. Dis. Child. 2004, 89, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/montagne/mount1.pdf (accessed on 1 January 2004).
- Wilson, P. Listing the Irish hills and mountains. Ir. Geogr. 2001, 34, 89–95. [Google Scholar] [CrossRef]
- UNEP World Conservation Monitoring Centre. Mountain Watch; UNEP World Conservation Monitoring Centre: Cambridge, UK, 2002. [Google Scholar]
- Available online: http://panos.org.uk/wp-content/files/2011/03/high_stakeshVwvcI.pdf (accessed on 1 May 2002).
- West, J.B.; Schoene, R.B.; Milledge, J.S. High Altitude Medicine and Physiology; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Khodaee, M.; Grothe, H.L.; Seyfert, J.H.; VanBaak, K. Athletes at High Altitude. Sports Health 2016, 8, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilo, G.; Caravita, S.; Torlasco, C.; Parati, G. Blood pressure at high altitude: Physiology and clinical implications. Kardiol. Pol. 2019, 77, 596–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.X.; Li, P.; Jiang, C.H.; Liu, C.; Chen, Y.; Chen, L.; Ruan, H.Z.; Gao, Y.Q. Psychological and cognitive impairment of long-term migrators to high altitudes and the relationship to physiological and biochemical changes. Eur. J. Neurol. 2015, 22, 1363–1369. [Google Scholar] [CrossRef]
- Bärtsch, P.; Gibbs, J.S. Effect of altitude on the heart and the lungs. Circulation 2007, 116, 2191–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 2010, 52, 456–466. [Google Scholar] [CrossRef]
- Stembridge, M.; Ainslie, P.N.; Shave, R. Short-term adaptation and chronic cardiac remodelling to high altitude in lowlander natives and Himalayan Sherpa. Exp. Physiol. 2015, 100, 1242–1246. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.M.; Peacock, A.J.; Johnson, M.K.; Church, A.C. Hypoxaemia in patients with pulmonary arterial hypertension during simulated air travel. Respir. Med. 2013, 107, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Messerli-Burgy, N.; Meyer, K.; Steptoe, A.; Laederach-Hofmann, K. Autonomic and cardiovascular effects of acute high altitude exposure after myocardial infarction and in normal volunteers. Circ. J. 2009, 73, 1485–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, J.K. Cardiac arrhythmia at high altitude: The progressive effect of aging. Tex. Heart Inst. J. 1999, 26, 258–263. [Google Scholar] [PubMed]
- Kujaník, S.; Snincák, M.; Vokál’, J.; Podracký, J.; Koval’, J. Periodicity of arrhythmias in healthy elderly men at the moderate altitude. Physiol. Res. 2000, 49, 285–287. [Google Scholar]
- Gibelli, G.; Fantoni, C.; Anzà, C.; Cattaneo, P.; Rossi, A.; Montenero, A.S.; Baravelli, M. Arrhythmic risk evaluation during exercise at high altitude in healthy subjects: Role of microvolt T-wave alternans. Pacing Clin. Electrophysiol. 2008, 31, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.R.; Boos, C.; Roberts, P.R. Cardiac arrhythmias at high altitude. J. R Army Med. Corps. 2011, 157, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.; Ross, D.; Dorian, P.; Essebag, V.; Gupta, A.; Hamilton, R.M.; Hart, S.; Hoffmaster, B.; Klein, G.; Krahn, A.; et al. CCS Consensus Conference 2003, Assessment of the cardiac patient for fitness to drive and fly—Executive summary. Can. J. Cardiol. 2004, 20, 1313–1323. [Google Scholar]
- Clarke, C. Acute mountain sickness: Medical problems associated with acute and subacute exposure to hypobaric hypoxia. Postgrad Med. J. 2006, 82, 748–753. [Google Scholar] [CrossRef]
- Jha, S.K.; Anand, A.C.; Sharma, V.; Kumar, N.; Adya, C.M. Stroke at high altitude: Indian experience. High. Alt. Med. Biol. 2002, 3, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Stembridge, M.; Ainslie, P.N.; Shave, R. Mechanisms underlying reductions in stroke volume at rest and during exercise at high altitude. Eur. J. Sport Sci. 2016, 16, 577–584. [Google Scholar] [CrossRef]
