Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them
Abstract
:1. Introduction
2. The Biological Basis of Bone Involvement in Metastatic Gastric Cancer
3. Clinical Overview on Bone Metastases from Gastric Cancer
3.1. Incidence, Onset, Type and Distribution
3.2. Prognostic Implications of Bone Metastasis in GC Patients
4. Clinical Management of Metastatic Gastric Cancer Patients with Bone Involvement
4.1. Radiological Assessment
A “Tricky” Evaluation of the Response on Bone Metastases during Treatment: Focus on the Bone Flare
4.2. How to Treat Metastatic Gastric Cancer Patients with Bone Metastases
4.2.1. Systemic Treatments
4.2.2. Skeletal-Related Events and Bone-Related Treatments
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Surveillance, Epidemiology, and End Results (SEER) Database. Available online: https://seer.cancer.gov/statfacts/html/stomach.html (accessed on 19 December 2020).
- Smyth, E.C.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D.; ESMO Guidelines Committee. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27 (Suppl. S5), v38–v49. [Google Scholar] [CrossRef]
- Tirino, G.; Pompella, L.; Petrillo, A.; Laterza, M.M.; Pappalardo, A.; Caterino, M.; Orditura, M.; Ciardiello, F.; Galizia, G.; De Vita, F. What’s New in Gastric Cancer: The Therapeutic Implications of Molecular Classifications and Future Perspectives. Int. J. Mol. Sci. 2018, 19, 2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambardella, V.; Fleitas, T.; Tarazona, N.; Papaccio, F.; Huerta, M.; Roselló, S.; Gimeno-Valiente, F.; Roda, D.; Cervantes, A. Precision Medicine to Treat Advanced Gastroesophageal Adenocarcinoma: A Work in Progress. J. Clin. Med. 2020, 9, 3049. [Google Scholar] [CrossRef]
- Moehler, M.; Shitara, K.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; Liu, T.; et al. LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): First results of the CheckMate 649 study. Ann. Oncol. 2020, 31 (Suppl. S4), S1142–S1215. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Boku, N.; Ryu, M.H.; Oh, D.; Oh, S.C.; Chung, H.C.; Lee, K.; Omori, T.; Shitara, K.; Sakuramoto, S.; Chung, I.J.; et al. LBA7_PR—Nivolumab plus chemotherapy versus chemotherapy alone in patients with previously untreated advanced or recurrent gas-tric/gastroesophageal junction (G/GEJ) cancer: ATTRACTION-4 (ONO-4538-37) study. Ann. Oncol. 2020, 31 (Suppl. S4), S1142–S1215. [Google Scholar] [CrossRef]
- Fanotto, V.; Fornaro, L.; Bordonaro, R.; Rosati, G.; Rimassa, L.; Di Donato, S.; Santini, D.; Tomasello, G.; Leone, F.; Silvestris, N.; et al. Second-line treatment efficacy and toxicity in older vs. non-older patients with advanced gastric cancer: A multicentre real-world study. J. Geriatr. Oncol. 2019, 10, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Cafferkey, C.; Goode, E.F.; Kouvelakis, K.; Hughes, D.; Reguera, P.; Kalaitzaki, E.; Peckitt, C.; Rao, S.; Watkins, D.; et al. Survival in Advanced Esophagogastric Adenocarcinoma Improves With Use of Multiple Lines of Therapy: Results From an Analysis of More Than 500 Patients. Clin. Color. Cancer 2018, 17, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Antoniotti, C.; Moretto, R.; Rossini, D.; Masi, G.; Falcone, A.; Cremolini, C. Treatments after first progression in metastatic colorectal cancer. A literature review and evidence-based algorithm. Cancer Treat. Rev. 2020, 92, 102135. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.-M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef]
- Petrillo, A.; Smyth, E.C. Biomarkers for Precision Treatment in Gastric Cancer. Visc. Med. 2020, 36, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Chau, I.; Norman, A.R.; Cunningham, D.; Waters, J.S.; Oates, J.; Ross, P.J. Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer—Pooled analysis from three multicenter, randomized, controlled trials using individual patient data. J. Clin. Oncol. 2004, 22, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Kitaoka, H. Bone metastasis of gastric cancer. Jpn. J. Surg. 1983, 13, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Shupp, A.B.; Kolb, A.D.; Mukhopadhyay, D.; Bussard, K.M. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers 2018, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018, 173, 581–594.e12. [Google Scholar] [CrossRef] [Green Version]
- Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys. 2014, 561, 3–12. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [Green Version]
- Guise, T.A.; Yin, J.J.; Taylor, S.D.; Kumagai, Y.; Dallas, M.; Boyce, B.F.; Yoneda, T.; Mundy, G.R. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Investig. 1996, 98, 1544–1549. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 2007, 9 (Suppl. S1), S1. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.P.; Tometsko, M.E.; Glaccum, M.; Sutherland, C.L.; Cosman, D.; Dougall, W.C. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 2002, 277, 44347–44356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.P.; Karolak, M.R.; Ma, Y.; Perrien, D.S.; Masood-Campbell, S.K.; Penner, N.L.; Munoz, S.A.; Zijlstra, A.; Yang, X.; Sterling, J.A.; et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012, 10, e1001363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Song, Y.; Fang, H.; Xu, L.; Che, X.; Wang, S.; Zhang, X.; Zhang, L.; Li, C.; Fan, Y.; et al. RANKL/RANK promotes the migration of gastric cancer cells by interacting with EGFR. Clin. Transl. Med. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.-S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Nakashima, T. Recent advances in osteoclast biology. Histochem. Cell Biol. 2018, 149, 325–341. [Google Scholar] [CrossRef]
