Seroprevalence of Antibodies against SARS-CoV-2 in Children with Juvenile Idiopathic Arthritis a Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Detection of Anti-SARS-CoV-2 Antibodies
2.3. Compliance with Research Ethics Standards
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics of the Patients
3.2. Disease Activity in JIA Patients Seropositive and Seronegative for Anti-SARS-CoV-2
3.3. Relationship between Anti-SARS-CoV-2 Antibodies and Treatment of JIA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARDS | Acute respiratory distress syndrome |
CRP | C-reactive protein |
DMARDs | Disease-modifying antirheumatic drugs |
ESR | Erythrocyte sedimentation rate |
ILAR criteria | International League of Associations for Rheumatology criteria for JIA |
JADAS 71 | Juvenile arthritis disease activity score of all 71 joints |
JIA | Juvenile idiopathic arthritis |
MIS | Multisystem inflammatory syndrome |
PGA | Parent global assessment of well-being |
PhGA | Physician’s global assessment of disease activity |
VAS | Visual analog scale |
References
- Munro, A.P.S.; Faust, S.N. COVID-19 in children: Current evidence and key questions. Curr. Opin. Infect. Dis. 2020, 33, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Sinaei, R.; Pezeshki, S.; Parvaresh, S.; Sinaei, R. Why COVID-19 is less frequent and severe in children: A narrative review. World J. Pediatr. 2020, 17, 10–20. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Coronavirus Disease 2019 (COVID-19) in the EU/EEA and the UK—Eleventh Update: Resurgence of Cases; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020. [Google Scholar]
- Beesley, R.P.; Costello, W.; Angevare, S.P.; Wouters, C.; Wulffraat, N.; Uzie, Y. Survey of adult and paediatric rheumatology patients suggests information about COVID-19 vaccination will aid uptake. Rheumatology 2021. [Google Scholar] [CrossRef]
- Michelena, X.; Borrell, H.; Lopez-Corbeto, M.; Lopez-Lasanta, M.; Moreno, E.; Pascual-Pastor, M.; Erra, A.; Serrat, M.; Espartal, E.; Anton, S.; et al. Incidence of COVID-19 in a cohort of adult and paediatric patients with rheumatic diseases treated with targeted biologic and synthetic disease-modifying anti-rheumatic drugs. Semin. Arthritis Rheum. 2020, 50, 564–570. [Google Scholar] [CrossRef]
- PRES Update Regarding COVID-19 Vaccines in Pediatric Rheumatic Patients Published on 30 December 2020. Available online: https://www.pres.eu/clinical-affairs/guidelines.html (accessed on 29 March 2021).
- Batu, E.D.; Ozen, S. Implications of COVID-19 in pediatric rheumatology. Rheumatol. Int. 2020, 40, 1193–1213. [Google Scholar] [CrossRef]
- Bailey, D.; Konforte, D.; Barakauskas, V.E.; Yip, P.M.; Kulasingam, V.; Abou El Hassan, M.; Beach, L.A.; Blasutig, I.M.; Catomeris, P.; Dooley, K.C.; et al. Canadian society of clinical chemists (CSCC) interim consensus guidance for testing and reporting of SARS-CoV-2 serology. Clin. Biochem. 2020, 86, 1–7. [Google Scholar] [CrossRef]
- Jaaskelainen, A.J.; Kekalainen, E.; Kallio-Kokko, H.; Mannonen, L.; Kortela, E.; Vapalahti, O.; Kurkela, S.; Lappalainen, M. Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. Eurosurveillance 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.P.; Yansouni, C.P.; Basta, N.E.; Desjardins, M.; Kanjilal, S.; Paquette, K.; Caya, C.; Semret, M.; Quach, C.; Libman, M.; et al. Serodiagnostics for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Annu. Intern. Med. 2020, 173, 450–460. [Google Scholar] [CrossRef]
- Consolaro, A.; Giancane, G.; Schiappapietra, B.; Davi, S.; Calandra, S.; Lanni, S.; Ravelli, A. Clinical outcome measures in juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 2016, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E.; Hasell, J. Coronavirus Pandemic (COVID-19). OurWorldInData.org. Available online: https://ourworldindata.org/coronavirus (accessed on 23 November 2020).
