Role of the Laparoscopic Approach for Complex Urologic Surgery in the Era of Robotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Surgical Technique
2.2.1. Dual Combined Approach for Renal Tumors with Invasion of the Renal Vein or Inferior Vena Cava (IVC)
2.2.2. Nephroureterectomy with Bladder Cuff Excision
2.2.3. Radical Cystectomy with Intracorporeal Urinary Diversion
2.3. Follow-Up
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vartolomei, M.D.; Matei, D.V.; Renne, G.; Tringali, V.M.; Crisan, N.; Musi, G.; Mistretta, F.A.; Russo, A.; Cozzi, G.; Cordima, G.; et al. Robot-assisted Partial Nephrectomy: 5-yr Oncological Outcomes at a Single European Tertiary Cancer Center. Eur. Urol. Focus 2019, 5, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Harryman, O.A.; Davenport, K.; Keoghane, S.; Keeley, F.X.; Timoney, A.G. A Comparative Study of Quality of Life Issues Relating to Open Versus Laparoscopic Nephrectomy: A Prospective Pragmatic Study. J. Urol. 2009, 181, 998–1003. [Google Scholar] [CrossRef]
- Mullen, E.; Ahmed, K.; Challacombe, B. Systematic review of open versus laparoscopic versus robot-assisted nephroureterectomy. Rev. Urol. 2017, 19, 32–43. [Google Scholar]
- Athanasiadis, G.; Bourdoumis, A.; Masood, J. Is it the End for Urologic Pelvic Laparoscopic Surgery? Surg. Laparosc. Endosc. Percutaneous Tech. 2017, 27, 139–146. [Google Scholar] [CrossRef]
- Childers, C.P.; Maggard-Gibbons, M. Estimation of the Acquisition and Operating Costs for Robotic Surgery. JAMA 2018, 320, 835–836. [Google Scholar] [CrossRef]
- Sheetz, K.H.; Claflin, J.; Dimick, J.B. Trends in the Adoption of Robotic Surgery for Common Surgical Procedures. JAMA Netw. Open 2020, 3, e1918911. [Google Scholar] [CrossRef] [PubMed]
- Andras, I.; Crisan, N.; Gavrilita, M.; Coman, R.-T.; Nyberg, V.; Coman, I. Every setback is a setup for a comeback: 3D laparoscopic radical prostatectomy after robotic radical prostatectomy. J. BUON 2017, 22, 87–93. [Google Scholar] [PubMed]
- Nguyen, D.H.; Nguyen, B.H.; Van Nong, H.; Tran, T.H. Three-dimensional laparoscopy in urology: Initial experience after 100 cases. Asian J. Surg. 2019, 42, 303–306. [Google Scholar] [CrossRef]
- Spiers, A.J.; Baillie, S.; Pipe, T.G.; Asimakopolous, G. Negating the fulcrum effect in manual laparoscopic surgery: Investigating skill acquisition with a haptic simulator. Int. J. Med Robot. Comput. Assist. Surg. 2017, 13, e1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicione, A.; Autorino, R.; Breda, A.; De Sio, M.; Damiano, R.; Fusco, F.; Greco, F.; Carvalho-Dias, E.; Mota, P.; Nogueira, C.; et al. Three-dimensional vs. Standard Laparoscopy: Comparative Assessment Using a Validated Program for Laparoscopic Urologic Skills. Urology 2013, 82, 1444–1450. [Google Scholar] [CrossRef] [Green Version]
- Abaza, R. The robotic surgery era and the role of laparoscopy training. Ther. Adv. Urol. 2009, 1, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Crisan, N.; Neiculescu, C.; Matei, D.V.; Coman, I. Robotic retroperitoneal approach—A new technique for the upper urinary tract and adrenal gland. Int. J. Med Robot. Comput. Assist. Surg. 2013, 9, 492–496. [Google Scholar] [CrossRef]
- Crisan, N.; Andras, I.; Grad, D.-L.; Telecan, T.; Coman, R.-T.; De Cobelli, O.; Matei, D.V.; Coman, I. Dual Combined Laparoscopic Approach for Renal-Cell Carcinoma with Renal Vein and Level I–II Inferior Vena Cava Thrombus: Our Technique and Initial Results. J. Endourol. 2018, 32, 837–842. [Google Scholar] [CrossRef]