- Maurizi, A.; Rucci, N. The Osteoclast in Bone Metastasis: Player and Target. Cancers 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksen, E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010, 11, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boskey, A.L.; Coleman, R. Aging and Bone. J. Dent. Res. 2010, 89, 1333–1348. [Google Scholar] [CrossRef] [PubMed]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2011, 4, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Bussard, K.M.; Gay, C.V.; Mastro, A.M. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008, 27, 41–55. [Google Scholar] [CrossRef]
- Kusumbe, A.P. Vascular niches for disseminated tumour cells in bone. J. Bone Oncol. 2016, 5, 112–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosa, M.S.; Bragado, P.; Aguirre-Ghiso, J.A. Mechanisms of disseminated cancer cell dormancy: An awakening field. Nat. Rev. Cancer 2014, 14, 611–622. [Google Scholar] [CrossRef]
- Huang, J.-F.; Shen, J.; Li, X.; Rengan, R.; Silvestris, N.; Wang, M.; DeRosa, L.; Zheng, X.; Belli, A.; Zhang, X.-L.; et al. Incidence of patients with bone metastases at diagnosis of solid tumors in adults: A large population-based study. Ann. Transl. Med. 2020, 8, 482. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, L.; Satolli, M.A.; Mecca, C.; Castiglione, A.; Ceccarelli, M.; D’Amelio, P.; Garino, M.; De Giuli, M.; Sandrucci, S.; Ferracini, R.; et al. Bone metastases in gastric cancer follow a RANKL-independent mechanism. Oncol. Rep. 2013, 29, 1453–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, H.-L.; Tsai, M.-M. Tumor progression-dependent angiogenesis in gastric cancer and its potential application. World J. Gastrointest. Oncol. 2019, 11, 686–704. [Google Scholar] [CrossRef]
- Ammendola, M.; Marech, I.; Sammarco, G.; Zuccalà, V.; Luposella, M.; Zizzo, N.; Patruno, R.; Crovace, A.; Ruggieri, E.; Zito, A.F.; et al. Infiltrating mast cells correlate with angiogenesis in bone metastases from gastric cancer patients. Int. J. Mol. Sci. 2015, 16, 3237–3250. [Google Scholar] [CrossRef] [Green Version]
- Richard, V.; Rosol, T.J.; Foley, J. PTHrP gene expression in cancer: Do all paths lead to Ets? Crit. Rev. Eukaryot. Gene Expr. 2005, 15, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Alipov, G.K.; Ito, M.; Nakashima, M.; Ikeda, Y.; Nakayama, T.; Ohtsuru, A.; Yamashita, S.; Sekine, I. Expression of parathyroid hor-mone-related peptide (PTHrP) in gastric tumours. J. Pathol. 1997, 182, 174–179. [Google Scholar] [CrossRef]
- Ito, M.; Nakashima, M.; Alipov, G.K.; Matsuzaki, S.; Ohtsuru, A.; Yano, H.; Yamashita, S.; Sekine, I. Gastric cancer associated with overexpression of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor in relation to tumor progression. J. Gastroenterol. 1997, 32, 396–400. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Song, N.; Zhang, L.; Wang, Y.; Li, D.; Wang, Z.; Qu, X.; Liu, Y. Rankl expression predicts poor prognosis in gastric cancer patients: Results from a retrospective and single-center analysis. Braz. J. Med. Biol. Res. 2018, 51, e6265. [Google Scholar] [CrossRef] [Green Version]
- Katoh, M.; Terada, M. Overexpression of bone morphogenic protein (BMP)-4 mRNA in gastric cancer cell lines of poorly differentiated type. J. Gastroenterol. 1996, 31, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Cheng, C.-J.; Bilen, M.A.; Lu, J.-F.; Satcher, R.L.; Yu-Lee, L.-Y.; Gallick, G.E.; Maity, S.N.; Lin, S.-H. BMP4 promotes prostate tumor growth in bone through osteogenesis. Cancer Res. 2011, 71, 5194–5203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.; Chen, Y.; Guo, C.; Yin, L.; Han, Y.; Li, Y.; Fu, Y.; Cai, C.; Shen, H.; Zeng, S. BMP4 promotes the metastasis of gastric cancer by inducing epithelial–mesenchymal transition via ID1. J. Cell Sci. 2020, 133, jcs237222. [Google Scholar] [CrossRef] [PubMed]
- Brook, N.; Brook, E.; Dharmarajan, A.; Dass, C.R.; Chan, A. Breast cancer bone metastases: Pathogenesis and therapeutic targets. Int. J. Biochem. Cell Biol. 2018, 96, 63–78. [Google Scholar] [CrossRef]
- Rucci, N.; Angelucci, A. Prostate cancer and bone: The elective affinities. BioMed Res. Int. 2014, 2014, 167035. [Google Scholar] [CrossRef] [PubMed]
- Riihimäki, M.; Hemminki, A.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic spread in patients with gastric cancer. Oncotarget 2016, 7, 52307–52316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomi, D.; Fukushima, T.; Kobayashi, T.; Sekiguchi, N.; Sakamoto, A.; Mamiya, K.; Koizumi, T. Gastric cancer initially presenting as bone metastasis: Two case reports and a literature review. Oncol. Lett. 2018, 16, 5863–5867. [Google Scholar] [CrossRef]
- Guadagni, S.; Catarci, M.; Kinoshitá, T.; Valenti, M.; De Bernardinis, G.; Carboni, M. Causes of death and recurrence after surgery for early gastric cancer. World J. Surg. 1997, 21, 434–439. [Google Scholar] [CrossRef]
- Turkoz, F.P.; Solak, M.; Kilickap, S.; Ulas, A.; Esbah, O.; Oksuzoglu, B.; Yalcin, S. Bone metastasis from gastric cancer: The incidence, clinicopathological features, and influence on survival. J. Gastric Cancer 2014, 14, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.B.; Ha, T.K.; Kwon, S.J. Bone metastasis in gastric cancer patients. J. Gastric Cancer 2011, 11, 38–45. [Google Scholar] [CrossRef]
- Clézardin, P. Pathophysiology of bone metastases from solid malignancies. Jt. Bone Spine 2017, 84, 677–684. [Google Scholar] [CrossRef]
- Silvestris, N.; Pantano, F.; Ibrahim, T.; Gamucci, T.; De Vita, F.; Di Palma, T.; Pedrazzoli, P.; Barni, S.; Bernardo, A.; Febbraro, A.; et al. Natural history of malignant bone disease in gastric cancer: Final results of a multicenter bone metastasis survey. PLoS ONE 2013, 8, e74402. [Google Scholar] [CrossRef]
- Wen, L.; Li, Y.-Z.; Zhang, J.; Zhou, C.; Yang, H.-N.; Chen, X.-Z.; Xu, L.-W.; Kong, S.-N.; Wang, X.-W.; Zhang, H.-M. Clinical analysis of bone metastasis of gastric cancer: Incidence, clinicopathological features and survival. Future Oncol. 2019, 15, 2241–2249. [Google Scholar] [CrossRef]