- Braun, J.; Loyal, L.; Frentsch, M.; Wendisch, D.; Georg, P.; Kurth, F.; Hippenstiel, S.; Dingeldey, M.; Kruse, B.; Fauchere, F.; et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020, 587, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Feng, Y.; Mo, X.; Zheng, P.; Wang, Q.; Li, P.; Peng, P.; Liu, X.; Chen, Z.; Huang, H.; et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 940–948. [Google Scholar] [CrossRef]
- Yongchen, Z.; Shen, H.; Wang, X.; Shi, X.; Li, Y.; Yan, J.; Chen, Y.; Gu, B. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 833–836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Nie, S.; Zhang, Z.; Zhang, Z. Longitudinal Change of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in Patients with Coronavirus Disease 2019. J. Infect. Dis. 2020, 222, 183–188. [Google Scholar] [CrossRef]
- Lynch, K.L.; Whitman, J.D.; Lacanienta, N.P.; Beckerdite, E.W.; Kastner, S.A.; Shy, B.R.; Goldgof, G.M.; Levine, A.G.; Bapat, S.P.; Stramer, S.L.; et al. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin. Infect. Dis. 2020, 72, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Espejo, A.P.; Akgun, Y.; Al Mana, A.F.; Tjendra, Y.; Millan, N.C.; Gomez-Fernandez, C.; Cray, C. Review of Current Advances in Serologic Testing for COVID-19. Am. J. Clin. Pathol. 2020, 154, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Pagani, G.; Conti, F.; Giacomelli, A.; Bernacchia, D.; Rondanin, R.; Prina, A.; Scolari, V.; Gandolfi, C.E.; Castaldi, S.; Marano, G.; et al. Seroprevalence of SARS-CoV-2 significantly varies with age: Preliminary results from a mass population screening. J. Infect. 2020, 81, e10–e12. [Google Scholar] [CrossRef]
- Pollan, M.; Perez-Gomez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernan, M.A.; Perez-Olmeda, M.; Sanmartin, J.L.; Fernandez-Garcia, A.; Cruz, I.; Fernandez de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Marino, A.; Romano, M.; Gattinara, M.; Cimaz, R. Patients with juvenile idiopathic arthritis on TNF inhibitors exposed to COVID-19 family members. Semin. Arthritis Rheum. 2020, 50, 1214–1215. [Google Scholar] [CrossRef] [PubMed]
- Koker, O.; Demirkan, F.G.; Kayaalp, G.; Cakmak, F.; Tanatar, A.; Karadag, S.G.; Sonmez, H.E.; Omeroglu, R.; Aktay Ayaz, N. Does immunosuppressive treatment entail an additional risk for children with rheumatic diseases? A survey-based study in the era of COVID-19. Rheumatol. Int. 2020, 40, 1613–1623. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Q.; Lin, Q.; Fang, J.; Wang, H.; Kwok, H.; Tang, H.; Nishiura, K.; Peng, J.; Tan, Z.; et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.A.; Preston-Hurlburt, P.; Dai, Y.; Aschner, C.B.; Cheshenko, N.; Galen, B.; Garforth, S.J.; Herrera, N.G.; Jangra, R.K.; Morano, N.C.; et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef]
- Throm, A.A.; Moncrieffe, H.; Orandi, A.B.; Pingel, J.T.; Geurs, T.L.; Miller, H.L.; Daugherty, A.L.; Malkova, O.N.; Lovell, D.J.; Thompson, S.D.; et al. Identification of enhanced IFN-gamma signaling in polyarticular juvenile idiopathic arthritis with mass cytometry. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Vijatov-Djuric, G.; Doronjski, A.; Mitic, I.; Brkic, S.; Barisic, N. Interleukin-17A Levels Increase in Serum of Children with Juvenile Idiopathic Arthritis. Arch. Rheumatol. 2017, 32, 234–243. [Google Scholar] [CrossRef]