- Sanli, O.; Tefik, T.; Erdem, S.; Oktar, T.; Tunc, M.; Ozcan, F. Use of a combined retroperitoneoscopic and transperitoneal laparoscopic technique for the management of renal cell carcinoma with level I tumor thrombi. J. Minimal Access Surg. 2013, 9, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Wang, T.; Li, X.; Zhang, Z.; Song, G.; He, Z.; Zhou, L. Renal Cell Carcinoma with Infrahepatic Vena Caval Tumor Thrombus Treated with a Novel Combined Retroperitoneal and Transperitoneal Pure Laparoscopic Procedure. Urology 2014, 83, e9–e10. [Google Scholar] [CrossRef]
- Chopra, S.; Simone, G.; Metcalfe, C.; Abreu, A.L.D.C.; Nabhani, J.; Ferriero, M.; Bove, A.M.; Sotelo, R.; Aron, M.; Desai, M.M.; et al. Robot-assisted Level II–III Inferior Vena Cava Tumor Thrombectomy: Step-by-Step Technique and 1-Year Outcomes. Eur. Urol. 2017, 72, 267–274. [Google Scholar] [CrossRef]
- Gill, I.S.; Cacciamani, G.E.; Duddalwar, V.; Thangathurai, D.; Cunningham, M. Renal cancer with extensive level IV intracardiac tumour thrombus removed by robot. Lancet 2020, 396, e88. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Xu, J.; Adams, T.S.; Tian, Y.; Lv, W. Pure Retroperitoneal Laparoscopic Radical Nephrectomy for Right Renal Masses with Renal Vein and Inferior Vena Cava Thrombus. J. Endourol. 2014, 28, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Li, J.; Qin, C.; Lv, Q.; Ju, X.; Li, P.; Shao, Y.; Ni, B.; Yin, C. Laparoscopic Radical Nephrectomy and Inferior Vena Cava Thrombectomy in the Treatment of Renal Cell Carcinoma. Eur. Urol. 2015, 68, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Tohi, Y.; Makita, N.; Suzuki, I.; Suzuki, R.; Kubota, M.; Sugino, Y.; Inoue, K.; Kawakita, M. En bloc laparoscopic radical nephrectomy with inferior vena cava thrombectomy: A single-institution experience. Int. J. Urol. 2018, 26, 363–368. [Google Scholar] [CrossRef]
- Cinar, O.; Gunseren, K.O.; Cicek, C.; Vuruskan, B.A.; Vuruskan, H. Laparoscopic Transperitoneal Radical Nephrectomy for Renal Masses with Level I and II Thrombus. J. Laparoendosc. Adv. Surg. Tech. 2019, 29, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Hong, P.; Liu, Z.; Huang, Y.; Wang, G.; Hou, X.; Zhang, S.; Ma, L. En bloc retroperitoneal laparoscopic radical nephrectomy with inferior vena cava thrombectomy for renal cell carcinoma with level 0 to II venous tumor thrombus: A single-center experience. Cancer 2020, 126, 2073–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abaza, R. Initial Series of Robotic Radical Nephrectomy with Vena Caval Tumor Thrombectomy. Eur. Urol. 2011, 59, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Peng, C.; Li, H.Z.; Huang, Q.; Fan, Y.; Gao, Y.; Zhang, X.; Wang, B.; Ma, X. Robotic retroperitoneal versus transperitoneal inferior vena cava thrombectomy: Right-sided cases with level I–II tumor thrombus. J. Endourol. 2021. [Google Scholar] [CrossRef]
- Zlotta, A.R. Should urologists always perform a bladder cuff resection during nephroureterectomy, and which method should they use? Eur. Urol. 2010, 57, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, A.; Shefler, A.; Gruell, M.; Zimmermann, R.; Janetschek, G. A Novel Approach for a Complete Laparoscopic Nephroureterectomy with Bladder Cuff Excision. J. Endourol. 2010, 24, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Fang, N.; Xiong, G.; Yang, K.; Zhang, L.; Yao, L.; Zhang, C.; Li, X.; He, Z.; Zhou, L. A Novel and Simple Modification for Management of Distal Ureter During Laparoscopic Nephroureterectomy Without Patient Repositioning: A Bulldog Clamp Technique and Description of Modified Port Placement. J. Endourol. 2016, 30, 195–200. [Google Scholar] [CrossRef]