- Liang, C.; Chen, H.; Yang, Z.; Han, C.; Ren, C. Risk factors and prognosis of bone metastases in newly diagnosed gastric cancer. Future Oncol. 2020, 16, 733–748. [Google Scholar] [CrossRef]
- Qiu, M.-Z.; Shi, S.-M.; Chen, Z.-H.; Yu, H.-E.; Sheng, H.; Jin, Y.; Wang, D.-S.; Wang, F.-H.; Li, Y.-H.; Xie, D.; et al. Frequency and clinicopathological features of metastasis to liver, lung, bone, and brain from gastric cancer: A SEER-based study. Cancer Med. 2018, 7, 3662–3672. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Rha, S.Y.; Kim, H.S.; Hyung, W.J.; Park, J.S.; Chung, H.C.; Noh, S.H.; Jeung, H.-C. A prognostic model to predict clinical outcome in gastric cancer patients with bone metastasis. Oncology 2011, 80, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Tomioku, M.; Nabeshima, K.; Yasuda, S. Clinicopathologic features and clinical outcomes of gastric cancer patients with bone metastasis. Tokai J. Exp. Clin. Med. 2014, 39, 193–198. [Google Scholar] [PubMed]
- Mikami, J.; Kimura, Y.; Makari, Y.; Fujita, J.; Kishimoto, T.; Sawada, G.; Nakahira, S.; Nakata, K.; Tsujie, M.; Ohzato, H. Clinical outcomes and prognostic factors for gastric cancer patients with bone metastasis. World J. Surg. Oncol. 2017, 15, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imura, Y.; Tateiwa, D.; Sugimoto, N.; Inoue, A.; Wakamatsu, T.; Outani, H.; Tanaka, T.; Tamiya, H.; Yagi, T.; Naka, N.; et al. Prognostic factors and skeletal-related events in patients with bone metastasis from gastric cancer. Mol. Clin. Oncol. 2020, 13, 31. [Google Scholar] [CrossRef]
- Laurén, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef]
- Miyamoto, W.; Yamamoto, S.; Uchio, Y. Metastasis of gastric cancer to the fifth metacarpal bone. Hand Surg. 2008, 13, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.; Khan, M.; Jaunoo, S. Distal phalanx: An unusual site for a gastric adenocarcinoma metastasis. BMJ Case Rep. 2020, 13, e236259. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Yamazaki, H.; Yoshimura, Y.; Aoki, K.; Tanaka, A.; Kato, H. Massive trapezial metastasis from gastric adenocarcinoma resected and reconstructed with a vascularized scapular bone graft. A case report. Medicine 2017, 96, e9294. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Lew, K.H.; Low, C.O. Metastasis of an adenocarcinoma of the stomach to the 4th metacarpal bone. Hand Surg. 2001, 6, 239–242. [Google Scholar] [CrossRef]
- Kumar, A. Acrometastases to the hand in stomach carcinoma: A rare entity. BMJ Case Rep. 2019, 12, e229390. [Google Scholar] [CrossRef]
- Gurzu, S.; Jung, I.; Kádár, Z. Aberrant metastatic behavior and particular features of early gastric cancer. APMIS 2015, 123, 999–1006. [Google Scholar] [CrossRef]
- Fujita, I.; Toyokawa, T.; Makino, T.; Matsueda, K.; Omote, S.; Horii, J. Small early gastric cancer with synchronous bone metastasis: A case report. Mol. Clin. Oncol. 2020, 12, 202–207. [Google Scholar] [CrossRef]
- Park, J.M.; Song, K.Y.; O, J.H.; Kim, W.C.; Choi, M.-G.; Park, C.H. Bone recurrence after curative resection of gastric cancer. Gastric Cancer 2013, 16, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Blanchette, P.; Lipton, J.; Barth, D.; Mackay, H. Case Report of very late gastric cancer recurrence. Curr. Oncol. 2013, 20, 161–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iovino, F.; Orditura, M.; Auriemma, P.P.; Ciorra, F.R.; Giordano, G.; Orabona, C.; Bara, F.; Sergio, R.; Savastano, B.; Fabozzi, A.; et al. Vertebral carcinomatosis eleven years after advanced gastric cancer resection: A case report. Oncol. Lett. 2015, 9, 1403–1405. [Google Scholar] [CrossRef]
- Di Nunno, V.; Mollica, V.; Schiavina, R.; Nobili, E.; Fiorentino, M.; Brunocilla, E.; Ardizzoni, A.; Massari, F. Improving IMDC Prognostic Prediction Through Evaluation of Initial Site of Metastasis in Patients with Metastatic Renal Cell Carcinoma. Clin. Genitourin. Cancer 2020, 18, e83–e90. [Google Scholar] [CrossRef]
- Massari, F.; Di Nunno, V.; Guida, A.; Silva, C.A.C.; Derosa, L.; Mollica, V.; Colomba, E.; Brandi, G.; Albiges, L. Addition of Primary Metastatic Site on Bone, Brain, and Liver to IMDC Criteria in Patients with Metastatic Renal Cell Carcinoma: A Validation Study. Clin. Genitourin. Cancer 2021, 19, 32–40. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology. Gastric Cancer, Version 1. 2020. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1434 (accessed on 15 November 2020).
- Nilsson, M. Postgastrectomy follow-up in the West: Evidence base, guidelines, and daily practice. Gastric Cancer 2017, 20 (Suppl. S1), 135–140. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Kim, Y.N.; Park, K.H.; Kang, B.; Chon, H.J.; Kim, C.; Kim, J.H.; Rha, S.Y. Bone alkaline phosphatase as a surrogate marker of bone metastasis in gastric cancer patients. BMC Cancer 2016, 16, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, T.; Kusakabe, T.; Sugino, T.; Watanabe, K.; Fukuda, T.; Nashimoto, A.; Honma, K.; Suzuki, T. Expression of glucose transporter-1 in human gastric carcinoma: Association with tumor aggressiveness, metastasis, and patient survival. Cancer 2001, 92, 634–641. [Google Scholar] [CrossRef]
- Grillo, A.; Capasso, R.; Petrillo, A.; De Vita, F.; Conforti, R. An intramedullary “flame” recognized as being an intramedullary spinal cord metastasis from esophageal cancer. J. Radiol. Case Rep. 2019, 13, 14–20. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Pollen, J.J.; Witztum, K.F.; Ashburn, W.L. The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. Am. J. Roentgenol. 1984, 142, 773–776. [Google Scholar] [CrossRef]
- Fogelman, I. The flare phenomenon: Still learning after 35 years. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Cook, G.J.; Venkitaraman, R.; Sohaib, A.S.; Lewington, V.J.; Chua, S.C.; Huddart, R.A.; Parker, C.C.; Dearnaley, D.D.; Horwich, A. The diagnostic utility of the flare phenomenon on bone scintigraphy in staging prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 7–13. [Google Scholar] [CrossRef]
