The Relationship between Inflammatory Cytokines and Coagulopathy in Patients with COVID-19
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Laboratory Analysis
2.3. Clinical Characteristics
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Laboratory Findings
3.3. Clinical Outcome
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Coronavirus COVID-19 Global Cases. Available online: www.arcgis.com/apps/opsdashboard/index.html (accessed on 6 May 2021).
- Adhikari, S.P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.; Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 17, 29. [Google Scholar] [CrossRef] [Green Version]
- Dorgalaleh, A.; Baghaipour, M.R.; Tabibian, S.; Ghazizadeh, F.; Dabbagh, A.; Bahoush, G.; Jazebi, M.; Bahraini, M.; Fazeli, A.; Baghaipour, N.; et al. Gastrointestinal Bleeding in a Newborn Infant with Congenital Factor X Deficiency and COVID-19—A Common Clinical Feature between a Rare Disorder and a New, Common Infection. Int. J. Lab. Hematol. 2020, 42, e277–e279. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. 2020, 26, 767–772. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Q.; Wang, Y.; Wu, Y.; Xu, J.; Yu, Y.; Shang, Y. Thrombocytopenia and its association with mortality in patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, D.; García-Sanchez, A.; Rali, P.; Muriel, A.; Bikdeli, B.; Ruiz-Artacho, P.; Mao, R.; Rodríguez, C.; Hunt, B.J.; Monreal, M. Incidence of venous thromboembolism and bleeding among hospitalized patients with COVID-19: A systematic review and meta-analysis. Chest 2020, 159, 1182–1196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, W.; Jiang, W.; Xiao, M.; Li, Y.; Tang, N.; Liu, Z.; Yan, X.; Zhao, Y.; Li, T.; et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J. Thromb. Thrombolysis 2020, 50, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rojas, R.M.; Pérez-Rus, G.; Delgado-Pinos, V.E.; Domingo-González, A.; Regalado-Artamendi, I.; Alba-Urdiales, N.; Demelo-Rodríguez, P.; Monsalvo, S.; Rodríguez-Macías, G.; Ballesteros, M.; et al. COVID-19 coagulopathy: An in-depth analysis of the coagulation system. Eur. J. Haematol. 2020, 105. [Google Scholar] [CrossRef] [PubMed]
- Stefely, J.A.; Christensen, B.B.; Gogakos, T.; Sullivan, J.K.C.; Montgomery, G.G.; Barranco, J.P.; van Cott, E.M. Marked factor V activity elevation in severe COVID -19 is associated with venous thromboembolism. Am. J. Hematol. 2020, 95, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Blokhin, I.O.; Lentz, S.R. Mechanisms of thrombosis in obesity. Curr. Opin. Hematol. 2013, 20, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Korakas, E.; Ikonomidis, I.; Kousathana, F.; Balampanis, K.; Kountouri, A.; Raptis, A.; Palaiodimou, L.; Kokkinos, A.; Lambadiari, V. Obesity and COVID-19: Immune and metabolic derangement as a possible link to adverse clinical outcomes. Am. J. Physiol. Metab. 2020, 319, E105–E109. [Google Scholar] [CrossRef]
- Vazquez-Garza, E.; Jerjes-Sanchez, C.; Navarrete, A.; Joya-Harrison, J.; Rodriguez, D. Venous thromboembolism: Thrombosis, inflammation, and immunothrombosis for clinicians. J. Thromb. Thrombolysis 2017, 44, 377–385. [Google Scholar] [CrossRef]
- National Health Commission of China. The Guidelines for Diagnosis and Treatment of Novel Coronavirus (2019-nCoV) Infected Pneumonia, 6th ed. Available online: http://www.gov.cn/zhengce/zhengceku/2020-02/19/content5480948.htm2020 (accessed on 1 February 2020). (In Chinese)
- Sebuhyan, M.; Mirailles, R.; Crichi, B.; Frere, C.; Bonnin, P.; Bergeron-Lafaurie, A.; Denis, B.; Liegeon, G.; Peyrony, O.; Farge, D. How to screen and diagnose deep venous thrombosis (DVT) in patients hospitalized for or suspected of COVID-19 infection, outside the intensive care units. JMV J. Méd. Vasc. 2020, 45, 334–343. [Google Scholar] [CrossRef]