- Wu, G.; Wang, T.; Wang, J.; Yuan, H.; Cui, Y.; Wu, J. Complete retroperitoneal laparoscopic nephroureterectomy with bladder cuff excision for upper tract urothelial carcinoma without patient repositioning: A single-center experience. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
- Hattori, R.; Yoshino, Y.; Komatsu, T.; Matsukawa, Y.; Ono, Y.; Gotoh, M. Pure laparoscopic complete excision of distal ureter with a bladder cuff for upper tract urothelial carcinoma. World J. Urol. 2008, 27, 253–258. [Google Scholar] [CrossRef]
- Veccia, A.; Antonelli, A.; Francavilla, S.; Simeone, C.; Guruli, G.; Zargar, H.; Perdoná, S.; Ferro, M.; Carrieri, G.; Hampton, L.J.; et al. Robotic versus other nephroureterectomy techniques: A systematic review and meta-analysis of over 87,000 cases. World J. Urol. 2019, 38, 845–852. [Google Scholar] [CrossRef]
- Gillan, A.; Alexander, E.; Townell, N.; Nabi, G. Laparoscopic En Bloc Resection of Ureter with a Cuff of Bladder During Radical Nephroureterectomy for Lower Ureteric Tumors: A Matched-Paired Analysis. J. Laparoendosc. Adv. Surg. Tech. 2013, 23, 626–631. [Google Scholar] [CrossRef]
- Miyake, M.; Nishimura, N.; Aoki, K.; Ohmori, C.; Shimizu, T.; Owari, T.; Hori, S.; Morizawa, Y.; Gotoh, D.; Nakai, Y.; et al. Initial experience of complete laparoscopic radical nephroureterectomy combined with transvesical laparoscopic excision of distal ureter in patients with upper urinary tract cancer. World J. Surg. Oncol. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Ye, K.; Zhong, Z.; Zhu, L.; Ren, J.; Xiao, M.; Liu, W.; Xiong, W. Modified transperitoneal versus retroperitoneal laparoscopic radical nephroureterectomy in the management of upper urinary tract urothelial carcinoma: Best practice in a single center with updated results. J. Int. Med Res. 2020, 48. [Google Scholar] [CrossRef] [PubMed]
- Campi, R.; Cotte, J.; Sessa, F.; Seisen, T.; Tellini, R.; Amparore, D.; Mormile, N.; Gobert, A.; Mari, A.; Porpiglia, F.; et al. Robotic radical nephroureterectomy and segmental ureterectomy for upper tract urothelial carcinoma: A multi-institutional experience. World J. Urol. 2019, 37, 2303–2311. [Google Scholar] [CrossRef] [PubMed]
- Hemal, A.K.; Stansel, I.; Babbar, P.; Patel, M. Robotic-assisted Nephroureterectomy and Bladder Cuff Excision Without Intraoperative Repositioning. Urology 2011, 78, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Badani, K.K.; Rothberg, M.B.; Bergman, A.; Silva, M.V.; Shapiro, E.Y.; Nieder, A.; Patel, T.; Bhandari, A. Robot-Assisted Nephroureterectomy and Bladder Cuff Excision Without Patient or Robot Repositioning: Description of Modified Port Placement and Technique. J. Laparoendosc. Adv. Surg. Tech. 2014, 24, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Zargar, H.; Krishnan, J.; Autorino, R.; Akca, O.; Brandao, L.F.; Laydner, H.; Samarasekera, D.; Ko, O.; Haber, G.-P.; Kaouk, J.H.; et al. Robotic Nephroureterectomy: A Simplified Approach Requiring No Patient Repositioning or Robot Redocking. Eur. Urol. 2014, 66, 769–777. [Google Scholar] [CrossRef]
- Argun, O.B.; Mourmouris, P.; Tüfek, I.; Tuna, M.B.; Keskin, S.; Öbek, C.; Kural, A.R. Radical Nephroureterectomy Without Patient or Port Repositioning Using the Da Vinci Xi Robotic System: Initial Experience. Urology 2016, 92, 136–139. [Google Scholar] [CrossRef]