- De Bondt, C.; Snoeckx, A.; Raskin, J. A Flare for the Unexpected: Bone Flare as Response to Tyrosine Kinase Inhibitor Treatment in a Lung Cancer Patient: New osteoblastic bone lesions in a lung cancer patient may represent bone flare and should not be misdiagnosed as disease progression. J. Belg. Soc. Radiol. 2020, 104, 18. [Google Scholar] [CrossRef]
- Harisankar, C.N.B.; Preethi, R.; John, J. Metabolic flare phenomenon on 18 fluoride-fluorodeoxy glucose positron emission tomography-computed tomography scans in a patient with bilateral breast cancer treated with second-line chemotherapy and bevacizumab. Indian J. Nucl. Med. 2015, 30, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Hashisako, M.; Wakamatsu, K.; Ikegame, S.; Kumazoe, H.; Nagata, N.; Kajiki, A. Flare phenomenon following gefitinib treatment of lung adenocarcinoma with bone metastasis. Tohoku J. Exp. Med. 2012, 228, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.-C.; Chuang, T.-L.; Lee, M.-S.; Chiou, W.-Y.; Lin, H.-Y.; Hung, S.-K. The Super-scan and Flare Phenomena in a Nasopharyngeal Cancer Patient: A Case Report. J. Clin. Med. Res. 2012, 4, 221–223. [Google Scholar] [CrossRef]
- Amoroso, V.; Pittiani, F.; Grisanti, S.; Valcamonico, F.; Simoncini, E.; Ferrari, V.D.; Marini, G. Osteoblastic flare in a patient with advanced gastric cancer after treatment with pemetrexed and oxaliplatin: Implications for response assessment with RECIST criteria. BMC Cancer 2007, 7, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Shi, H.; Sohn, S.; Park, S.; Wang, S.; Song, J.; Jang, G. The Flare Phenomenon in a Patient with Advanced Gastric Cancer with Bone Metastases. Korean J. Med. 2016, 91, 321–324. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Hartmann, J.T.; Probst, S.; Schmalenberg, H.; Hollerbach, S.; Hofheinz, R.; Rethwisch, V.; Seipelt, G.; Homann, N.; Wilhelm, G.; et al. Phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil, leucovorin plus either oxaliplatin or cisplatin: A study of the arbeitsgemeinschaft internistische onkologie. J. Clin. Oncol. 2008, 26, 1435–1442. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, W.K.; Shin, D.B.; Chen, J.; Xiong, J.; Wang, J.; Lichinitser, M.; Philco, M.; Suarez, T.; Santamaria, J. Randomized phase III trial of capecitabine/cisplatin (XP) vs. continuous infusion of 5-FU/cisplatin (FP) as first-line therapy in patients (pts) with advanced gastric cancer (AGC): Efficacy and safety results. J. Clin. Oncol. 2006, 24 (Suppl. S18), LBA4018. [Google Scholar] [CrossRef]
- Ryu, M.-H.; Baba, E.; Lee, K.H.; Park, Y.I.; Boku, N.; Hyodo, I.; Nam, B.-H.; Esaki, T.; Yoo, C.; Ryoo, B.-Y.; et al. Comparison of two different S-1 plus cisplatin dosing schedules as first-line chemotherapy for metastatic and/or recurrent gastric cancer: A multicenter, randomized phase III trial (SOS). Ann. Oncol. 2015, 26, 2097–2101. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Lee, S.I.; Lim, D.H.; Park, K.-W.; Oh, S.Y.; Kwon, H.-C.; Hwang, I.G.; Lee, S.-C.; Nam, E.; Shin, D.B.; et al. Salvage chemotherapy for pretreated gastric cancer: A randomized phase III trial comparing chemotherapy plus best supportive care with best supportive care alone. J. Clin. Oncol. 2012, 30, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Li, J.; Xu, J.; Pan, H.; Dai, G.; Qin, S.; Wang, L.; Wang, J.; Yang, Z.; Shu, Y.; et al. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: Randomized, double-blind, phase III study (AVATAR study). Gastric Cancer 2015, 18, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlakis, N.; Sjoquist, K.M.; Martin, A.J.; Tsobanis, E.; Yip, S.; Kang, Y.-K.; Bang, Y.-J.; Alcindor, T.; O’Callaghan, C.J.; Burnell, M.J.; et al. Regorafenib for the Treatment of Advanced Gastric Cancer (INTEGRATE): A Multinational Placebo-Controlled Phase II Trial. J. Clin. Oncol. 2016, 34, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Chen, L.-T.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; Yeh, K.-H.; et al. A phase 3 study of nivolumab in previously treated advanced gastric or gastroesophageal junction cancer (ATTRACTION-2): 2-year update data. Gastric Cancer 2020, 23, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; Moiseyenko, V.M.; Tjulandin, S.; Majlis, A.; Constenla, M.; Boni, C.; Rodrigues, A.; Fodor, M.; Chao, Y.; Voznyi, E.; et al. V325 Study Group. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the V325 Study Group. J. Clin. Oncol. 2006, 24, 4991–4997. [Google Scholar] [CrossRef]
- Dank, M.; Zaluski, J.; Barone, C.; Valvere, V.; Yalcin, S.; Peschel, C.; Wenczl, M.; Goker, E.; Cisar, L.; Wang, K.; et al. Randomized phase III study comparing irinotecan combined with 5-fluorouracil and folinic acid to cisplatin combined with 5-fluorouracil in chemotherapy naive patients with advanced adenocarcinoma of the stomach or esophagogastric junction. Ann. Oncol. 2008, 19, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Starling, N.; Rao, S.; Iveson, T.; Nicolson, M.; Coxon, F.; Middleton, G.; Daniel, F.; Oates, J.; Norman, A.R. Capecitabine and Oxaliplatin for Advanced Esophagogastric Cancer. New Engl. J. Med. 2008, 358, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Ajani, J.A.; Rodriguez, W.; Bodoky, G.; Moiseyenko, V.; Lichinitser, M.; Gorbunova, V.; Vynnychenko, I.; Garin, A.; Lang, I.; Falcon, S. Multicenter Phase III Comparison of Cisplatin/S-1 With Cisplatin/Infusional Fluorouracil in Advanced Gastric or Gastroesophageal Adenocarcinoma Study: The FLAGS Trial. J. Clin. Oncol. 2010, 28, 1547–1553. [Google Scholar] [CrossRef]
