Coronary Microvascular Vasodilatory Function: Related Clinical Features and Differences According to the Different Coronary Arteries and Types of Coronary Spasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Coronary Function Test (CFT)
2.3. Definitions of CFT
2.4. Definitions of Clinical Parameters
2.5. Statistical Analyses
3. Results
3.1. Relationship between Patients’ Characteristics and MVFT Data (Analysis 1)
3.2. Relationship between MVFT Data and Lesion Characteristics (Analysis 2)
3.3. Relationship between MVFT Data in the LAD and RCA (Analysis 3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Reeh, J.; Therming, C.B.; Heitmann, M.; Hojberg, S.; Sorum, C.; Bech, J.; Husum, D.; Dominguez, H.; Sehestedt, T.; Hermann, T.; et al. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. Eur. Heart J. 2019, 40, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M.A.; Loffler, A.I.; Ouellette, M.; Smith, L.; Kramer, C.M.; Bourque, J.M. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc. Imaging 2015, 8, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Suda, A.; Takahashi, J.; Hao, K.; Kikuchi, Y.; Shindo, T.; Ikeda, S.; Sato, K.; Sugisawa, J.; Matsumoto, Y.; Miyata, S.; et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J. Am. Coll. Cardiol. 2019, 74, 2350–2360. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [CrossRef]
- Murthy, V.L.; Naya, M.; Taqueti, V.R.; Foster, C.R.; Gaber, M.; Hainer, J.; Dorbala, S.; Blankstein, R.; Rimoldi, O.; Camici, P.G.; et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014, 129, 2518–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiher, A.M.; Schachinger, V.; Minners, J. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 1995, 92, 1094–1100. [Google Scholar] [CrossRef]
- Pepine, C.J.; Anderson, R.D.; Sharaf, B.L.; Reis, S.E.; Smith, K.M.; Handberg, E.M.; Johnson, B.D.; Sopko, G.; Bairey Merz, C.N. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J. Am. Coll. Cardiol. 2010, 55, 2825–2832. [Google Scholar] [CrossRef] [Green Version]
- Mygind, N.D.; Michelsen, M.M.; Pena, A.; Frestad, D.; Dose, N.; Aziz, A.; Faber, R.; Host, N.; Gustafsson, I.; Hansen, P.R.; et al. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: The iPOWER Study. J. Am. Heart Assoc. 2016, 5, e003064. [Google Scholar] [CrossRef] [Green Version]
- Murai, T.; Lee, T.; Yonetsu, T.; Iwai, T.; Takagi, T.; Hishikari, K.; Masuda, R.; Iesaka, Y.; Isobe, M.; Kakuta, T. Variability of microcirculatory resistance index and its relationship with fractional flow reserve in patients with intermediate coronary artery lesions. Circ. J. 2013, 77, 1769–1776. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Fearon, W.F.; Honda, Y.; Tanaka, S.; Pargaonkar, V.; Fitzgerald, P.J.; Lee, D.P.; Stefanick, M.; Yeung, A.C.; Tremmel, J.A. Effect of sex differences on invasive measures of coronary microvascular dysfunction in patients with angina in the absence of obstructive coronary artery disease. JACC Cardiovasc. Interv. 