- Ferro, M.; Di Lorenzo, G.; Vartolomei, M.D.; Bruzzese, D.; Cantiello, F.; Lucarelli, G.; Musi, G.; Di Stasi, S.; Hurle, R.; Guazzoni, G.; et al. Absolute basophil count is associated with time to recurrence in patients with high-grade T1 bladder cancer receiving bacillus Calmette–Guérin after transurethral resection of the bladder tumor. World J. Urol. 2019, 38, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Ferro, M.; Di Lorenzo, G.; Buonerba, C.; Lucarelli, G.; Russo, G.I.; Cantiello, F.; Abu Farhan, A.R.; Di Stasi, S.; Musi, G.; Hurle, R.; et al. Predictors of Residual T1 High Grade on Re-Transurethral Resection in a Large Multi-Institutional Cohort of Patients with Primary T1 High-Grade/Grade 3 Bladder Cancer. J. Cancer 2018, 9, 4250–4254. [Google Scholar] [CrossRef]
- Boc, A.; Crisan, N.; Vesa, S.C.; Coman, I.; Stanca, V.D.; Andras, I. The impact of minimal invasive surgery on early complications and mortality after radical cystectomy for muscle-invasive urothelial bladder cancer. J. BUON 2018, 23, 104–110. [Google Scholar]
- Kanno, T.; Inoue, T.; Kawakita, M.; Ito, K.; Okumura, K.; Yamada, H.; Kubota, M.; Fujii, M.; Shimizu, Y.; Yatsuda, J.; et al. Perioperative and oncological outcomes of laparoscopic radical cystectomy with intracorporeal versus extracorporeal ileal conduit: A matched-pair comparison in a multicenter cohort in Japan. Int. J. Urol. 2020, 27, 559–565. [Google Scholar] [CrossRef]
- Kubota, M.; Kokubun, H.; Yamaguchi, R.; Murata, S.; Makita, N.; Suzuki, I.; Suzuki, R.; Abe, Y.; Tohi, Y.; Tsutsumi, N.; et al. Surgical outcomes and learning curve of totally intracorporeal ileal conduit urinary diversion following laparoscopic radical cystectomy at a single institution. Asian J. Endosc. Surg. 2020. [Google Scholar] [CrossRef]
- Xu, P.; Chen, B.; Xu, A.; Yuan, D.; Zhang, Y.; Liu, C. Initial Experience with Intracorporeal Laparoscopic Radical Cystectomy and Detaenial Sigmoid Neobladder Reconstruction. Eur. Urol. 2021, 79, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Gok, B.; Atmaca, A.F.; Canda, A.E.; Asil, E.; Koc, E.; Ardicoglu, A.; Balbay, M.D. Robotic Radical Cystectomy with Intracorporeal Studer Pouch Formation for Bladder Cancer: Experience in Ninety-Eight Cases. J. Endourol. 2019, 33, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Brassetti, A.; Tuderti, G.; Anceschi, U.; Ferriero, M.; Guaglianone, S.; Gallucci, M.; Simone, G. Combined reporting of surgical quality, cancer control and functional outcomes of robot-assisted radical cystectomy with intracorporeal orthotopic neobladder into a novel trifecta. Minerva Urol. Nefrol. 2019, 71, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.W.; Nair, R.; Saad, S.; Thurairaja, R.; Khan, M.S. Safe transition from extracorporeal to intracorporeal urinary diversion following robot-assisted cystectomy: A recipe for reducing operative time, blood loss and complication rates. World J. Urol. 2019, 37, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, A.; Mortezavi, A.; Sjöberg, S.; Laurin, O.; Adding, C.; Collins, J.; Wiklund, P.N. Robot-assisted intracorporeal orthotopic bladder substitution after radical cystectomy: Perioperative morbidity and oncological outcomes—A single-institution experience. BJU Int. 2020, 126, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Porreca, A.; Bianchi, F.M.; Romagnoli, D.; D’Agostino, D.; Corsi, P.; Giampaoli, M.; Salvaggio, A.; Bianchi, L.; Schiavina, R.; Brunocilla, E.; et al. Robot-assisted radical cystectomy with totally intracorporeal urinary diversion: Surgical and early functional outcomes through the learning curve in a single high-volume center. J. Robot. Surg. 2019, 14, 261–269. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Winter, M.; Medina, L.G.; Ashrafi, A.N.; Miranda, G.; Tafuri, A.; Landsberger, H.; Lin-Brande, M.; Rajarubendra, N.; Abreu, A.D.C.; et al. Radical cystectomy pentafecta: A proposal for standardisation of outcomes reporting following robot-assisted radical cystectomy. BJU Int. 2020, 125, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Dell’Oglio, P.; Mazzone, E.; Lambert, E.; Vollemaere, J.; Goossens, M.; Larcher, A.; Van Der Jeugt, J.; Devos, G.; Poelaert, F.; Uvin, P.; et al. The Effect of Surgical Experience on Perioperative and Oncological Outcomes After Robot-assisted Radical Cystectomy with Intracorporeal Urinary Diversion: Evidence from a Referral Centre with Extensive Experience in Robotic Surgery. Eur. Urol. Focus 2021, 7, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Li, P.; Ju, X.; Qin, C.; Li, J.; Lv, Q.; Meng, X.; Yin, C. Laparoscopic Radical Cystectomy With Intracorporeal Orthotopic Ileal Neobladder: Technique and Clinical Outcomes. Urology 2015, 85, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, P.; Juszczak, K.; Kadłubowski, M.; Ostrowski, A.; Maciukiewicz, P.; Drewa, T. Can laparoscopic cystectomy become the method of choice in the treatment of invasive urothelial urinary bladder cancer? Adv. Clin. Exp. Med. 2020, 29, 301–304. [Google Scholar] [CrossRef]
- Su, S.; Gu, L.; Ma, X.; Li, H.; Wang, B.; Shi, T.; Zhang, X. Comparison of Laparoscopic and Robot-assisted Radical Cystectomy for Bladder Cancer: Perioperative and Oncologic Outcomes. Clin. Genitourin. Cancer 2019, 17, e1048–e1053. [Google Scholar] [CrossRef] [PubMed]
No. of Patients | Preoperative Information | Procedure Specifics | Operative Time *, Minutes Mean (Range) | Blood Loss, mL Mean (Range) | Conversion, Reason | Length of Hospital Stay, Days Median (Range) | 30 days Postoperative Complications | Oncologic Outcomes |
---|---|---|---|---|---|---|---|---|
Radical nephrectomy with thrombectomy by dual combined laparoscopic approach | ||||||||
19 | Mayo classification Level 0–8 patients Level I–7 patients Level II–4 patients | Cavotomy-8 patients No cavotomy–11 patients | Cavotomy: 361 min (280–555) No cavotomy: 330 min (175–400) | 350 mL (150–600) | 1 case, extension of the thrombus above the suprahepatic veins | 6 (4–14) | Overall rate 26% Clavien I—3 patients (port site hematoma/prolonged lymphatic drainage) Clavien II—1 patient (transfusion) Clavien IV—1 patient (pulmonary thrombembolism) | PSM 15.78% New onset metastatic disease—2 patients Local and metastatic recurrence—1 patient (converted case) |
Laparoscopic nephroureterectomy with bladder cuff excision | ||||||||
13 | 4 patients with synchronous bladder tumor 3-TaG1 1-T1G3 (TURBT before surgery) | Transperitoneal approach | 230.38 min (150–365) | 100 mL (50–200 mL) | None | 7 (4–8) | Overall rate 30.76% Clavien I—1 patient (surgical site infection) Clavien II—2 patients (transfusion) Clavien V—1 patient (death due to hemorrhagic diathesis) | PSM 7.69% Adjuvant chemotherapy—6 patients Bladder recurrence at 6 months—1 patient Metastatic progression of disease and death at 12 months (breast carcinoma)—1 patient |
Laparoscopic radical cystectomy with intracorporeal urinary diversion | ||||||||
21 | MIBC-16 patients High-risk NMIBC-5 cases Neoadjuvant chemotherapy-10 cases No neoadjuvant chemotherapy in 6 cases of MIBC due to-histology (squamous cell carcinoma-2 cases), renal function impairment (4 cases) | NB–7 cases IC–14 cases | NB: 496.27 min (490–710) IC: 461.09 min (350–550) | 200 mL (100–400 mL) | None | 13 (6–29) | Overall rate 23.8% Clavien I—2 patients (delirium, urinary fistula in a patient with IC which was managed conservatively) Clavien II—2 patients (sepsis requiring antibiotic, digestive bleeding requiring transfusions) Clavien IIIb–one patient (reoperation for bleeding) | PSM 4.76% Local recurrence—1 patient New onset metastatic disease—1 patient |