- NaraharaHiroyasu, H.; Iishi, H.; Imamura, H.; Tsuburaya, A.; Chin, K.; Imamoto, H.; Esaki, T.; Furukawa, H.; Hamada, C.; Sakata, Y. Randomized phase III study comparing the efficacy and safety of irinotecan plus S-1 with S-1 alone as first-line treatment for advanced gastric cancer (study GC0301/TOP-002). Gastric Cancer 2011, 14, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Guimbaud, R.; Louvet, C.; Ries, P.; Ychou, M.; Maillard, E.; André, T.; Gornet, J.-M.; Aparicio, T.; Nguyen, S.; Azzedine, A.; et al. Prospective, Randomized, Multicenter, Phase III Study of Fluorouracil, Leucovorin, and Irinotecan Versus Epirubicin, Cisplatin, and Capecitabine in Advanced Gastric Adenocarcinoma: A French Intergroup (Fédération Francophone de Cancérologie Digestive, Fédération Nationale des Centres de Lutte Contre le Cancer, and Groupe Coopérateur Multidisciplinaire en Oncologie) Study. J. Clin. Oncol. 2014, 32, 3520–3526. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Higuchi, K.; Nishikawa, K.; Gotoh, M.; Fuse, N.; Sugimoto, N.; Nishina, T.; Amagai, K.; Chin, K.; Niwa, Y.; et al. Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naïve patients with advanced gastric cancer. Ann. Oncol. 2015, 26, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Thuss-Patience, P.C.; Kretzschmar, A.; Bichev, D.; Deist, T.; Hinke, A.; Breithaupt, K.; Dogan, Y.; Gebauer, B.; Schumacher, G.; Reichardt, P. Survival advantage for irinotecan versus best supportive care as second-line chemotherapy in gastric cancer—A randomised phase III study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Eur. J. Cancer 2011, 47, 2306–2314. [Google Scholar] [CrossRef] [PubMed]
- Hironaka, S.; Ueda, S.; Yasui, H.; Nishina, T.; Tsuda, M.; Tsumura, T.; Sugimoto, N.; Shimodaira, H.; Tokunaga, S.; Moriwaki, T.; et al. Randomized, Open-Label, Phase III Study Comparing Irinotecan With Paclitaxel in Patients With Advanced Gastric Cancer Without Severe Peritoneal Metastasis After Failure of Prior Combination Chemotherapy Using Fluoropyrimidine Plus Platinum: WJOG 4007 Trial. J. Clin. Oncol. 2013, 31, 4438–4444. [Google Scholar] [CrossRef] [PubMed]
- Ford, H.E.R.; Marshall, A.; A Bridgewater, J.; Janowitz, T.; Coxon, F.Y.; Wadsley, J.; Mansoor, W.; Fyfe, D.; Madhusudan, S.; Middleton, G.W.; et al. Docetaxel versus active symptom control for refractory oesophagogastric adenocarcinoma (COUGAR-02): An open-label, phase 3 randomised controlled trial. Lancet Oncol. 2014, 15, 78–86. [Google Scholar] [CrossRef]
- Shitara, K.; Takashima, A.; Fujitani, K.; Koeda, K.; Hara, H.; Nakayama, N.; Hironaka, S.; Nishikawa, K.; Makari, Y.; Amagai, K.; et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): An open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 277–287. [Google Scholar] [CrossRef]
- Shitara, K.; Doi, T.; Dvorkin, M.; Mansoor, W.; Arkenau, H.-T.; Prokharau, A.; Alsina, M.; Ghidini, M.; Faustino, C.; Gorbunova, V.; et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018, 19, 1437–1448. [Google Scholar] [CrossRef]
- Ohtsu, A.; Shah, M.A.; Van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in Combination With Chemotherapy As First-Line Therapy in Advanced Gastric Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase III Study. J. Clin. Oncol. 2011, 29, 3968–3976. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Lordick, F.; Kang, Y.-K.; Chung, H.-C.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.; Volovat, C.; Moiseyenko, V.M.; Gorbunova, V.; et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 490–499. [Google Scholar] [CrossRef]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; Ferry, D.; et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Al-Batran, S.-E.; Schuler, M.H.; Zvirbule, Z.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnyk, Y.; Vynnychenko, I.; Fadeeva, N.; Nechaeva, M.; et al. FAST: An international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without IMAB362, a first-in-class anti-CLDN18.2 antibody, as first-line therapy in patients with advanced CLDN18.2+ gastric and gastroesophageal junction (GEJ) adenocarcinoma. J. Clin. Oncol. 2016, 34, LBA4001. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.-J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in Combination With Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2–Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC—A Randomized Phase III Trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Bang, Y.-J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; et al. Effect of Fluorouracil, Leucovorin, and Oxaliplatin With or Without Onartuzumab in HER2-Negative, MET-Positive Gastroesophageal Adenocarcinoma. JAMA Oncol. 2017, 3, 620–627. [Google Scholar] [CrossRef]
- Cunningham, D.; Al-Batran, S.-E.; Davidenko, I.; Ilson, D.H.; Murad, A.M.; Tebbutt, N.C.; Jiang, Y.; Loh, E.; Dubey, S. RILOMET-1 investigators RILOMET-1: An international phase III multicenter, randomized, double-blind, placebo-controlled trial of rilotumumab plus epirubicin, cisplatin, and capecitabine (ECX) as first-line therapy in patients with advanced MET-positive gastric or gastroesophageal junction (G/GEJ) adenocarcinoma. J. Clin. Oncol. 2013, 31, TPS4153. [Google Scholar] [CrossRef]
- Shah, M.A.; Xu, R.-H.; Bang, Y.-J.; Hoff, P.M.; Liu, T.; Herráez-Baranda, L.A.; Xia, F.; Garg, A.; Shing, M.; Tabernero, J. HELOISE: Phase IIIb Randomized Multicenter Study Comparing Standard-of-Care and Higher-Dose Trastuzumab Regimens Combined With Chemotherapy as First-Line Therapy in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma. J. Clin. Oncol. 2017, 35, 2558–2567. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; A Shah, M.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): Final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.-E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef]