- Rouhezamin, M.R.; Haseli, S. Diagnosing Pulmonary Thromboembolism in COVID-19: A Stepwise Clinical and Imaging Approach. Acad. Radiol. 2020, 27, 896–897. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020, 20, 269–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruetsch, C.; Brglez, V.; Crémoni, M.; Zorzi, K.; Fernandez, C.; Boyer-Suavet, S.; Benzaken, S.; Demonchy, E.; Risso, K.; Courjon, J.; et al. Functional exhaustion of Type I and II interferons production in severe COVID-19 patients. Front. Med. 2020, 7, 603961. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Li, J.-W.; Zhao, H.; Wang, G.-Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020, 220, 1–13. [Google Scholar] [CrossRef]
- Ritis, K.; Doumas, M.; Mastellos, D.; Micheli, A.; Giaglis, S.; Magotti, P.; Rafail, S.; Kartalis, G.; Sideras, P.; Lambris, J.D. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 2006, 177, 4794–4802. [Google Scholar] [CrossRef]
- Akima, S.; McLintock, C.; Hunt, B.J. RE: ISTH interim guidance to recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 2057–2058. [Google Scholar] [CrossRef] [PubMed]
- Haematology, T.L. COVID-19 coagulopathy: An evolving story. Lancet Haematol. 2020, 7, e425. [Google Scholar] [CrossRef]
- Zhang, P.; Qu, Y.; Tu, J.; Cao, W.; Hai, N.; Li, S.; Qu, P.; Lv, C.; Guo, R. Applicability of bedside ultrasonography for the diagnosis of deep venous thrombosis in patients with COVID -19 and treatment with low molecular weight heparin. J. Clin. Ultrasound 2020, 48, 522–526. [Google Scholar] [CrossRef] [PubMed]
Normal Cytokine Levels | Increased Cytokine Levels | Total | p Value | ||
---|---|---|---|---|---|
Number | 61 | 75 | 136 | p > 0.05 | |
Age (year) (range) | 58 (21–59) | 55 (23–64) | 56 (21–64) | p > 0.05 | |
Gender (male/female) | 43/18 | 45/30 | 86/50 | p > 0.05 | |
Abnormal coagulation tests: n (%) | D-dimer | 5 (31.2%) | 11 (68.8%) | 16 | NA |
PT | 6 (40%) | 9 (60%) | 15 | ||
APTT | 6 (46.2%) | 7 (53.8%) | 13 | ||
FDP | 6 (40%) | 9 (60%) | 15 | ||
Fibrinogen | 2 (25%) | 6 (75%) | 8 | ||
FXII | 0 | 2 (100%) | 2 | ||
DVT/PE | 5 | 26 | 31 | p < 0.001 | |
Underlying disorders | Diabetes | 3 | 2 | 22 | NA |
Renal failure | 0 | 1 | |||
Hepatic failure | 0 | 1 | |||
Cancer | 2 | 1 | |||
Hypothyroidism | 1 | 2 | |||
Cardiovascular disorders | 6 | 3 | |||
Death | 1 | 6 | 7 | p < 0.001 |
Normal Cytokines Levels | Increased Cytokines Levels | Total | Reference Range | p Value | Multivariate OR (95% CI) | p Value | |
---|---|---|---|---|---|---|---|
PT (median) (s) | 11.8 | 12.6 | 12.4 | 11.2–13.8 | p > 0.05 | NA | NA |
APTT (median) (s) | 29.4 | 27.5 | 28.2 | 21–34 | p > 0.05 | ||
D-dimer (median) (ng/mL) (FEU) | 542 | 625 | 595 | 500 | p > 0.05 | ||
FDP (median) (μg/mL) | 8.3 | 9.2 | 8.7 | 5 | p > 0.05 | ||
Fibrinogen (median) (mg/dL) | 345 | 415 | 384 | 200–400 | p > 0.05 | ||
Factor XII activity (median) (IU/dL) | 95 | 87 | 91 | 60–150 | p > 0.05 | ||
Coagulation parameters during hospitalization | |||||||
PT (median) (s) | 14.8 | 19.5 | 17.2 | 11.7–14.3 | p < 0.01 | 1.275 (1.023–1.590) | 0.031 |
APTT (median) (s) | 39 | 58.5 | 43.5 | 22–36 | p < 0.01 | 1.074 (1.027–1.124) | 0.002 |
D-dimer (median) (ng/mL) (FEU) | 648 | 1245 | 826 | 500 | p < 0.001 | - | - |
Dependent Variable | Independent Variable | Univariate p | Multivariate OR (95% CI) | p Value |
---|---|---|---|---|
DVT/PE | IL-1 | 0.000 * | 6.778 (2.409–19.072) | 0.000 |
IL-6 | 0.000 * | - | - | |
TNF-α | 0.000 * | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rad, F.; Dabbagh, A.; Dorgalaleh, A.; Biswas, A. The Relationship between Inflammatory Cytokines and Coagulopathy in Patients with COVID-19. J. Clin. Med. 2021, 10, 2020. https://doi.org/10.3390/jcm10092020
Rad F, Dabbagh A, Dorgalaleh A, Biswas A. The Relationship between Inflammatory Cytokines and Coagulopathy in Patients with COVID-19. Journal of Clinical Medicine. 2021; 10(9):2020. https://doi.org/10.3390/jcm10092020
Chicago/Turabian StyleRad, Fariba, Ali Dabbagh, Akbar Dorgalaleh, and Arijit Biswas. 2021. "The Relationship between Inflammatory Cytokines and Coagulopathy in Patients with COVID-19" Journal of Clinical Medicine 10, no. 9: 2020. https://doi.org/10.3390/jcm10092020
APA StyleRad, F., Dabbagh, A., Dorgalaleh, A., & Biswas, A. (2021). The Relationship between Inflammatory Cytokines and Coagulopathy in Patients with COVID-19. Journal of Clinical Medicine, 10(9), 2020. https://doi.org/10.3390/jcm10092020