Author, Year | Number of Patients | Laparoscopic or Robotic Technique | Mayo Classification | Approach | Mean Operating Time (min) | Postoperative Complications | Oncologic Outcomes |
---|---|---|---|---|---|---|---|
Wang et al., 2014 [18] | 5 | Laparoscopic | Level I (n = 1) Level II (n = 4) | Retroperitoneal | 127 (range 75–160) | None | PSM 0% |
Shao et al., 2015 [19] | 11 | Laparoscopic | Level II (n = 6) Level IV (n = 5) | Level II: retroperitoneal Level IV: retroperitoneal and mini-thoracotomy | Level II: 155 (range 135–210) Level IV: 275 (range 260–310) | Overall rate 54.54% All Clavien I-II Level II (n = 2) Level IV (n = 4) | PSM–not reported New onset metastatic disease—1 patient |
Tohi et al., 2019 [20] | 5 | Laparoscopic | Level I (n = 1) Level II (n = 3) Level III (n = 1) | Transperitoneal | 316 (range 273–924) | Overall rate 20% Clavien III-V (n = 1) | PSM 0% |
Cinar et al., 2019 [21] | 13 | Laparoscopic | Level I (n = 11) Level II (n = 2) | Transperitoneal | 137.6 (range 60–200) | Overall rate 53.84% Clavien II (n = 4) Clavien IIIb (n = 1) Clavien IV (n = 2) | PSM 0% |
Tian et al., 2020 [22] | 78 | Laparoscopic | Level 0 (n = 28) Level I (n = 27) Level II (n = 23) | Retroperitoneal Combined retro- and transpritoneal for left-sided level II thrombi Conversion rate 14.10% (n = 11) | 256 (range 207–338) | Overall rate 16.66% Clavien I (n = 2) Clavien II (n = 9) Clavien IIIa (n = 2) | PSM 0% Local recurrence—1 patient New onset metastatic disease—8 patients |
Andras et al., 2021 [Current paper] | 19 | 3D Laparoscopic | Level 0 (n = 8) Level I (n = 7) Level II (n = 4) | Combined retro- and transperitoneal | 330 (range 280–555) without cavotomy 361 (range 175–400) with cavotomy | Overall rate 26% Clavien I (n = 3) Clavien II (n = 1) Clavien IV (n = 1) | PSM 15.78% New onset metastatic disease—2 patients Local and metastatic recurrence—1 patient |
Abaza, 2011 [23] | 5 patients 6 thrombi | Robotic | Level I (n = 3) Level II (n = 3) | Transperitoneal | 327 (range 240–411) | None | PSM 0% |
Gill et al., 2015 [17] | 16 | Robotic da Vinci SiTM and XiTM | Level II (n = 7) Level III (n = 9) | Transperitoneal “IVC-first, kidney-last” | 294 (range 270–378) | Overall rate 6.25% Clavien IIIb (n = 1) | PSM 0% New onset metastatic disease—2 patients |
Chopra et al., 2017 [16] | 24 | Robotic da Vinci SiTM and XiTM | Level II (n = 13) Level III (n = 11) | Transperitoneal “IVC-first, kidney-last” | 270 (range 180–480) | Overall rate 16.7% Clavien II (n = 2) Clavien IIIa (n = 1) Clavien IIIb (n = 1) | PSM 0% New onset metastatic disease—11 patients |
Wu et al., 2021 [24] | 35 | Robotic da Vinci SiTM | Level I (n = 10) Level II (n = 15) | Retroperitoneal (n = 16) and transperitoneal (n = 19) | 130 (range 100–250); 145 (range 110–275) | None | PSM 0% |
Author, Year | Number of Patients | Laparoscopic or Robotic Technique | Approach | Mean Operating Time (min) | Postoperative Complications | Oncologic Outcomes |
---|---|---|---|---|---|---|
Ghazi et al., 2010 [26] | 8 | Laparoscopic Remote controlled robotic arm used for optic guidance | Transperitoneal “Ureter first, nephrectomy last” Extravesical bladder cuff | 157 (range 110–200) | Overall rate 12.5% Bladder extravasation (n = 1) | PSM 8.33% Bladder recurrence—3 patients Local and metastatic recurrence—1 patient |
Gillan et al., 2013 [31] | 6 | Laparoscopic | Transperitoneal Extravesical bladder cuff | 190 (180–240) | None | PSM 0% |