2015, 8, 1433–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teragawa, H.; Oshita, C.; Ueda, T. History of gastroesophageal reflux disease in patients with suspected coronary artery disease. Heart Vessel. 2019, 34, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Sueda, S.; Kohno, H.; Ochi, T.; Uraoka, T. Overview of the acetylcholine spasm provocation test. Clin. Cardiol. 2015, 38, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Jung, J.H.; Hwang, D.; Park, J.; Fan, Y.; Na, S.H.; Doh, J.H.; Nam, C.W.; Shin, E.S.; Koo, B.K. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J. Am. Coll. Cardiol. 2016, 67, 1158–1169. [Google Scholar] [CrossRef]
- Saito, Y.; Kitahara, H.; Shoji, T.; Tokimasa, S.; Nakayama, T.; Sugimoto, K.; Fujimoto, Y.; Kobayashi, Y. Relation between severity of myocardial bridge and vasospasm. Int. J. Cardiol. 2017, 248, 34–38. [Google Scholar] [CrossRef]
- Teragawa, H.; Oshita, C.; Ueda, T. The myocardial bridge: Potential influences on the coronary artery vasculature. Clin. Med. Insights Cardiol. 2019, 13, 1179546819846493. [Google Scholar] [CrossRef]
- Parikh, N.I.; Honeycutt, E.F.; Roe, M.T.; Neely, M.; Rosenthal, E.J.; Mittleman, M.A.; Carrozza, J.P., Jr.; Ho, K.K. Left and codominant coronary artery circulations are associated with higher in-hospital mortality among patients undergoing percutaneous coronary intervention for acute coronary syndromes: Report from the national cardiovascular database cath percutaneous coronary intervention (CathPCI) registry. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 775–782. [Google Scholar] [CrossRef] [Green Version]
- JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ. J. 2014, 78, 2779–2801. [Google Scholar] [CrossRef] [Green Version]
- Beltrame, J.F.; Crea, F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017, 38, 2565–2568. [Google Scholar] [CrossRef] [Green Version]
- Austen, W.G.; Edwards, J.E.; Frye, R.L.; Gensini, G.G.; Gott, V.L.; Griffith, L.S.; McGoon, D.C.; Murphy, M.L.; Roe, B.B. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc committee for grading of coronary artery disease, council on cardiovascular surgery, American heart association. Circulation 1975, 51, 5–40. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Kaikita, K.; Nakayama, N.; Horio, E.; Yoshimura, H.; Ono, T.; Ohba, K.; Tsujita, K.; Kojima, S.; Tayama, S.; et al. Coronary vasomotor response to intracoronary acetylcholine injection, clinical features, and long-term prognosis in 873 consecutive patients with coronary spasm: Analysis of a single-center study over 20 years. J. Am. Heart Assoc. 2013, 2, e000227. [Google Scholar] [CrossRef] [Green Version]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- National Cholesterol Education Program. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Devereux, R.B.; Reichek, N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977, 55, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Devereux, R.B.; Lutas, E.M.; Casale, P.N.; Kligfield, P.; Eisenberg, R.R.; Hammond, I.W.; Miller, D.H.; Reis, G.; Alderman, M.H.; Laragh, J.H. Standardization of M-mode echocardiographic left ventricular anatomic measurements. J. Am. Coll. Cardiol. 1984, 4, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Teragawa, H.; Oshita, C.; Orita, Y. Clinical significance of prolonged chest pain in vasospastic angina. World J. Cardiol. 2020, 12, 450–459. [Google Scholar] [CrossRef]
- Tanaka, A.; Shimabukuro, M.; Machii, N.; Teragawa, H.; Okada, Y.; Shima, K.R.; Takamura, T.; Taguchi, I.; Hisauchi, I.; Toyoda, S.; et al. Secondary analyses to assess the profound effects of empagliflozin on endothelial function in patients with type 2 diabetes and established cardiovascular diseases: The placebo-controlled double-blind randomized effect of empagliflozin on endothelial function in cardiovascular high risk diabetes mellitus: Multi-center placebo-controlled double-blind randomized trial. J. Diabetes Investig. 2020, 11, 1551–1563. [Google Scholar] [CrossRef]
- Nowak, J.; Murray, J.J.; Oates, J.A.; Fitzgerald, G.A. Biochemical evidence of a chronic abnormality in platelet and vascular function in healthy individuals who smoke cigarettes. Circulation 1987, 76, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Raghuveer, G.; White, D.A.; Hayman, L.L.; Woo, J.G.; Villafane, J.; Celermajer, D.; Ward, K.D.; de Ferranti, S.D.; Zachariah, J.; American Heart Association Committee on Atherosclerosis; et al. Cardiovascular consequences of childhood secondhand tobacco smoke exposure: Prevailing evidence, burden, and racial and socioeconomic disparities: A scientific statement from the American Heart Association. Circulation 2016, 134, e336–e359. [Google Scholar] [CrossRef] [Green Version]
- Sugiishi, M.; Takatsu, F. Cigarette smoking is a major risk factor for coronary spasm. Circulation 1993, 87, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Harle, T.; Luz, M.; Meyer, S.; Kronberg, K.; Nickau, B.; Escaned, J.; Davies, J.; Elsasser, A. Effect of coronary anatomy and hydrostatic pressure on intracoronary indices of stenosis severity. JACC Cardiovasc. Interv. 2017, 10, 764–773. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Ito, K.; Kin, H.; Shirai, Y.; Okazaki, A.; Miyajima, K.; Watanabe, T.; Tatsuguchi, M.; Wakabayashi, Y.; Maekawa, Y. Impact of hydrostatic pressure variations caused by height differences in supine and prone positions on fractional flow reserve values in the coronary circulation. J. Interv. Cardiol. 2019, 2019, 4532862. [Google Scholar] [CrossRef]