- Ohtsu, A.; Ajani, J.A.; Bai, Y.-X.; Bang, Y.-J.; Chung, H.-C.; Pan, H.-M.; Sahmoud, T.; Shen, L.; Yeh, K.-H.; Chin, K.; et al. Everolimus for Previously Treated Advanced Gastric Cancer: Results of the Randomized, Double-Blind, Phase III GRANITE-1 Study. J. Clin. Oncol. 2013, 31, 3935–3943. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Satoh, T.; Xu, R.-H.; Chung, H.C.; Sun, G.-P.; Doi, T.; Xu, J.-M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.-W.; et al. Lapatinib Plus Paclitaxel Versus Paclitaxel Alone in the Second-Line Treatment ofHER2-Amplified Advanced Gastric Cancer in Asian Populations: TyTAN—A Randomized, Phase III Study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Bang, Y.-J.; Mansoor, W.; Petty, R.D.; Chao, Y.; Cunningham, D.; Ferry, D.R.; Smith, N.R.; Frewer, P.; Ratnayake, J.; et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 2017, 28, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Thuss-Patience, P.C.; A Shah, M.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): An international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Xu, R.-H.; Chin, K.; Lee, K.-W.; Park, S.H.; Rha, S.Y.; Shen, L.; Qin, S.; Xu, N.; Im, S.-A.; et al. Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1637–1651. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Kang, W.; Di Bartolomeo, M.; Chau, I.; Yoon, H.; Cascinu, S.; Ryu, M.-H.; Kim, J.; Lee, K.-W.; Oh, S.; et al. Randomized phase III ANGEL study of rivoceranib (apatinib) + best supportive care (BSC) vs placebo + BSC in patients with advanced/metastatic gastric cancer who failed ≥2 prior chemotherapy regimens. Ann. Oncol. 2019, 30, v877–v878. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. New Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.F.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 821–831. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Y.; Tanimoto, M.; Boku, N. 43544—ATTRACTION-04 (ONO-4538-37): A Randomized, Multicenter, Phase 2/3 Study of Nivolumab (Nivo) Plus chemotherapy in Patients (Pts) with Previously Untreated Advanced or Recurrent Gastric (G) or Gastroesophageal Junction (GEJ) Cancer. Ann. Oncol. 2017, 28 (Suppl. S5), v209–v268. [Google Scholar] [CrossRef]
- Kato, K.; Sun, J.; Shah, M.J.; Enzinger, P.C.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.; Li, Z.; Kim, S.; et al. LBA8_PR—Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: The phase 3 KEYNOTE-590 study. Ann. Oncol. 2020, 31 (Suppl. S4), S1142–S1215. [Google Scholar] [CrossRef]
- Moehler, M.; Dvorkin, M.; Boku, N.; Özgüroğlu, M.; Ryu, M.H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coşkun, H.S.; et al. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients With Gastric Cancers: Results From JAVELIN Gastric 100. J Clin Oncol. 2021, 39, 966–977. [Google Scholar] [CrossRef]
- Kawazoe, A.; Fukuoka, S.; Nakamura, Y.; Kuboki, Y.; Wakabayashi, M.; Nomura, S.; Mikamoto, Y.; Shima, H.; Fujishiro, N.; Higuchi, T.; et al. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 1057–1065. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Ruiz, E.; Van Cutsem, E.; Lee, K.-W.; Wyrwicz, L.; Schenker, M.; Alsina, M.; Ryu, M.-H.; Chung, H.-C.; Evesque, L.; et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann. Oncol. 2018, 29, 2052–2060. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Kang, Y.-K.; Catenacci, D.V.; Muro, K.; Fuchs, C.S.; Geva, R.; Hara, H.; Golan, T.; Garrido, M.; Jalal, S.I.; et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer 2019, 22, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Lipton, A.; Cook, R.; Brown, J.; Body, J.; Smith, M.; Coleman, R. Skeletal-related events and clinical outcomes in patients with bone metastases and normal levels of osteolysis: Exploratory analyses. Clin. Oncol. 2013, 25, 217–226. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). Prostate Cancer Guidelines Version 3. 2020. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459 (accessed on 15 November 2020).
- Rich, S.E.; Chow, R.; Raman, S.; Zeng, K.L.; Lutz, S.; Lam, H.; Silva, M.F.; Chow, E. Update of the systematic review of palliative radiation therapy fractionation for bone metastases. Radiother. Oncol. 2018, 126, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.S.; Gordon, D.; Tchekmedyian, S.; Yanagihara, R.; Hirsh, V.; Krzakowski, M.; Pawlicki, M.; De Souza, P.; Zheng, M.; Urbanowitz, G.; et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: A phase III, double-blind, randomized trial—The Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J. Clin. Oncol. 2003, 21, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Lipton, A.; Fizazi, K.; Stopeck, A.T.; Henry, D.H.; Brown, J.E.; Yardley, D.A.; Richardson, G.E.; Siena, S.; Maroto, P.; Clemens, M.; et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: A combined analysis of 3 pivotal, randomised, phase 3 trials. Eur. J. Cancer 2012, 48, 3082–3092. [Google Scholar] [CrossRef] [PubMed]
- Associazione Italiana Oncologi Medici. Linee Guida AIOM 2018, Disordini Elettrolitici. Available online: https://www.aiom.it/disordini-elettrolitici-raccomandazioni-per-liter-diagnostico-terapeutico-nel-paziente-oncologico (accessed on 3 November 2020).
- Witteveen, J.E.; Van Thiel, S.; Romijn, J.A.; Hamdy, N.A. Hungry bone syndrome: Still a challenge in the post-operative management of primary hyperparathyroidism: A systematic review of the literature. Eur. J. Endocrinol. 2013, 168, R45–R53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, K.; Tomoda, Y.; Saito, H.; Tanaka, K. Hungry Bone Syndrome and Osteoblastic Bone Metastasis from Gastric Cancer. QJM: Int. J. Med. 2020, 113, 903–904. [Google Scholar] [CrossRef] [PubMed]
- Di Nunno, V.; Cimadamore, A.; Santoni, M.; Scarpelli, M.; Fiorentino, M.; Ciccarese, C.; Iacovelli, R.; Cheng, L.; Lopez-Beltran, A.; Massari, F.; et al. Biological issues with cabozantinib in bone metastatic renal cell carcinoma and castration-resistant prostate cancer. Future Oncol. 2018, 14, 2559–2564. [Google Scholar] [CrossRef] [PubMed]
