Impact of Isolated High Home Systolic Blood Pressure and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A 5-Year Prospective Cohort Study
Abstract
:1. Introduction
2. Design and Methods
2.1. Data Collection
2.2. HBP Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ushigome, E.; Oyabu, C.; Tanaka, T.; Hasegawa, G.; Ohnishi, M.; Tsunoda, S.; Ushigome, H.; Yokota, I.; Nakamura, N.; Oda, Y.; et al. Impact of masked hypertension on diabetic nephropathy in patients with type II diabetes: A KAMOGAWA-HBP study. J. Am. Soc. Hypertens. 2018, 12, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Ushigome, E.; Matsumoto, S.; Oyabu, C.; Kitagawa, N.; Tanaka, T.; Hasegawa, G.; Ohnishi, M.; Tsunoda, S.; Ushigome, H.; Yokota, I.; et al. Prognostic significance of day-by-day variability of home blood pressure on progression to macroalbuminuria in patients with diabetes. J. Hypertens. 2018, 36, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, N.; Ushigome, E.; Matsumoto, S.; Oyabu, C.; Ushigome, H.; Yokota, I.; Asano, M.; Tanaka, M.; Yamazaki, M.; Fukui, M. Prognostic significance of home pulse pressure for progression of diabetic nephropathy: KAMOGAWA-HBP Study. Hypertens. Res. 2018, 41, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Bulpitt, C.J.; Fletcher, A.E.; Thijs, L.; Steassen, J.A.; Antikainen, R.; Davidson, C.; Fagard, R.; Gil-Extremera, B.; Jääskivi, M.; O’Brien, E.; et al. Symptoms reported by elderly patients with isolated systolic hypertension: Baseline data from the SYST-EUR trial. Systolic Hypertension in Europe. Age Ageing 1999, 28, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakatta, E.G. Mechanism of hypertension in the elderly. J. Am. Geriatr. Soc. 1989, 37, 780–790. [Google Scholar] [CrossRef]
- Messerli, F.H.; Ventura, H.; Aristimuno, G.G.; Suarez, D.H.; Dreslinski, G.R.; Frohlich, E.D. Arterial compliance in systolic hypertension. Clin. Exp. Hypertens. 1982, 4, 1037–1044. [Google Scholar] [CrossRef]
- Hozawa, A.; Ohkubo, T.; Nagai, K.; Kikuya, M.; Matubara, M.; Tsuji, I.; Ito, S.; Satoh, H.; Hisamichi, S.; Imai, Y. Prognosis of isolatedsystolic and isolated diastolic hypertension as assessed by self-measurement of blood pressure at home: The Ohasamastudy. Arch. Intern. Med. 2000, 160, 3301–3306. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, N.; Ushigome, E.; Tanaka, T.; Hasegawa, G.; Nakamura, N.; Ohnishi, M.; Tsunoda, S.; Ushigome, H.; Yokota, I.; Kitagawa, N.; et al. Isolated high home systolic blood pressure in patients with type 2 diabetes is a prognostic factor for the development of diabetic nephropathy: KAMOGAWA-HBP Study. Diabetes Res. Clin. Pract. 2019, 158, 107920. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Mann, J.; Yi, Q.; Zinman, B.; Dinneen, S.F.; Hoogwerf, B.; Hallé, J.P.; Young, J.; Rashkow, A.; Joyce, C.; et al. Hope Study Investigators. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001, 286, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Kramer, H.; Jacobs, D.R.; Bild, D.; Post, W.; Saad, M.F.; Detrano, R.; Tracy, R.; Cooper, R.; Liu, K. Urine albumin excretion and subclinical cardiovascular disease: The multi-ethnic study of atherosclerosis. Hypertension 2005, 46, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Krolewski, A.S.; Niewczas, M.A.; Skupien, J.; Gohda, T.; Smiles, A.; Eckfeldt, J.H.; Doria, A.; Warram, J.H. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 2014, 37, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Ushigome, E.; Fukui, M.; Sakabe, K.; Tanaka, M.; Inada, S.; Omoto, A.; Tanaka, T.; Fukuda, W.; Atsuta, H.; Ohnishi, M.; et al. Uncontrolled home blood pressure in the morning is associated with nephropathy in Japanese type 2 diabetes. Heart Vessels 2011, 26, 609–615. [Google Scholar] [CrossRef]
- Nakade, Y.; Toyama, T.; Furuichi, K.; Kitajima, S.; Miyajima, Y.; Fukamachi, M.; Sagara, A.; Shinozaki, Y.; Hara, A.; Shimizu, M.; et al. Impact of kidney function and urinary protein excretion on intima–media thickness in Japanese patients with type 2 diabetes. Clin. Exp. Nephrol. 2015, 19, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Eckardt, K.U.; Dorman, N.M.; Christiansen, S.L.; Cheung, M.; Jadoul, M.; Winkelmayer, W.C. Nomenclature for kidney function and disease-executive summary and glossary from a Kidney Disease: Improving Global Outcomes (KDIGO) consensus conference. Eur. Heart J. 2020, 41, 4592–4598. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, A.; Kasuga, M.; Araki, E.; Oka, Y.; Hanafusa, T.; Ito, H.; Tominaga, M.; Oikawa, S.; Noda, M.; Kawamura, T.; et al. Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes Society. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J. Diabetes Investig. 2012, 3, 39–40. [Google Scholar] [PubMed]
- Kitagawa, N.; Ushigome, E.; Matsumoto, S.; Oyabu, C.; Ushigome, H.; Yokota, I.; Asano, M.; Tanaka, M.; Yamazaki, M.; Fukui, M. Threshold value of home pulse pressure predicting arterial stiffness in patients with type 2 diabetes: KAMOGAWA-HBP study. J. Clin. Hypertens. 2018, 20, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Wada, T.; Haneda, M.; Furuichi, K.; Babazono, T.; Yokoyama, H.; Iseki, K.; Araki, S.; Ninomiya, T.; Hara, S.; Suzuki, Y.; et al. Research Group of Diabetic Nephropathy, Ministry of Health, Labour, and Welfare of Japan. Clinical impact of albuminuria and glomerular filtration rate on renal and cardiovascular events, and all-cause mortality in Japanese patients with type 2 diabetes. Clin. Exp. Nephrol. 2014, 18, 621–622. [Google Scholar] [CrossRef] [Green Version]
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2002, 25, S5–S20. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Otsuka, K.; Kawano, Y.; Shimada, K.; Hayashi, H.; Tochikubo, O.; Miyakawa, M.; Fukiyama, K.; Japan Society of Hypertension. Japanese Society of Hypertension (JSH) guidelines for self-monitoring of blood pressure at home. Hypertens. Res. 2003, 26, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Coleman, A.; Fraaman, P.; Steel, S.; Shennan, A. Validation of the Omron 705IT (HEM-759-E) oscillometric blood pressure monitoring device according to the British Hypertension Society protocol. Blood Press. Monit. 2006, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Umemura, S.; Arima, H.; Arima, S.; Asayama, K.; Dohi, Y.; Hirooka, Y.; Horio, T.; Hoshide, S.; Ikeda, S.; Ishimitsu, T.; et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens. Res. 2019, 42, 1235–1481. [Google Scholar] [CrossRef]