- Sareban, M.; Perz, T.; Macholz, F.; Reich, B.; Schmidt, P.; Fried, S.; Mairbäurl, H.; Berger, M.M.; Niebauer, J. Preserved right ventricular function but increased right atrial contractile demand in altitude-induced pulmonary hypertension. Int. J. Cardiovasc. Imaging 2020, 36, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, C.; Yu, S.; Yang, J.; Ding, X.; Bian, S.; Zhang, J.; Yu, J.; Tan, H.; Jin, J.; et al. Atrial performance in healthy subjects following high altitude exposure at 4100 m: 2D speckle-tracking strain analysis. Int. J. Cardiovasc. Imaging 2021. [Google Scholar] [CrossRef]
- Droma, Y.; Hanaoka, M.; Basnyat, B.; Arjyal, A.; Neupane, P.; Pandit, A.; Sharma, D.; Ito, M.; Miwa, N.; Katsuyama, Y.; et al. Adaptation to high altitude in Sherpas: Association with the insertion/deletion polymorphism in the Angiotensin-converting enzyme gene. Wilderness Environ. Med. 2008, 19, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Kamikomaki, N.; Nishioka, O. Serum angiotensin-converting enzyme (ACE) is altered at altitude. High. Alt. Med. Biol. 2004, 5, 465–466. [Google Scholar]
- Milledge, J.S.; Catley, D.M. Renin, aldosterone, and converting enzyme during exercise and acute hypoxia in humans. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982, 52, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.S.; Catley, D.M.; Blume, F.D.; West, J.B. Renin, angiotensin-converting enzyme, and aldosterone in humans on Mount Everest. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, Y.Q.; Liu, C.; Yang, J.; Zhang, J.H.; Jin, J.; Tan, H.; Yuan, F.Z.; Ke, J.B.; He, C.Y.; et al. Association between physiological responses after exercise at low altitude and acute mountain sickness upon ascent is sex-dependent. Mil. Med. Res. 2020, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R. Reiseziel Hochgebirge. Höhenmedizinische Tipps für Gesunde und Risikopatienten [Visiting high altitudes--healthy persons and patients with risk diseases]. MMW Fortschr. Med. 2004, 146, 33–34, 36–37. [Google Scholar]
- Luks, A.M.; Swenson, E.R.; Bärtsch, P. Acute high-altitude sickness. Eur. Respir. Rev. 2017, 26, 160096. [Google Scholar] [CrossRef] [PubMed]
- Bloch, K.E.; Buenzli, J.C.; Latshang, T.D.; Ulrich, S. Sleep at high altitude: Guesses and facts. J. Appl. Physiol. 2015, 119, 1466–1480. [Google Scholar] [CrossRef] [PubMed]
- Roach, R.C.; Hackett, P.H.; Oelz, O.; Bärtsch, P.; Luks, A.M.; MacInnis, M.J.; Baillie, J.K. The 2018 Lake Louise AMS Score. High. Alt. Med. Biol. 2018, 19, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, S.A.; Hackett, P.H. High-altitude illness. Emerg. Med. Clin. N. Am. 2004, 22, 329–355. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Zhang, Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir. Med. 2018, 145, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Shen, Y.; Liu, C.; Yang, J.; Yang, Y.Q.; Zhang, C.; Bian, S.Z.; Yu, J.; Gao, X.B.; Zhang, L.P.; et al. EPAS1 and VEGFA gene variants are related to the symptoms of acute mountain sickness in Chinese Han population: A cross-sectional study. Mil. Med. Res. 2020, 7, 35. [Google Scholar] [CrossRef]
- Bärtsch, P.; Swenson, E.R. Clinical practice: Acute high-altitude illnesses. N. Engl. J. Med. 2013, 368, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Liu, C.; Yu, S.; Bian, S.; Zhang, C.; Yang, J.; Zhang, J.; Jin, J.; Rao, R.; Zeng, Y.; et al. Low Stroke Volume Index in Healthy Young Men Is Associated with the Incidence of Acute Mountain Sickness after an Ascent by Airplane: A Case-Control Study. Biomed. Res. Int. 2020, 2020, 6028747. [Google Scholar] [CrossRef]