- Aghighi, Y.; Gilani Sh, M.; Razavi, M.; Zamani, A.; Daneshjoo, K. Juvenile rheumatoid arthritis in children with Ebstein Barr virus infection. Pak. J. Biol. Sci. 2007, 10, 3638–3643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opoka-Winiarska, V.; Grywalska, E.; Sobiesiak, A.; Rolinski, J. The Impact of Epstein-Barr Virus Infection on Juvenile Idiopathic Arthritis Activity and Patient’s Response to Treatment. J. Clin. Med. 2020, 9, 3453. [Google Scholar] [CrossRef] [PubMed]
- Aygun, D.; Kuskucu, M.A.; Sahin, S.; Adrovic, A.; Barut, K.; Yildiz, M.; Sharifova, S.; Midilli, K.; Cokugras, H.; Camcioglu, Y.; et al. Epstein-Barr virus, cytomegalovirus and BK polyomavirus burden in juvenile systemic lupus erythematosus: Correlation with clinical and laboratory indices of disease activity. Lupus 2020, 29, 1263–1269. [Google Scholar] [CrossRef]
- Schafer, A.; Baric, R.S. Epigenetic Landscape during Coronavirus Infection. Pathogens 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Chlamydas, S.; Papavassiliou, A.G.; Piperi, C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 2021, 16, 263–270. [Google Scholar] [CrossRef]
Parameter | JIA (n = 62) | Control (n = 32) | p |
---|---|---|---|
Median (Range) | Median (Range) | ||
Age (years) | 12.0 (2–18) | 11.0 (1–18) | 0.48 |
ESR (mm/h) | 7.5 (2–120) | 4.0 (2.0–20.0) | 0.19 |
CRP (mg/dL) | 0.0 (0.0–17.9) | 0.0 (0.0–0.16) | 0.30 |
IgA anti-SARS-CoV-2 (ratio) | 0.37 (0.06–2.9) | 0.37 (0.1–3.58) | 0.69 |
Positive anti-SARS-CoV-2 IgA | 6 (9.7%) | 3 (9.4%) | 1.0 |
IgG anti-SARS (ratio) | 0.30 (0.17–1.9) | 0.29 (0.19–1.21) | 0.58 |
Positive anti-SARS-CoV-2 IgG | 3 (4.8%) | 2 (6.3%) | 1.0 |
JADAS 71 | 4.9 (0.0–36.0) | ND | ND |
Active joint number | 1.0 (0.0–25.0) | ||
PGA | 2.0 (0.0–7.0) | ||
PhGA | 2.0 (0.0–18.6) | ||
Treatment | |||
Biological DMARDs | 30 (48.4%) | ND | ND |
Adalimumab | 13 (21.0%) | ||
Etanercept | 11 (17.7%) | ||
Tocilizumab | 6 (9.7%) | ||
Conventional synthetic DMARDs | 62 (100%) | ||
Methotrexate | 48 (77.4%) | ||
Hydroxychloroquine | 5 (8.1%) | ||
Sulfasalazine | 14 (22.6%) | ||
Glucocorticoids * | 16 (25.8%) |
Parameter | IgA Anti-SARS-CoV-2 | IgG Anti-SARS-CoV-2 | ||||||
---|---|---|---|---|---|---|---|---|
Positive (n = 6) | Negative (n = 56) | Z/RR (95%CI) | p | Positive (n = 3) | Negative (n = 59) | Z/RR (95%CI) | p | |
JIA activity | ||||||||
Age (years) | 11.0 (2–15) | 12.0 (2–18) | 0.5 | 0.61 | 4.0 (2–13) | 12.0 (2–18) | 1.4 | 0.17 |
ESR (mm/h) | 16.0 (2.0–120.0) | 6.5 (2.0–86.0) | –1.3 | 0.19 | 7.0 (2.0–9.0) | 8.0 (2.0–120.0) | 0.7 | 0.48 |
CRP (mg/dL) | 0.03 (0.0–1.97) | 0.0 (0.0–17.9) | –0.5 | 0.60 | 0.0 (0.0) | 0.0 (0.0–17.9) | 1.4 | 0.17 |
JADAS 71 | 12.5 (3.0–36) | 4.0 (0.0–32.9) | –2.01 | 0.044 | 3.3 (2.0–5.0) | 5.0 (0.0–36.0) | 0.5 | 0.64 |
Active joint number | 2.0 (0–25) | 1.0 (0–15) | –1.7 | 0.086 | 0.0 (0–2) | 1.0 (0.0–25.0) | 0.6 | 0.55 |
PGA | 3.5 (2.0–6.0) | 2.0 (0.0–7.0) | –1.7 | 0.089 | 1.0 (1.0–2.0) | 2.0 (0.0–7.0) | 0.7 | 0.46 |
PhGA | 2.5 (2.0–6.0) | 2.0 (0.0–18.6) | –1.4 | 0.15 | 2.0 (0.0–2.0) | 2.0 (0.0–18.6) | 0.6 | 0.55 |
Therapy | ||||||||
Biological DMARDs | 2 (33.3%) | 28 (50%) | 0.67 (0.2–2.1) | 0.67 | 0 (0) | 30 (50.8%) | (∞) | 0.24 |
Methotrexate | 2 (33.3%) | 47 (83.9%) | 1.0 (0.2–6.8) | 1.0 | 2 (66.7%) | 46 (78.0%) | 0.9 (0.4–1.9) | 0.54 |
Sulfasalazine | 2 (33.3%) | 12 (21.4%) | 1.6 (0.5–5.4) | 0.61 | 1 (33.3) | 13 (22.0%) | 1.5 (0.3–8.0) | 0.54 |