Liu et al., 2016 [27] | 31 | Laparoscopic | Transperitoneal Modified bladder cuff bulldog clamp | 146.6 (range 90–257) | None | PSM 0% No recurrence |
Wu et al., 2020 [28] | 48 | Laparoscopic | Retroperitoneal Extravesical bladder cuff | 110 (range 100–130) | None | PSM 0% No recurrence |
Miyake et al., 2020 [32] | 4 | Laparoscopic | Retroperitoneal Transvesical bladder cuff | 174 (range 171–202) | Overall rate 50% Clavien I (n = 1) Clavien II (n = 1) | PSM 0% No recurrence |
Ye et al., 2020 [33] | 48 | Laparoscopic | Transperitoneal with extravesical bladder cuff (n = 24) versus retroperitoneal with open bladder cuff (n = 24) | 108.2 ± 11.2 versus 126.5 ± 10.8 | Overall rate 8.33% Clavien I (n = 1) Clavien II (n = 3) | Not reported |
Andras et al., 2021 [Current paper] | 13 | 3D Laparoscopic | Transperitoneal Extravesical bladder cuff | 230.38 (range 150–365) | Overall rate 30.76% Clavien I (n = 1) Clavien II (n = 2) Clavien V (n = 1) | PSM 7,69% Bladder recurrence—1 patient |
Campi et al., 2011 [34] | 66 | Robotic da Vinci SiTM | Transperitoneal Extravesical robotic bladder cuff (n = 30) Open bladder cuff (n = 27) Transvesical bladder cuff (n = 5) Without bladder cuff (n = 4) | 195 (range 180–270) | Overall rate 30.76% Clavien I (n = 16) Clavien II (n = 9) Clavien IIIa (n = 2) Clavien IIIb (n = 2) | PSM 6%—4 patients Bladder recurrence—16 patients New onset metastatic disease—5 patients |
Hemal et al., 2011 [35] | 15 | Robotic da Vinci SiTM | Transperitoneal | 184 (range 147–250) | None | PSM 0% No recurrence |
Badani et al., 2014 [36] | 26 | Robotic | Transperitoneal | 230 (range 120–310) | None | PSM 0% Bladder recurrence—4 patients |
Zargar et al., 2014 [37] | 31 | Robotic | Transperitoneal | 300 ± 69 | Overall rate 19.35% Clavien I (n = 4) Clavien II (n = 1) Clavien III (n = 1) | PSM 3,2% Bladder recurrence—7 patients New onset metastatic disease—4 patients |
Argun et al., 2016 [38] | 2 | Robotic da Vinci XiTM | Transperitoneal | 140; 150 | None | PSM 0% |
Author, Year | Number of Patients | Laparoscopic or Robotic Technique | Type of Urinary Diversion | Mean Operating Time (min) | Postoperative Complications | Oncologic Outcomes | Functional Outcomes |
---|---|---|---|---|---|---|---|
Kanno et al., 2020 [42] | 72 | Laparoscopic | Ileal conduit | 676 (range 612–740) | Overall first 30 days rate: 50% Clavien IIIa-V (n = 14) Overall 30–90 days rate: 28% Clavien IIIa-V: (n = 12) | PSM 1%–1 patient Local recurrence 8%–6 patients Distant recurrence 14%–10 patients Abdominal recurrence 6%–4 patients Upper tract recurrence 1%–1 patient | Not reported |
Kubota et al., 2020 [43] | 30 | Laparoscopic | Ileal conduit | 688 (range 641–740) | Overall rate: 13% Ileus (n = 1) Abdominal abcess (n = 4) Acute pyelonephritis (n = 2) Anastomotic leak (n = 1) | PSM 3%–1 patient | Not reported |
Xu et al., 2021 [44] | 12 | Laparoscopic | Neobladder | 414.6 ± 52.2 | Overall rate: 41.66% Urinary tract infection (n = 1) Lymphorrhagia (n = 1) Ureteroenteric anastomotic stricture (n = 2) Metabolic abnormalities (n = 1) | PSM 0% No recurrence | Day-time continence at 12 months: 83.3% Night-time continence at 12 months: 58.3% |
Andras et al., 2021 [Current paper] | 21 | 3D Laparoscopic | Ileal conduit (n = 14) Neobladder (n = 7) | 461.09 (range 350–550); 496.27 (range 490–710) | Overall rate: 23.8% Clavien I (n = 2) Clavien II (n = 2) Clavien IIIb (n =1) | PSM 4.76%–1 patient Local recurrence: 4.76%–1 patient New onset metastatic disease: 4.76%–1 patient | Neobladder: Day-time continence at 6 months: 85.71%—6 patients |