- Luks, A.M.; Auerbach, P.S.; Freer, L.; Grissom, C.K.; Keyes, L.E.; McIntosh, S.E.; Rodway, G.W.; Schoene, R.B.; Zafren, K.; Hackett, P.H. Wilderness Medical Society Clinical Practice Guidelines for the Prevention and Treatment of Acute Altitude Illness: 2019 update. Wilderness Environ. Med. 2019, 30, S3–S18. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Wang, Y.; Zhang, R.; Zhang, Y. Efficacy of Acetazolamide for the Prophylaxis of Acute Mountain Sickness: A Systematic Review, Meta-Analysis and Trial Sequential Analysis of Randomized Clinical Trials. Am. J. Med. Sci. 2021. [Google Scholar] [CrossRef]
- Nepal, G.; Yadav, J.K.; Rehrig, J.H.; Bhandari, N.; Baniya, S.; Ghimire, R.; Mahotra, N. Efficacy and safety of inhaled budesonide on prevention of acute mountain sickness during emergent ascent: A meta-analysis of randomized controlled trials. BMC Emerg. Med. 2020, 20, 38. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Li, N.; He, Q. Inhaled budesonide for the prevention of acute mountain sickness: A meta-analysis of randomized controlled trials. Am. J. Emerg. Med. 2020, 38, 1627–1634. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19·1 million. Lancet 2016, 389, 37–55.
- Available online: https://www.nfz.gov.pl/aktualnosci/aktualnosci-centrali/raport-nfz-nadcisnienie-tetnicze,7352.html (accessed on 15 May 2019).
- Bilo, G.; Villafuerte, F.C.; Faini, A.; Anza-Ramírez, C.; Revera, M.; Giuliano, A.; Caravita, S.; Gregorini, F.; Lombardi, C.; Salvioni, E.; et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high altitude: The High Altitude Cardiovascular Research-Andes study. Hypertension 2015, 65, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Duke, C.B.; Sallade, T.D.; Starling, J.; Pant, S.; Sheets, A.; McElwee, M.K.; Young, D.S.; Taylor, R.A.; Keyes, L.E. Hypertension and Acute Mountain Sickness in Himalayan Trekkers in Nepal: An Observational Cohort Study. Wilderness Environ. Med. 2020, 31, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilo, G.; Caldara, G.; Styczkiewicz, K.; Revera, M.; Lombardi, C.; Giglio, A.; Zambon, A.; Corrao, G.; Faini, A.; Valentini, M.; et al. Effects of selective and nonselective beta-blockade on 24-h ambulatory blood pressure under hypobaric hypoxia at altitude. J. Hypertens. 2011, 29, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Bilo, G.; Faini, A.; Bilo, B.; Revera, M.; Giuliano, A.; Lombardi, C.; Caldara, G.; Gregorini, F.; Styczkiewicz, K.; et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: A randomized clinical trial. Eur. Heart J. 2014, 35, 3113–3122. [Google Scholar] [CrossRef] [Green Version]
- Caravita, S.; Faini, A.; Baratto, C.; Bilo, G.; Macarlupu, J.L.; Lang, M.; Revera, M.; Lombardi, C.; Villafuerte, F.C.; Agostoni, P.; et al. Upward Shift and Steepening of the Blood Pressure Response to Exercise in Hypertensive Subjects at High Altitude. J. Am. Heart Assoc. 2018, 7, e008506. [Google Scholar] [CrossRef] [Green Version]
- Hull, D.H.; Wolthuis, R.A.; Triebwasser, J.H.; McAfoose, D.A. Treatment of hypertension in aviators: A clinical trial with Aldactazide. Aviat. Space Environ. Med. 1978, 49, 503–511. [Google Scholar]
- Luks, A.M. Should travelers with hypertension adjust their medications when traveling to high altitude? High. Alt. Med. Biol. 2009, 10, 11–15. [Google Scholar] [CrossRef]
- Tzani, P.; Pisi, G.; Aiello, M.; Olivieri, D.; Chetta, A. Flying with respiratory disease. Respiration 2010, 80, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://zdrowedane.nfz.gov.pl/pluginfile.php/314/mod_resource/content/2/nfz_o_zdrowiu_choroba_niedokrwienna_serca.pdf (accessed on 1 June 2020).