Glucocorticoids | 1 (16.7%) | 15 (26.8%) | 0.6 (0.1–3.9) | 1.0 | 1 (33.3) | 15 (25.4%) | 1.3 (0.2–6.9) | 1.0 |
JIA Patient | Type of JIA | Treatment | Disease Activity JADAS 71 | Positive Anti-SARS-CoV-2 | |
---|---|---|---|---|---|
IgA | IgG | ||||
1 | ERA | sulfasalazine | 3 | + | + |
2 | Poli RF- | etanercept | 6 | + | − |
3 | ERA | methotrexate | 9 | + | − |
4 | Poli RF- | methotrexate glucocorticoids | 5 | − | + |
5 | Poli RF- | methotrexate | 2 | − | + |
6 | Poli RF- | methotrexate | 6 | + | − |
7 | Poli RF- | tocilizumab | 36 | + | − |
8 | ERA | sulfasalazine glucocorticoids | 15 | + | − |
Parameter | IgA (Ratio) | p | IgG (Ratio) | p |
---|---|---|---|---|
Median (Range) | Median (Range) | |||
Patients with biological therapy (n = 30) | 0.37 (0.06–1.23) | 0.91 | 0.32 (0.17–0.66) | 0.85 |
Without (n = 32) | 0.37 (0.08–2.93) | 0.29 (0.18–1.9) | ||
Control (n = 32) | 0.37 (0.1–3.58) | 0.29 (0.19–1.21) | ||
Patients with methotrexate (n = 48) | 0.33 (0.06–1.23) | 0.014 | 0.30 (0.17–1.9) | 0.59 |
Without (n = 14) | 0.50 (0.23–2.93) | 0.31 (0.21–1.32) | ||
Control (n = 32) | 0.37 (0.1–3.58) | 0.29 (0.19–1.21) | ||
Patients with hydroxychloroquine (n = 5) | 0.21 (0.11–0.54) | 0.23 | 0.36 (0.19–0.95) | 0.84 |
Without (n = 57) | 0.37 (0.06–2.93) | 0.29 (0.17–1.9) | ||
Control (n = 32) | 0.37 (0.1–3.58) | 0.29 (0.19–1.21) | ||
Patients with sulfasalazine (n = 14) | 0.49 (0.28–0.11) | 0.045 | 0.36 (0.24–1.32) | 0.31 |
Without (n = 48) | 0.35 (0.06–2.93) | 0.29 (0.17–1.9) | ||
Control (n = 32) | 0.37 (0.1–3.58) | 0.29 (0.19–1.21) | ||
Patients with systemic glucocorticoids (n = 16) | 0.36 (0.18–0.98) | 0.9 | 0.32 (0.22–1.9) | 0.73 |
Without (n = 46) | 0.37 (0.06–2.93) | 0.29 (0.17–1.32) | ||
Control (n = 32) | 0.37 (0.1–3.58) | 0.29 (0.19–1.21) |
Parameter | IgA (Ratio) | p | IgG (Ratio) | p |
---|---|---|---|---|
Median (Range) | Median (Range) | |||
JADAS 71 > 1 (n = 40) | 0.37 (0.06–2.93) | 0.54 | 0.32 (0.18–1.9) | 0.42 |
JADAS 71 ≤ 1 (n = 22) | 0.36 (0.13–0.73) | 0.25 (0.17–0.95) | ||
Control (n = 32) | 0.37 (0.1–3.58) | 0.29 (0.19–1.21) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opoka-Winiarska, V.; Grywalska, E.; Korona-Glowniak, I.; Matuska, K.; Malm, A.; Roliński, J. Seroprevalence of Antibodies against SARS-CoV-2 in Children with Juvenile Idiopathic Arthritis a Case-Control Study. J. Clin. Med. 2021, 10, 1771. https://doi.org/10.3390/jcm10081771
Opoka-Winiarska V, Grywalska E, Korona-Glowniak I, Matuska K, Malm A, Roliński J. Seroprevalence of Antibodies against SARS-CoV-2 in Children with Juvenile Idiopathic Arthritis a Case-Control Study. Journal of Clinical Medicine. 2021; 10(8):1771. https://doi.org/10.3390/jcm10081771
Chicago/Turabian StyleOpoka-Winiarska, Violetta, Ewelina Grywalska, Izabela Korona-Glowniak, Katarzyna Matuska, Anna Malm, and Jacek Roliński. 2021. "Seroprevalence of Antibodies against SARS-CoV-2 in Children with Juvenile Idiopathic Arthritis a Case-Control Study" Journal of Clinical Medicine 10, no. 8: 1771. https://doi.org/10.3390/jcm10081771
APA StyleOpoka-Winiarska, V., Grywalska, E., Korona-Glowniak, I., Matuska, K., Malm, A., & Roliński, J. (2021). Seroprevalence of Antibodies against SARS-CoV-2 in Children with Juvenile Idiopathic Arthritis a Case-Control Study. Journal of Clinical Medicine, 10(8), 1771. https://doi.org/10.3390/jcm10081771