- Kai, H. Blood pressure management in patients with type 2 diabetes mellitus. Hypertens. Res. 2017, 40, 721–729. [Google Scholar] [CrossRef]
- Franklin, S.S.; Gustin, W., Ⅳ.; Wong, N.D.; Larson, M.G.; Weber, M.A.; Kannel, W.B.; Levy, D. Hemodynamic patterns of age-related changes in blood pressure. Framingham Heart Study. Circulation 1997, 96, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safar, M.E. Arterial aging-hemodynamic changes and therapeutic options. Nat. Rev. Cardiol. 2010, 7, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F.; Conlin, P.R.; Dunlap, M.E.; Lacourrvciere, Y.; Arnold, J.M.O.; Ogilvie, R.I.; Neutel, J.; Izzo, J.L., Jr.; Pfeffer, M.A. Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension 2008, 51, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerli, F.H.; Frohlich, E.D.; Suarez, D.H.; Dreslinski, G.R.; Dunn, F.G.; Cole, F.E. Borderline hypertension: Relationship between age, hemodynamics, and circulating catecholamines. Circulation 1981, 64, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julius, S.; Pascual, A.V.; London, R. Role of parasympathetic inhibition in the hyperkinetic type borderline hypertension. Circulation 1971, 44, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekundayo, O.J.; Allman, R.M.; Sanders, P.W.; Aban, I.; Love, T.E.; Arnett, D.; Ahmed, A. Isolated systolic hypertension and incident heart failure in older adults: A propensity-matched study. Hypertension 2009, 53, 458–465. [Google Scholar] [CrossRef] [Green Version]
- D’Sell, D.R.; Monnier, V.M. Molecular basis of arterial stiffening: Role of glycation—A mini-review. Gerontology 2012, 58, 227–237. [Google Scholar]
- Kamoi, K.; Miyakoshi, M.; Soda, S.; Kaneko, S.; Nakagawa, O. Usefulness of home blood pressure measurement in the morning in type 2 diabetic patients. Diabetes Care 2002, 25, 2218–2223. [Google Scholar] [CrossRef] [Green Version]
- Tomiyama, H.; Shiina, K.; Nakano, H.; Iwasaki, Y.; Matsumoto, C.; Fujii, M.; Chikamori, T.; Yamashina, A. Arterial stiffness and pressure wave reflection in the development of isolated diastolic hypertension. J. Hypertens. 2020, 38, 2000–2007. [Google Scholar] [CrossRef] [PubMed]
- Ushigome, E.; Hamaguchi, M.; Matsumoto, S.; Oyabu, C.; Omoto, A.; Tanaka, T.; Fukuda, W.; Hasegawa, G.; Mogami, S.; Ohnishi, M.; et al. Optimal home SBP targets for preventing the progression of diabetic nephropathy in patients with type 2 diabetes mellitus. J. Hypertens. 2015, 33, 1853–1859, discussion 1859. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, R.; Gabbai, F.B.; Provenzano, M.; Chiodini, P.; Borrelli, S.; Garofalo, C.; Sasso, F.C.; Santoro, D.; Bellizzi, V.; Conte, G.; et al. Cardiorenal prognosis by residual proteinuria level in diabetic chronic kidney disease: Pooled analysis of four cohort studies. Nephrol. Dial. Transplant. 2018, 33, 1942–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasso, F.C.; Nicola, L.D.; Carbonara, O.; Nasti, R.; Minutolo, R.; Salvatore, T.; Conte, G.; Torella, R. Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care 2006, 29, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Minutolo, R.; Sasso, F.C.; Chiodini, P.; Cianciaruso, B.; Carbonara, O.; Zamboli, P.; Tirino, G.; Pota, A.; Torella, R.; Conte, G.; et al. Management of cardiovascular risk factors in advanced type 2 diabetic nephropathy: A comparative analysis in nephrology, diabetology and primary care settings. J. Hypertens. 2006, 24, 1655–1661. [Google Scholar] [CrossRef]
- Ninomiya, T.; Kojima, I.; Doi, Y.; Fukuhara, M.; Hirakawa, Y.; Hata, J.; Kitazono, T.; Kiyohara, Y. Brachial-ankle pulse wave velocity predicts the development of cardiovascular disease in a general Japanese population: The Hisayama study. J. Hypertens. 2013, 31, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, T.; Miura, K.; Ohkubo, T.; Kadota, A.; Kondo, K.; Kita, Y.; Hayakawa, T.; Kanda, H.; Okamura, T.; Okayama, A.; et al. NIPPON DATA80 Research Group. Isolated systolic hypertension and 29-year cardiovascular mortality risk in Japanese adults aged 30–49 years. J. Hypertens. 2020, 38, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.K. Dietary salt intake and hypertension Electrolyte. Blood Press. 2014, 12, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Machnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; Machura, K.; Park, J.K.; Beck, F.X.; Müller, D.N.; Derer, W.; et al. Macrophages regulate salt-dependent volume and blood pressure through a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009, 15, 545–552. [Google Scholar] [CrossRef]
- Zhu, H.G.; Jiang, Z.S.; Gong, P.Y.; Zhang, D.M.; Zou, Z.W.; Zhang, Q.; Ma, H.M.; Guo, Z.G.; Zhao, J.Y.; Dong, J.J.; et al. Efficacy of low-protein diet for diabetic nephropathy: A systematic review of randomized controlled trials. Lipids Health Dis. 2018, 17, 141. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Katzmarzyk, P.T.; Horswell, R.; Wang, Y.; Li, W.; Johnson, J.; Heymsfield, S.B.; Cefalu, W.T.; Ryan, D.H.; Hu, G. Aggressive blood pressure control increases coronary heart disease risk among diabetic patients. Diabetes Care 2013, 36, 3287–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penno, G.; Solini, A.; Orsi, E.; Bonora, E.; Fondelli, C.; Trevisan, R.; Vedovato, M.; Cavalot, F.; Lamacchia, O.; Scardapane, M.; et al. Non-albuminuric renal impairment is a strong predictor of mortality in individuals with type 2 diabetes: The Renal In-sufficiency And Cardiovascular Events (RIACE) Italian multicentre study. Diabetologia 2018, 61, 2277–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sex | |
---|---|
Male | 228 (53.8) |
Female | 196 (46.2) |
Age (y) | 64.0 (59.0–70.0) |
Duration of diabetes (y) | 9.0 (4.8–15.0) |
Body mass index (kg/m2) | 23.0 (21.4–25.3) |
Mean morning systolic blood pressure (mmHg) | 128.1 (117.4–138.2) |
Mean morning diastolic blood pressure (mmHg) | 73.2 (66.5–79.9) |
Mean evening systolic blood pressure (mmHg) | 123.4 (115.0–133.1) |
Mean evening diastolic blood pressure (mmHg) | 67.7 (61.9–74.2) |
Clinic systolic blood pressure (mmHg) | 136.0 (123.0–146.0) |