Gok et al., 2019 [45] | 98 | Robotic | Neobladder | 493.2 (range 258–750) | First 30 days–rate 51.02%: Clavien I-II (n = 30) Clavien IIIa-V (n = 20) 30–90 days–rate 13.26%: Clavien I-II (n = 6) Clavien IIIa-V (n = 7) | PSM 2%–2 patients Distant metastatic disease 14.2%–14 patients | Day-time continence: 60.6%—37 patients Night-time continence: 40.9%—25 patients Mean International Index of Erectile Function score in those with no previous erectile dysfunction: 20.6 |
Brassetti et al., 2019 [46] | 137 | Robotic | Neobladder | 300 (range 240–350) | Clavien III-V (n = 15) Readmission in the following year: 18 (13%) patients | PSM 3%–4 patients Disease recurrence at 12 months: 7% | Day-time continence at 12 months: 79% |
Tan et al., 2019 [47] | 59 | Robotic | Ileal conduit | 330 (range 300–368) | Overall first 30 days rate: 48.4% Clavien IIIa-V (n = 5) Overall 30–90 days rate: 16.2% Clavien IIIa-V (n = 5) | PSM 8.5%–5 patients | Not reported |
Hosseini et al., 2020 [48] | 158 | Robotic da Vinci SiTM | Neobladder | 359 ± 98 | Overall rate 23% First 30 days: Clavien IIIa-V (n = 29) 30–90 days: Clavien IIIa-V (n = 8) | PSM 1%–2 patients Tumor recurrence in 26 patients (41 sites) | Not reported |
Porreca et al., 2020 [49] | 83 | Robotic | Ileal conduit (n = 32) Neobladder (n = 51) | 410 (range 351–460) | Overall first 30 days rate: 35% Clavien I-II (n = 33) Clavien IIIa-V (n = 9) Overall 30–90 days rate: 20% Clavien I-II (n = 9) Clavien IIIa-V (n = 10) | PSM–3%–3 patients | Day-time continence at 12 months: 90.2%—46 patients Night-time continence at 12 months: 70.6%—36 patients Potency rate at 12 months: 31%—31 patients |
Cacciamani et al., 2020 [50] | 270 | Robotic | Ileal conduit (n = 177) Neobladder (n = 93) | 432.5 (range 379.7–489.2) | Overall first 30 days rate: 59.6% Clavien I-II (n = 119) Clavien IIIa-V (n = 42) Overall 30–90 days rate: 33.7% Clavien I-II (n = 62) Clavien IIIa-V (n = 29) | PSM 4.4%–12 patients Overall recurrence rate at 12 months: 50 (18.5%) patients | Not reported |
Dell’Oglio et al., 2021 [51] | 164 | Robotic | Ileal conduit (n = 146) Neobladder (n = 18) | 350 (range 327–360) | Overall rate: 35% Clavien II-V (n = 57) | PSM 7%-11 patients Recurrence at 18 months: 33 (20%) patients | Neobladder: Day-time continence: 78%—14 patients Night-time continence: 50%—9 patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andras, I.; Territo, A.; Telecan, T.; Medan, P.; Perciuleac, I.; Berindean, A.; Stanca, D.V.; Buzoianu, M.; Coman, I.; Crisan, N. Role of the Laparoscopic Approach for Complex Urologic Surgery in the Era of Robotics. J. Clin. Med. 2021, 10, 1812. https://doi.org/10.3390/jcm10091812
Andras I, Territo A, Telecan T, Medan P, Perciuleac I, Berindean A, Stanca DV, Buzoianu M, Coman I, Crisan N. Role of the Laparoscopic Approach for Complex Urologic Surgery in the Era of Robotics. Journal of Clinical Medicine. 2021; 10(9):1812. https://doi.org/10.3390/jcm10091812
Chicago/Turabian StyleAndras, Iulia, Angelo Territo, Teodora Telecan, Paul Medan, Ion Perciuleac, Alexandru Berindean, Dan V. Stanca, Maximilian Buzoianu, Ioan Coman, and Nicolae Crisan. 2021. "Role of the Laparoscopic Approach for Complex Urologic Surgery in the Era of Robotics" Journal of Clinical Medicine 10, no. 9: 1812. https://doi.org/10.3390/jcm10091812
APA StyleAndras, I., Territo, A., Telecan, T., Medan, P., Perciuleac, I., Berindean, A., Stanca, D. V., Buzoianu, M., Coman, I., & Crisan, N. (2021). Role of the Laparoscopic Approach for Complex Urologic Surgery in the Era of Robotics. Journal of Clinical Medicine, 10(9), 1812. https://doi.org/10.3390/jcm10091812