- Nagamatsu, S.; Sakamoto, K.; Yamashita, T.; Sato, R.; Tabata, N.; Motozato, K.; Yamanaga, K.; Ito, M.; Fujisue, K.; Kanazawa, H.; et al. Impact of hydrostatic pressure on fractional flow reserve: In vivo experimental study of anatomical height difference of coronary arteries. J. Cardiol. 2020, 76, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Pirozzolo, G.; Martinez Pereyra, V.; Hubert, A.; Guenther, F.; Sechtem, U.; Bekeredjian, R.; Mahrholdt, H.; Ong, P.; Seitz, A. Coronary artery spasm and impaired myocardial perfusion in patients with ANOCA: Predictors from a multimodality study using stress CMR and acetylcholine testing. Int. J. Cardiol. 2021, 343, 5–11. [Google Scholar] [CrossRef]
- Sugisawa, J.; Matsumoto, Y.; Takeuchi, M.; Suda, A.; Tsuchiya, S.; Ohyama, K.; Nishimiya, K.; Akizuki, M.; Sato, K.; Ohura, S.; et al. Beneficial effects of exercise training on physical performance in patients with vasospastic angina. Int. J. Cardiol. 2021, 328, 14–21. [Google Scholar] [CrossRef]
- Ohyama, K.; Matsumoto, Y.; Takanami, K.; Ota, H.; Nishimiya, K.; Sugisawa, J.; Tsuchiya, S.; Amamizu, H.; Uzuka, H.; Suda, A.; et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J. Am. Coll. Cardiol. 2018, 71, 414–425. [Google Scholar] [CrossRef]
- Akasaka, T.; Yoshida, K.; Hozumi, T.; Takagi, T.; Kawamoto, T.; Kaji, S.; Morioka, S.; Yoshikawa, J. Comparison of coronary flow reserve between focal and diffuse vasoconstriction induced by ergonovine in patients with vasospastic angina. Am. J. Cardiol. 1997, 80, 705–710. [Google Scholar] [CrossRef]
Factors | Numbers or Values | Relationship between Factors and CFR, p Value | Relationship between Factors and IMR, p Value |
---|---|---|---|
Age (years) | 69 (53, 76) | 0.54 | 0.65 |
Men/Women | 22/27 | 0.16 | 0.54 |
Body mass index | 23.5 (21.8, 25.7) | 0.13 | 0.37 |
Coronary risk factors | |||
Smoker (active/former/never) | 7/15/27 | 0.12 | <0.01 |
Hypertension | 28 (57%) | 0.65 | 0.15 |
Dyslipidaemia | 26 (53%) | 0.94 | 0.35 |
Diabetes mellitus | 6 (13%) | 0.92 | 0.36 |
Presence of MtS | 7 (14%) | 0.08 | 0.39 |
Presence of CKD | 9 (18%) | 1.00 | 0.53 |
Blood chemical data | |||
LDL-cholesterol (mg/dL) | 100 (88, 123) | 0.71 | 0.16 |
Triglyceride (mg/dL) | 99 (82, 156) | 0.24 | 0.77 |
Fasting blood sugar (mg/dL) | 99 (90, 109) | 0.32 | 0.43 |
Haemoglobin A1C (%) | 5.9 (5.6, 6.2) | 0.42 | 0.56 |
CRP (mg/dL) | 0.05 (0.03, 0.11) | 0.78 | 0.99 |
eGFR (mL/min/1.73 m2) | 67.0 (61.4, 74.7) | 0.73 | 0.25 |
NT-proBNP (pg/mL) | 92 (45, 195) | 0.17 | 0.12 |
Echocardiography | |||
LVEF (%) | 66 (62, 70) | 0.22 | 0.86 |
LVMI (g/m2) | 80 (68, 94) | 0.48 | 0.29 |
Peripheral endothelial function | |||
FMD (%) | 3.5 (2.3, 5.3) | 0.55 | 0.82 |
NMD (%) | 15.8 (10.3, 18.1) | 0.14 | 0.16 |
RHI | 1.57 (1.43, 2.10) | 0.71 | 0.69 |
CAG SPT MVFT | |||
Myocardial bridge | 13 (27%) | 0.18 | 0.28 |
VSA | 31 (63%) | 0.58 | 0.33 |