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics. Circulation 2020, 141, 139–596. [Google Scholar]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Schmid, J.P.; Nobel, D.; Brugger, N.; Novak, J.; Palau, P.; Trepp, A.; Wilhelm, M.; Saner, H. Short-term high altitude exposure at 3454 m is well tolerated in patients with stable heart failure. Eur. J. Heart Fail. 2015, 17, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, P. Considerations on safety and treatment of patients with chronic heart failure at high altitude. High. Alt. Med. Biol. 2013, 14, 96–100. [Google Scholar] [CrossRef]
- Fulco, C.S.; Rock, P.B.; Cymerman, A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ. Med. 1998, 69, 793–801. [Google Scholar] [PubMed]
- Furian, M.; Hartmann, S.E.; Latshang, T.D.; Flueck, D.; Murer, C.; Scheiwiller, P.M.; Osmonov, B.; Ulrich, S.; Kohler, M.; Poulin, M.J.; et al. Exercise Performance of Lowlanders with COPD at 2, 590 m: Data from a Randomized Trial. Respiration 2018, 95, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Brady, W.J.; O’Connor, R.E.; Sutherland, S.; Durand-Brochec, M.F.; Duchateau, F.X.; Verner, L. Non-urgent commercial air travel after acute myocardial infarction: A review of the literature and commentary on the recommendations. Air Med. J. 2012, 31, 231–237. [Google Scholar] [CrossRef]
- Levine, B.D. Going High with Heart Disease: The Effect of High Altitude Exposure in Older Individuals and Patients with Coronary Artery Disease. High Alt. Med. Biol. 2015, 16, 89–96. [Google Scholar] [CrossRef]
- West, J.B. Who should not go high? High. Alt. Med. Biol. 2009, 10, 1–2. [Google Scholar] [CrossRef]
- Schmid, J.P.; Noveanu, M.; Gaillet, R.; Hellige, G.; Wahl, A.; Saner, H. Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart 2006, 92, 921–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.D.; Hinds, R.; Walker, C.; Morgan, F.; Mason, P.; Hildick-Smith, D. Safety of aeromedical repatriation after myocardial infarction: A retrospective study. Heart 2006, 92, 1864–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carta, A.F.; Bitos, K.; Furian, M.; Mademilov, M.; Sheraliev, U.; Marazhapov, N.H.; Lichtblau, M.; Schneider, S.R.; Sooronbaev, T.; Blocha, K.E.; et al. ECG changes at rest and during exercise in lowlanders with COPD travelling to 3100 m. Int. J. Cardiol. 2021, 324, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bisang, M.; Latshang, T.D.; Furian, M.; Aeschbacher, S.S.; Huber, F.; Lichtblau, M.; Ulrich, S.; Scheiwiller, P.; Hasler, E.D.; Ulrich, S.; et al. P156 Risk of cardiac arrhythmias in lowlanders with COPD travelling to high altitude. Randomized trial of nocturnal oxygen therapy. Respiration 2017, 94, 76–156. [Google Scholar] [CrossRef]
- Alexander, J.K. Age, altitude, and arrhythmia. Tex. Heart Inst. J. 1995, 22, 308–316. [Google Scholar] [PubMed]
- Mantziari, L.; Styliadis, C.; Kourtidou-Papadeli, C. Styliadis I: Arrhytmias, Sudden Cardiac Death and incapatication in pilots. Hippokratia 2008, 12 (Suppl. 1), 53–58. [Google Scholar]