Clinic diastolic blood pressure (mmHg) | 76.7 (70.0–80.3) |
Hemoglobin A1c (mmol/mol) | 52.0 (48.6–59.5) |
Total cholesterol (mg/dL) | 191 (170–212) |
Creatinine (mg/dL) | 0.70 (0.58–0.83) |
eGFR (ml/min/1.732) | 75.0 (63.1–89.0) |
baPWV | 1762 (1501–2002) |
Smoking status | |
Current smoker | 63 (18.1) |
Past smoker | 109 (31.3) |
Alcohol drinking | |
everyday | 99 (28.6) |
social | 71 (20.5) |
Diabetic complications | |
Retinopathy | 84 (23.5) |
Neuropathy | 118 (31.8) |
Neuropathy | 118 (31.8) |
Macrovascular disease | 101 (27.0) |
Use of antihypertensive medication | 192 (45.2) |
RAS (−/+) | 267/156 |
Hypertension Status (n) | Normal HBP Group (152) | Isolated High HSBP Group (83) | Isolated High HDBP Group (30) | High HBP Group (159) |
---|---|---|---|---|
Male/female | 74/78 | 40/43 | 19/11 | 95/64 |
Age (y) | 64 (58–70) | 69 (63–75) | 60 (45–65) | 63 (58–70) |
Body mass index (kg/m2) | 22.1 (20.9–24.1) | 22.5 (21.2–24.7) | 23.8 (21.7–26.1) | 24.0 (21.8–26.4) |
Mean morning systolic blood pressure (mmHg) | 115.5 (107.7–119.0 | 133.3 (128.8–139.6) | 120.0 (116.9–122.2) | 139.0 (132.2–146.1) |
Mean morning diastolic blood pressure (mmHg) | 66.3 (62.6–69.0) | 69.4 (64.8–72.1) | 77.2 (76.4–81.6) | 81.6 (77.9–86.7) |
Mean evening systolic blood pressure (mmHg) | 112.9 (107.6–119.3) | 129.6 (123.6–136.3) | 118.4 (114.7–123.5) | 131.1 (123.7–140.1) |
Mean evening diastolic blood pressure (mmHg) | 62.9 (58.7–67.2) | 63.5 (60.0–67.6) | 74.3 (70.9–77.6) | 75.1 (70.4–80.6) |
Clinic systolic blood pressure (mmHg) | 124.1 (114.5–134.8) | 141.3 (134.8–151.2) | 126.8 (119.0–143.3) | 140.7 (130.6–153.0) |
Clinic diastolic blood pressure (mmHg) | 71.7 (65.8–76.0) | 71.7 (65.6–77.7) | 82.3 (78.3–92.0) | 83.0 (78.7–86.7) |
Hemoglobin A1c (%) | 6.5 (6.2–7.1) | 6.8 (6.2–7.5) | 6.4 (6.0–6.8) | 6.7 (6.2–7.3) |
Total cholesterol (mg/dL) | 188.5 (164.8–211.5) | 192 (170.5–206) | 189 (167–209) | 191 (175–216) |
Creatinine (mg/dL) | 0.67 (0.55–0.80) | 0.69 (0.55–0.85) | 0.70 (0.62–0.78) | 0.70 (0.58–0.83) |
eGFR (ml/min/1.732) | 77.8 (64.0–95.0) | 71.1 (58.0–85.0) | 84.5 (76.0–96.8) | 75.0 (64.3–86.0) |
baPWV (cm/sec) | 1584 (1411–1858) | 1844 (1645–2059) | 1491 (1281–2150) | 1726 (1509–1995) |
Smoking status (never/past/current) | 89/42/20 | 45/16/21 | 19/7/4 | 85/42/27 |
Alcohol drinking (never/social/everyday) | 97/34/20 | 53/9/20 | 16/8/6 | 69/35/49 |
Retinopathy (NDR/SDR/PDR) | 120/13/13 | 52/18/10 | 24/4/1 | 124/19/8 |
Neuropathy (−/+) | 111/41 | 57/25 | 28/1 | 120/37 |
Macrovascular complication (−/+) | 131/21 | 68/15 | 29/1 | 139/20 |
Antihypertensive medication (−/+) | 103/49 | 39/44 | 22/8 | 68/91 |
RAS (−/+) | 116/36 | 43/40 | 23/7 | 85/73 |
Hypertension Status (n) | Model 1 | * Model 2 | * Model 3 | |||
---|---|---|---|---|---|---|
Unadjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value | |
Normal HBP group (152) | 1 | 1 | 1 | |||
Isolated high HSBP group (83) | 2.68 (1.36–5.30) | 0.004 | 2.36 (1.14–4.89) | 0.020 | 2.39 (1.15–4.96) | 0.019 |
Isolated high HDBP group (30) | 0.78 (0.21–2.81) | 0.701 | 0.54 (0.12–2.53) | 0.438 | 0.54 (0.12–52.5) | 0.434 |