MVS | 9 (18%) | 0.43 | 0.35 |
Baseline Pd/Pa in LAD | 0.96 (0.95, 0.98) | 0.84 | 0.65 |
FFR in LAD | 0.92 (0.89, 0.94) | 0.94 | 0.84 |
CFR in LAD | 2.4 (2.0, 3.3) | (−) | <0.01 |
IMR in LAD | 25.0 (16.1, 40.3) | <0.01 | (−) |
Lesion Characteristics | No. | Baseline Pd/Pa | p Value | FFR | p Value | CFR | p Value | IMR | p Value | MVD | p Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Atherosclerosis | (+) | 26 | 0.97 (0.95, 0.98) | 0.04 | 0.92 (0.85, 0.96) | 0.01 | 2.4 (1.9, 3.5) | 0.88 | 25.1 (20.9, 41.9) | 0.72 | 15 (57%) | 0.14 |
(−) | 47 | 0.98 (0.96, 1.00) | 0.94 (0.92, 0.99) | 2.5 (2.0, 3.3) | 28.8 (19.5, 41.2) | 35 (74%) | ||||||
Vessels | LAD | 49 | 0.96 (0.95, 0.98) | <0.01 | 0.92 (0.89, 0.94) | <0.01 | 2.4 (2.0, 3.3) | 0.83 | 25.0 (16.1, 40.3) | 0.01 | 29 (59%) | 0.01 |
RCA | 24 | 1.02 (1.00, 1.03) | 1.00 (0.96, 1.02) | 2.7 (1.8, 3.3) | 36.6 (25.3, 46.1) | 21 (88%) | ||||||
Types of spasm | Focal spasm | 24 | 0.97 (0.95, 1.00) | 0.15 | 0.94 * (0.91, 0.99) | 0.03 | 2.4 (1.8, 3.2) | 0.09 | 33.4 * (25.1, 48.4) | 0.15 | 21 * (88%) | 0.05 |
Diffuse spasm | 15 | 0.96 (0.94, 0.98) | 0.92 (0.87, 0.94) | 2.8 (2.1, 4.5) | 23.0 (16.1, 35.0) | 7 (47%) | ||||||
MVS | 12 | 0.97 (0.95, 1.00) | 0.94 (0.90, 0.97) | 2.3 (1.7, 2.6) | 31.6 (13.8, 40.1) | 8 (67%) | ||||||
None | 22 | 0.98 (0.95, 1.02) | 0.96 (0.92, 1.01) | 2.9 (2.3, 3.9) | 25.3 (21.8, 44.2) | 14 (64%) |
Factors | Estimate | 95% CI | χ2 | p Value |
---|---|---|---|---|
Atherosclerosis | −0.36 | −0.99–0.25 | 1.34 | 0.25 |
Vessels | ||||
RCA | 0.90 | 0.20–1.75 | 5.37 | 0.02 |
Types of spasm | ||||
Focal spasm | 1.41 | 0.41–2.63 | 6.49 | 0.01 |
Diffuse spasm | −0.77 | −1.77–0.20 | 2.40 | 0.12 |
MVS | −0.04 | −1.16–1.13 | 0.01 | 0.93 |
R2 = 0.19 |
Case No. | Age (Years) | Gender | Diagnosis | LAD | RCA | IMR in RCA> in LAD | Dominant RCA | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atherosclerosis | Epi- Spasm | Type of Spasm | Baseline Pd/Pa | FFR | CFR | IMR | MVD | Atherosclerosis | Epi- Spasm | Type of Spasm | Baseline Pd/Pa | FFR | CFR | IMR | MVD | ||||||
1 | 72 | M | VSA | 1 | 0 | MVS | 0.95 | 0.83 | 2 | 35 | 1 | 0 | 0 | None | 1.00 | 1.00 | 4.4 | 44 | 1 | 1 | 1 |
2 | 78 | F | VSA | 0 | 1 | Focal | 0.96 | 0.93 | 3.5 | 25 | 1 | 1 | 0 | None | 1.00 | 0.93 | 4.3 | 20 | 0 | 0 | 0 |
3 | 50 | F | MVS | 0 | 0 | MVS | 0.96 | 0.94 | 1.8 | 40.5 | 1 | 0 | 0 | None | 1.02 | 1.02 | 2.5 | 54.3 | 1 | 1 | 1 |
4 | 73 | F | VSA | 0 | 1 | Focal | 0.94 | 0.86 | 3.3 | 41.2 | 1 | 0 | 1 | Focal | 1.06 | 0.99 | 3.3 | 28.8 | 1 | 0 | 1 |
5 | 66 | M | VSA | 1 | 1 | Diffuse | 0.96 | 0.92 | 2.5 | 25.5 | 1 | 0 | 1 | Diffuse | 1.07 | 0.96 | 2.1 | 26.3 | 1 | 1 | 1 |
6 | 82 | M | VSA | 1 | 1 | Focal | 0.95 | 0.91 | 1.4 | 32 | 1 | 1 | 1 | Focal | 1.09 | 1.09 | 1.8 | 25.2 | 1 | 0 | 1 |
7 | 71 | M | VSA | 0 | 1 | Diffuse | 0.96 | 0.92 | 2.2 | 40.2 | 1 | 0 | 1 | Focal | 1.03 | 1.01 | 1.6 | 87.7 | 1 | 1 | 0 |