- Cesarone, M.R.; Belcaro, G.; Geroulakos, G.; Griffin, M.; Ricci, A.; Brandolini, R.; Pellegrini, L.; Dugall, M.; Ippolito, E.; Candiani, C.; et al. Flight microangiopathy on long-haul flights: Prevention of edema and microcirculation alterations with Venoruton. Clin Appl. Thromb. Hemost. 2003, 9, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesarone, M.R.; Belcaro, G.; Incandela, L.; Geroulakos, G.; Griffin, M.; Lennox, A.; DeSanctis, M.T.; Acerbi, G. Flight microangiopathy in medium-to-long distance flights: Prevention of edema and microcirculation alterations with HR (Paroven, Venoruton; 0-(beta-hydroxyethyl)-rutosides): A prospective, randomized, controlled trial. J. Cardiovasc. Pharm. 2002, 7 (Suppl. 1), S17–S20. [Google Scholar] [CrossRef]
- Gupta, N.; Ashraf, M.Z. Exposure to high altitude: A risk factor for venous thromboembolism? Semin. Thromb. Hemost. 2012, 38, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Adi, Y.; Bayliss, S.; Rouse, A.; Taylor, R.S. The association between air travel and deep vein thrombosis: Systematic review & meta-analysis. BMC Cardiovasc. Disord. 2004, 4, 7. [Google Scholar]
- Kuipers, S.; Venemans-Jellema, A.; Cannegieter, S.C.; van Haften, M.; Middeldorp, S.; Büller, H.R.; Rosendaal, F.R. The incidence of venous thromboembolism in commercial airline pilots: A cohort study of 2630. J. Thromb. Haemost. 2014, 12, 1260–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef]
- Arya, R.; Barnes, J.A.; Hossain, U.; Patel, R.K.; Cohen, A.T. Long-haul flights and deep vein thrombosis: A significant risk only when additional factors are also present. Br. J. Haematol. 2002, 116, 653–654. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Chng, S.M.; Singh, R. Cerebral venous infarction during a high altitude expedition. Singap. Med. J. 2009, 50, e306–e308. [Google Scholar]
- Cancienne, J.M.; Burrus, M.T.; Diduch, D.R.; Werner, B.C. High altitude is an independent risk factor for venous thromboembolism following arthroscopic rotator cuff repair: A matched case-control study in Medicare patients. J. Shoulder Elb. Surg. 2017, 26, 7–13. [Google Scholar] [CrossRef]
- Jha, P.K.; Vijay, A.; Prabhakar, A.; Chatterjee, T.; Nair, V.; Bajaj, N.; Kumar, B.; Sharma, M.; Ashraf, M.Z. Transcriptome profiling reveals the endogenous sponging role of LINC00659 and UST-AS1 in high altitude induced thrombosis. Thromb. Haemost. 2021. [Google Scholar] [CrossRef]
- Sharma, S.C.; Vijayan, G.P.; Suri, M.L.; Seth, H.N. Platelet adhesiveness in young patients with ischaemic stroke. J. Clin Pathol. 1977, 30, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.R.; Kamath, A.A.; Grubb, R.L.; Powers, W.J.; Adams, H.P.; Derdeyn, C.P.; Carotid Occlusion Surgery Study Investigators. The safety of aeroplane travel in patients with symptomatic carotid occlusion. J. Neurol. Neurosurg. Psychiatry 2014, 85, 435–437. [Google Scholar] [CrossRef] [Green Version]
- Yanamandra, U.; Gupta, A.; Patyal, S.; Varma, P.P. High-altitude cerebral oedema mimicking stroke. BMJ Case Rep 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Physiological Changes | Pathophysiological Changes |
---|---|
|
|
Disease | Therapeutic Options |
---|---|
Arterial hypertension | Replacement of non-selective beta-blockers for selective beta-blockers [52]—randomized controlled studies I C recommendation Angiotensin II receptor blockade (suggested Telmisartan) lowers BP in healthy subjects up to 3400 m—randomized controlled studies IB recommendation Regular blood pressure measurements [1]—randomized controlled studies IIA recommendation |
Pulmonary hypertension | Access to oxygen during flight and trips to altitudes above 1500–2000 m a.s.l. [1,57] III and IV class patients should avoid exposure to altitudes > 2000 m, and the access to oxygen supplementation if exposed to altitudes 1500-2000 m randomized controlled studies IC recommendation |