Author and Year * | Study Design, Timeline, Country | N Patients Analyzed | N Patient with Bone Metastasis (%) | Onset | Type | Distribution | Main Patients’ Characteristics | Main Tumor’s Characteristics | Outcomes |
---|---|---|---|---|---|---|---|---|---|
Yoshikawa et al., 1983 [17] | Retrospective Monoinstitutional 1970–1979 Japan | 1945 | 23 (1.2%) | NR | NR | Thoracic vertebrae: 69.6%; Lumbar vertebrae: 69.6%; Pelvic bones: 26.1%; Ribs: 21.7% | Young (age <60: 78.3%); male: 56.5% | NR | NR |
Park et al., 2011 [59] | Retrospective Monoinstitutional 1998–2008 Korea | 8633 | 203 (2.4%) | Synchronous: 62%; Metachronous: 38% | NR | NR | Median age: 51 years; multiple metastatic sites (bone and visceral): 84.7%; multiple bone metastasis: 88.7%; ECOG PS 0–2: 82% | Poorly differentiated: 72% | mOS: 3.4 months |
Park et al., 2013 [64] | Retrospective Monoinstitutional 1989–2008 Korea | 1683 | 30 (1.8%) | Metachronous: 100% | NR | Vertebrae: 93.3%; pelvic: bones: 40%; ribs: 33.3% | young (median age 53.1 years old) male: 63.3% | Undifferentiated: 73% N3: 43.3% | mOS after bone recurrence: 6 months |
Silvestri N et al., 2013 [55] | Retrospective Multicenter 1998–2011 Italy | 2000 | 208 (10%) | Synchronous: 28%; Metachronous: 62% | Osteolytic: 52%; mixed: 25%; osteoblastic: 23% | Long bones: 52%; Hip: 38%; Spine: 20% | young (median age 61 years old): 52.9%; male: 66%; ECOG PS 0–1: 43.9%; multiple metastatic sites (bone and visceral): 86.3%; multiple bone metastasis: 68.6% | Intestinal: 38.9%; G3: 81.3%; N2: 41.5%. | mOS: 14 months; mOS from the diagnosis: 6 months; mOS SRE versus no SRE: 3 versus 5 months |
Nakamura et al., 2014 [60] | Retrospective Monoinstitutional 2000–2010 | 1837 | 31 (1.7%) | Synchronous: 25.8%; Metachronous: 74.2% | NR | NR | Age <65: 51.6%; multiple metastatic sites (bone and visceral): 79.5%; multiple bone metastasis: 79.5%; ECOG PS 0–1: 58.1% | Undifferentiated: 67.8% | mOS: 3.3 months |
Mikami et al., 2017 [61] | Retrospective Monoinstitutional 2010–2015 | NR | 34 (100%) | Synchronous: 29.4%; Metachronous: 70.6% | NR | Thoracic vertebrae: 55.9%; Pelvic bones: 41.2%; Lumbar vertebrae: 38.2%; Ribs: 29.4% | multiple metastatic sites (bone and visceral): 76.5%; multiple bone metastasis: 64.7% | Undifferentiated: 55.9% | mOS: 7.5 months |
Qiu et al., 2018 [58] | Retrospective Multicenter 2010–2014 | 19022 | 966 (5.1%) | NR | NR | NR | NR | Intestinal: 62%; G3: 60.7%; located to the cardia: 38% | mOS: 4 months; 5 year CSS: 1.27% |
Wen L et al., 2019 [56] | Retrospective Monoinstitutional 2008–2018 China | 884 | 66 (11.3%) | Synchronous: 45.5%; Metachronous: 54.5% | NR | Spine: 78.5%; pelvic bones: 68.2%; ribs: 47.0%; lower extremity: 34.8%; sternum:33.3%; scapula: 31.8%; upper extremity: 21.2%; skull: 19.7% | young (median age 53 years old) male: 68.2%; ECOG PS 0–1: 68.2%; multiple metastatic sites (bone and visceral): 84.9%; multiple bone metastasis: 84.8% | G3/mucinous/signet ring cells: 71.2%; located to the antrum: 30.3% | mOS: 6.5 months; mOS metachronous: 11.8 months synchronous: 4.1 months |
Liang C et al., 2020 [57] | Retrospective Multicenter 2010–2016 | 42966 | 1798 (4.2%) | NR | NR | NR | multiple metastatic sites (bone and visceral): 52.6% | Intestinal: 60.8%; G3: 62.2%; located to the cardia: 38.4% | mOS: 3 months |
Imura et al., 2020 [62] | Retrospective Monoinstitutional 2005–2017 | NR | 60 (100%) | NR | NR | NR | Age >60: 56.7%; multiple metastatic sites (bone and visceral): 61.7%; multiple bone metastasis: 83.3%; ECOG PS 0–2: 70% | NR | mOS: 9 months |
Trial and Year of Publication | Phase | Setting | N Patients | Type of Metastatic Sites Reported (% of Patients) | N Patients with Bone Metastases (%) | Arms and Eventual Target | Outcomes in Patients with Bone Metastases |
---|---|---|---|---|---|---|---|
Chemotherapy * | |||||||
V325 trial, 2006 [99] | III | First line | 445 | NR | NR | TCF versus CF | NR |
Dank M et al., 2008 [100] | III | First line | 333 | Lung: 8.7%; Liver: 49%; Lymph node: 62.1%; Peritoneum: 24.3%; Pleura: 8.1%; Adrenal: 6.3% | NR | CF versus Folfiri | NR |
REAL-2, 2008 [101] | III | First-line | 1002 | NR | NR | ECF/ECX versus EOF/EOX (non-inferiority) | NR |
Al-Batran et al., 2008 [91] | III | First-line | 220 | Lung: 12.7%; Liver: 50.4%; Lymph node: 47.7%; Peritoneum: 30.4%; Pleura: 8.1%; Other: 28.6% | 14 (6.8%) | FLO versus FLP | NR |
ML17032, 2009 [92] | III | First line | 316 | Lung: 7.9%; Liver: 48.4%; Peritoneum: 18.7%; Pleura: 3.1%; Soft tissue: 3.8%; Skin: 0.6% | 20 (6.3%) | CX versus CF (non-inferiority) | OS: Bone metastases: HR: 1, no bone: HR ≈0.8 (favor CX) PFS: Bone metastases: HR ≈0.6, no bone: HR ≈0.85 (favor CX) |
FLAGS trial, 2010 [102] | III | First line | 1053 | NR | NR | Cisplatin+S-1 versus CF | NR |
GC0301/TOP-002 trial, 2011 [103] | III | First line | 326 | Liver: 33.7%; Peritoneum: 32.2% | NR | S-1 versus S-1+ irinotecan | NR |
FFCD trial, 2014 [104] | III | First line | 416 | NR | NR | ECX versus Folfiri | NR |
Yamada et al., 2015 [105] | III | First line | 685 | Lung: 10.3%; Liver: 36.9%; Lymph node: 84.2%; Peritoneum: 18.2% | NR | Oxaliplatin+S-1 versus Cisplatin+S-1 (non-inferiority) | NR |
SOS trial, 2015 [93] | III | First line | 625 | Lung: 6.8%; Liver: 35.3%; Lymph node: 67.7%; Peritoneum: 37.3% | 20 (3.2%) | Cisplatin+S-1 q5 weeks versus q3 weeks | NR |
AIO, 2011 [106] | III | Second line | 40 | Lung: 10%; Liver: 45%; Lymph node: 35%; Peritoneum: 45%; Other: 35% | NR | Irinotecan versus BSC | NR |
Korean trial, 2012 [94] | III | Second line | 202 | Peritoneum: 45%; Lung: 9%;; Liver: 28%; Lymph node: 44% | 12 (6%) | Docetaxel or irinotecan versus BSC | NR |
WJOG4007, 2013 [107] | III | Second line | 223 | Peritoneum: 25.1% | NR | Weekly paclitaxel versus irinotecan (non-inferiority) | NR |
COUGAR-02, 2013 [108] | III | Second line | 168 | Lung: 26%; Liver: 44% Lymph node: 65%; Local: 31% Other: 34% | NR | Docetaxel versus BSC | NR |