High HBP group (159) | 1.63 (0.87–3.04) | 0.126 | 1.57 (0.79–3.12) | 0.193 | 1.60 (0.81–3.17) | 0.173 |
Hypertension Status | Model 1 | * Model 2 | * Model 3 | |||
---|---|---|---|---|---|---|
Unadjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value | |
≥65 years old | ||||||
Normal HBP group | 1 | 1 | 1 | |||
Isolated high HSBP group | 1.90 (0.85–4.23) | 0.116 | 1.70 (0.67–4.33) | 0.263 | 1.68 (0.66–4.27) | 0.275 |
<65 years old | ||||||
Normal HBP group | 1 | 1 | 1 | |||
Isolated high HSBP group | 3.08 (0.76–12.5) | 0.116 | 3.07 (0.62–15.1) | 0.167 | 3.06 (0.63–15.0) | 0.167 |
Hypertension Status | Model 1 | * Model 2 | * Model 3 | |||
---|---|---|---|---|---|---|
Unadjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value | |
≥135 mmHg | ||||||
Normal HBP group | 1 | 1 | 1 | |||
Isolated high HSBP group | 4.21 (1.73–12.6) | 0.0009 | 5.59 (2.02–19.1) | 0.0005 | 5.39 (1.92–18.6) | 0.0008 |
<135 mmHg | ||||||
Normal HBP group | 1 | 1 | 1 | |||
Isolated high HSBP group | 1.31 (0.63–2.52) | 0.452 | 0.75 (0.33–1.57) | 0.449 | 0.71 (0.32–1.35) | 0.384 |
SBP Control ≥ 135 mmHg | SBP Control < 135 mmHg | |
---|---|---|
Sex | 0.86 (0.36–1.98) | 0.69 (0.36–1.29) |
Duration of diabetes | 0.99 (0.95–1.04) | 0.98 (0.95–1.01) |
Body mass index | 1.08 (0.97–1.22) | 0.93 (0.86–1.01) |
Hemoglobin A1c | 1.12 (0.73–1.80) | 0.73 (0.52–1.03) |
Total cholesterol | 1.00 (0.99–1.02) | 0.99 (0.98–1.003) |
Creatinine | 1.13 (0.51–6.26) | 0.74 (0.13–4.56) |
Use of antihypertensive medication | 0.90 (0.38–2.06) | 0.69 (0.37–1.32) |
Use of RAS | 1.00 (0.43–2.29) | 0.78 (0.40–1.56) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitagawa, N.; Kitagawa, N.; Ushigome, E.; Ushigome, H.; Yokota, I.; Nakanishi, N.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; Fukui, M. Impact of Isolated High Home Systolic Blood Pressure and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A 5-Year Prospective Cohort Study. J. Clin. Med. 2021, 10, 1929. https://doi.org/10.3390/jcm10091929
Kitagawa N, Kitagawa N, Ushigome E, Ushigome H, Yokota I, Nakanishi N, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Impact of Isolated High Home Systolic Blood Pressure and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A 5-Year Prospective Cohort Study. Journal of Clinical Medicine. 2021; 10(9):1929. https://doi.org/10.3390/jcm10091929
Chicago/Turabian StyleKitagawa, Nobuko, Noriyuki Kitagawa, Emi Ushigome, Hidetaka Ushigome, Isao Yokota, Naoko Nakanishi, Masahide Hamaguchi, Mai Asano, Masahiro Yamazaki, and Michiaki Fukui. 2021. "Impact of Isolated High Home Systolic Blood Pressure and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A 5-Year Prospective Cohort Study" Journal of Clinical Medicine 10, no. 9: 1929. https://doi.org/10.3390/jcm10091929
APA StyleKitagawa, N., Kitagawa, N., Ushigome, E., Ushigome, H., Yokota, I., Nakanishi, N., Hamaguchi, M., Asano, M., Yamazaki, M., & Fukui, M. (2021). Impact of Isolated High Home Systolic Blood Pressure and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A 5-Year Prospective Cohort Study. Journal of Clinical Medicine, 10(9), 1929. https://doi.org/10.3390/jcm10091929