Heart failure | Replacement of non-selective beta-blockers for selective β1-blockers [1]—randomized controlled studies IB recommendation Acetazolamide [1]—among diuretics may be considered mentioned in recommendations, experts’ opinion NYHA I, NYHA II, NYHA III—patients can fly without oxygen [6]—Well-conducted case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal NYHA IV—patients should fly only in case of medical necessity [6]—Well-conducted case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal |
Coronary artery disease | Continuation of the previous therapy at high altitude (1) randomized controlled studies IC recommendation NYHA I, NYHA II—patients can fly with commercial airlines [65]—Experts’ opinion NYHA III—patients may require oxygen supplementation [65]—Experts’ opinion NYHA IV—patients can fly only, when it is necessary [65]—CCS Consensus Conference |
Arrhythmia | They are no restrictions for patients with well-controlled supraventricular arrhythmias classified as NYHA I or NYHA II, [65]—randomized controlled study IIA recommendation uncontrolled hemodynamically significant ventricular arrhythmias classified as NYHA III or NYHA IV—should not travel by commercial airline [1,65]—randomized controlled study IIC recommendation |
Peripheral circulatory disorders | In patients with oedema caused by venous hypertension flying for more than 7 h—oral administration of beta-hydroxyethyl-rutosides [73,75]—prospective, randomized, controlled trials In patients without VTE risk factors—no need for thromboprophylaxis [79]—based on systematic reviews and meta-analyses In patients with increased risk of thrombosis—graded compression stockings or standard dose low molecular weight heparin [79]—based on systematic reviews and meta-analyses If heparin cannot be used—acetylsalicylic acid (ASA) [79], based on systematic reviews and meta-analyses |
Brain vessel diseases | Trekking or hiking at high altitude ≤3 months after stroke or TIA should be avoided -randomized controlled study IC recommendation [1] Stenosis of the carotid artery and the resulting cerebral blood supply disorders—is no contraindication to flying [85]—case-control study HACE should be treated with dexamethasone; thrombolysis is not recommended (only in case of ischemic stroke) [86]—case report |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikołajczak, K.; Czerwińska, K.; Pilecki, W.; Poręba, R.; Gać, P.; Poręba, M. The Impact of Temporary Stay at High Altitude on the Circulatory System. J. Clin. Med. 2021, 10, 1622. https://doi.org/10.3390/jcm10081622
Mikołajczak K, Czerwińska K, Pilecki W, Poręba R, Gać P, Poręba M. The Impact of Temporary Stay at High Altitude on the Circulatory System. Journal of Clinical Medicine. 2021; 10(8):1622. https://doi.org/10.3390/jcm10081622
Chicago/Turabian StyleMikołajczak, Karolina, Karolina Czerwińska, Witold Pilecki, Rafał Poręba, Paweł Gać, and Małgorzata Poręba. 2021. "The Impact of Temporary Stay at High Altitude on the Circulatory System" Journal of Clinical Medicine 10, no. 8: 1622. https://doi.org/10.3390/jcm10081622
APA StyleMikołajczak, K., Czerwińska, K., Pilecki, W., Poręba, R., Gać, P., & Poręba, M. (2021). The Impact of Temporary Stay at High Altitude on the Circulatory System. Journal of Clinical Medicine, 10(8), 1622. https://doi.org/10.3390/jcm10081622