ABSOLUTE, 2017 [109] | III | Second line | 741 | Peritoneum: 35.2% | NR | nab-paclitaxel every 3 weeks versus weekly nab-paclitaxel versus weekly paclitaxel | NR |
TAGS, 2018 [110] | III | ≥ Third line | 507 | Peritoneum: 27.6% | NR | Trifluridin/tipiracil versus placebo | NR |
Target therapy * | |||||||
AVAGAST, 2011 [111] | III | First line | 774 | NR | NR | CX ± Bevacizumab; VEGF | NR |
ToGA, 2013 [112] | III | First line | 594 | NR | NR | CF/CX ± Trastuzumab; HER-2 | NR |
EXPAND, 2013 [113] | III | First line | 904 | Peritoneum: 25% | NR | CX ± Cetuximab; EGFR | NR |
REAL-3, 2013 [114] | III | First line | 553 | NR | NR | EOC ± Panitumumab; EGFR | NR |
AVATAR, 2015 [95] | III | First line | 202 | Liver: 39.1% | 7 (3.5%) | CX ± Bevacizumab; VEGF | NR |
FAST, 2016 [115] | IIb | First line | 161 | NR (only abstract available) | NR (only abstract available) | EOX ± Claudiximab; claudin 18.2 | NR (only abstract available) |
LOGIC, 2016 [116] | III | First line | 545 | NR | NR | CapeOX ± Lapatinib; HER-2 | NR |
METGastric, 2017 [117] | III | First line | 562 | NR | NR | Folfox ± Onartuzumab; MET | NR |
RILOMET-1, 2017 [118] | III | First line | 609 | Liver: 41.7% | NR | ECX ± Rilotumumab; MET | NR |
HELOISE, 2017 [119] | IIIb | First line | 248 | NR | NR | CF/CX+ trastuzumab (two doses as mantainance); HER-2 | NR |
JACOB, 2018 [120] | III | First line | 780 | NR | NR | CF/CX+ Trastuzumab ± Pertuzumab; HER-2 | NR |
RAINFALL, 2019 [121] | III | First line | 645 | Peritoneum: 37.4%; Liver: 29.3% | NR | CF/CX+ ramucirumab; VEGFR-2 | NR |
GRANITE-1, 2013 [122] | III | Second line Third line | 656 | Lung: 19.6%; Liver: 45.5% | NR | Everolimus versus placebo; mTOR | NR |
REGARD, 2014 [123] | III | Second line | 355 | Peritoneum: 30.7% | NR | Ramucirumab versus Placebo; VEGFR-2 | NR |
RAINBOW, 2014 [124] | III | Second line | 665 | Peritoneum: 47.3% | NR | Paclitaxel ± Ramucirumab; VEGFR-2 | NR |
TyTAN, 2014 [125] | III | Second line | 261 | No visceral: 98.8% | NR | Paclitaxel ± Lapatinib; HER-2 | NR |
INTEGRATE, 2016 [96] | II | Second line Third line | 147 | Lung: 20.4%; Liver: 53.7%; Lymph node: 51%; Peritoneum: 32%; Other: 36% | 16 (10.8%) | Regorafenib versus placebo; multikinase inhibitor | NR |
SHINE, 2017 [126] | II | Second line | 71 | Liver: 56.3%; Lung: 21.1% Peritoneum: 25.4%; Lymph nodes: 54.9% | NR | Paclitaxel ± AZD4546; FGFR-2 | NR |
GATSBY, 2017 [127] | II/III | Second line | 345 | Visceral (lung or liver): 100% | NR | Taxanes ± TDM-1; HER-2 | NR |
GOLD, 2017 [128] | III | Second line | 643 | NR | NR | paclitaxel ± olaparib; PARP | NR |
ANGEL, 2019 [129] | III | ≥ Third line | 460 | NR | NR | Rivoceranib (apatinib) versus best supportive care; VEGFR-2 | NR (abstract only) |
DESTINY-Gastric 01, 2020 [130] | II | ≥ Third line | 187 | NR | NR | Trastuzumab deruxtecan versus chemotherapy (paclitaxel or irinotecan); HER-2 | NR |
Immunotherapy (single agent and combinations) * | |||||||
Janjigian et al., 2020 [131] | II | First line | 37 | NR | NR | CF/CX or Folfox/Xelox + pembrolizumab + trastuzumab; PD-1, HER-2 | NR |
KEYNOTE-062, 2020 [7] | III | First line | 763 | NR | NR | CF/CX± pembrolizumab or pembrolizumab; PD-1 | NR |
CHECKMATE 649, 2020 [6] | III | First line | 1581 | NR (only abstract available) | NR (only abstract available) | Folfox/Xelox± nivolumab; PD-1 | NR (only abstract available) |
ATTRACTION-4, 2020 [132] | III | First line | 724 | NR (only abstract available) | NR (only abstract available) | chemotherapy± nivolumab; PD-1 | NR (only abstract available) |
KEYNOTE-590, 2020 [133] | III | First line | 749 | NR (only abstract available) | NR (only abstract available) | CF± pembrolizumab; PD-1 | NR (only abstract available) |
JAVELIN-100, 2020 [134] | III | First line maintenance | 805 | NR | NR | Folfox/Xelox versus avelumab; PD-L1 | NR |
EPOC1706, 2020 [135] | II | First line Second line | 29 | Lymph node: 90%; Liver: 45% Lung: 10%; Peritoneum: 31% | NR | Lenvatinib + pembrolizumab; TKI, PD-1 | NR |
KEYNOTE-061, 2018 [136] | III | Second line | 592 | Peritoneum: 28% | NR | Paclitaxel versus pembrolizumab; PD-1 | NR |
ATTRACTION-2, 2017 [97] | III | ≥Third line | 493 | Liver: 21.5%; Lung: 4.9% Peritoneum: 21.3%; Lymph nodes: 85.8%; Pleural: 1.2%; Adrenal: 0.2%; Other: 10.7% | 11 (2.2%) | Nivolumab versus placebo; PD-1 | NR |
JAVELIN-300, 2018 [137] | III | ≥Third line | 371 | NR | NR | Chemotherapy (paclitaxel or irinotecan) versus avelumab; PD-L1 | NR |
KEYNOTE-059, 2019 [138] | II | ≥Third line | 259 | Peritoneum: 1.5% | NR | Pembrolizumab; PD-1 | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrillo, A.; Giunta, E.F.; Pappalardo, A.; Bosso, D.; Attademo, L.; Cardalesi, C.; Diana, A.; Fabbrocini, A.; Fabozzi, T.; Giordano, P.; et al. Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. J. Clin. Med. 2021, 10, 1777. https://doi.org/10.3390/jcm10081777
Petrillo A, Giunta EF, Pappalardo A, Bosso D, Attademo L, Cardalesi C, Diana A, Fabbrocini A, Fabozzi T, Giordano P, et al. Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. Journal of Clinical Medicine. 2021; 10(8):1777. https://doi.org/10.3390/jcm10081777
Chicago/Turabian StylePetrillo, Angelica, Emilio Francesco Giunta, Annalisa Pappalardo, Davide Bosso, Laura Attademo, Cinzia Cardalesi, Anna Diana, Antonietta Fabbrocini, Teresa Fabozzi, Pasqualina Giordano, and et al. 2021. "Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them" Journal of Clinical Medicine 10, no. 8: 1777. https://doi.org/10.3390/jcm10081777
APA StylePetrillo, A., Giunta, E. F., Pappalardo, A., Bosso, D., Attademo, L., Cardalesi, C., Diana, A., Fabbrocini, A., Fabozzi, T., Giordano, P., Ottaviano, M., Rosanova, M., Silvestri, A., Federico, P., & Daniele, B. (2021). Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. Journal of Clinical Medicine, 10(8), 1777. https://doi.org/10.3390/jcm10081777