8 | 71 | F | VSA | 0 | 1 | Focal | 1 | 0.99 | 2 | 27 | 1 | 0 | 0 | None | 1.06 | 1.04 | 2.7 | 46.6 | 1 | 1 | 1 |
9 | 42 | M | VSA | 0 | 1 | Focal | 0.96 | 0.94 | 1.8 | 21.2 | 1 | 0 | 0 | None | 1.02 | 1.00 | 3.05 | 38.7 | 1 | 1 | 1 |
10 | 73 | F | VSA | 1 | 1 | Diffuse | 0.99 | 0.95 | 3 | 11.3 | 0 | 1 | 0 | None | 1.00 | 1.00 | 1.9 | 23.2 | 1 | 1 | 1 |
11 | 79 | F | MVS | 0 | 0 | MVS | 0.98 | 0.93 | 4 | 13.7 | 0 | 1 | 0 | None | 1.06 | 0.98 | 2 | 32 | 1 | 1 | 1 |
12 | 72 | F | VSA | 0 | 1 | Focal | 0.99 | 0.95 | 2.3 | 34.8 | 1 | 1 | 1 | Focal | 1.09 | 0.98 | 1.4 | 116.2 | 1 | 1 | 1 |
13 | 83 | M | VSA | 0 | 1 | Focal | 0.95 | 0.95 | 1.5 | 47.6 | 1 | 0 | 0 | None | 1.02 | 1.02 | 2.9 | 44.8 | 1 | 0 | 1 |
14 | 55 | F | MVS | 0 | 0 | MVS | 0.95 | 0.93 | 2.2 | 12.2 | 0 | 0 | 0 | None | 1.02 | 0.96 | 4.2 | 25.5 | 1 | 1 | 0 |
15 | 28 | F | VSA | 0 | 1 | Diffuse | 0.95 | 0.91 | 2.4 | 24.5 | 0 | 0 | NA | NA | 1.01 | 1.01 | 2.3 | 19 | 0 | 0 | 1 |
16 | 58 | M | VSA | 1 | 1 | Diffuse | 0.95 | 0.88 | 4.6 | 16.1 | 0 | 0 | 1 | Diffuse | 0.94 | 0.90 | 3.7 | 35 | 1 | 1 | 1 |
17 | 74 | F | MVS | 0 | 0 | MVS | 1.00 | 1.00 | 2.3 | 62.2 | 1 | 0 | 0 | MVS | 1.00 | 1.00 | 2.7 | 38.8 | 1 | 0 | 1 |
18 | 47 | F | VSA | 0 | 1 | Focal | 0.98 | 0.94 | 1.8 | 19.5 | 1 | 0 | 1 | Diffuse | 0.96 | 0.94 | 1.2 | 16.2 | 1 | 0 | 0 |
19 | 54 | F | VSA | 0 | 1 | Diffuse | 0.98 | 0.94 | 1.4 | 53.0 | 1 | 0 | 0 | None | 1.03 | 1.02 | 3.1 | 24.2 | 0 | 0 | 1 |
20 | 29 | M | VSA | 1 | 1 | Diffuse | 0.98 | 0.84 | 4.5 | 23.0 | 0 | 0 | 0 | None | 1.04 | 0.98 | 3.9 | 22.9 | 0 | 0 | 1 |
21 | 74 | M | MVD | 1 | 0 | None | 0.95 | 0.85 | 2.3 | 23.1 | 0 | 1 | 0 | None | 0.98 | 0.95 | 1.3 | 54.6 | 1 | 1 | 1 |
71 (52, 74) | M/F 9/12 | VSA/ MVS/ MVD 16/4/1 | 7 (33%) | 15 (71%) | 0.96 (0.95, 0.98) | 0.93 (0.90, 0.95 | 2.3 (1.8, 3.2) | 25.5 (20.4, 40.4) | 14 (67%) | 6 (29%) | 7 (33%) | 1.02 * (1.00, 1.05) | 1.00 * (0.96, 1.02 | 2.7 (1.9, 3.5) | 32.0 # (23.7, 45.7) | 17 (81%) | 12 (57%) | 17 (81%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teragawa, H.; Oshita, C.; Uchimura, Y.; Akazawa, R.; Orita, Y. Coronary Microvascular Vasodilatory Function: Related Clinical Features and Differences According to the Different Coronary Arteries and Types of Coronary Spasm. J. Clin. Med. 2022, 11, 130. https://doi.org/10.3390/jcm11010130
Teragawa H, Oshita C, Uchimura Y, Akazawa R, Orita Y. Coronary Microvascular Vasodilatory Function: Related Clinical Features and Differences According to the Different Coronary Arteries and Types of Coronary Spasm. Journal of Clinical Medicine. 2022; 11(1):130. https://doi.org/10.3390/jcm11010130
Chicago/Turabian StyleTeragawa, Hiroki, Chikage Oshita, Yuko Uchimura, Ryota Akazawa, and Yuichi Orita. 2022. "Coronary Microvascular Vasodilatory Function: Related Clinical Features and Differences According to the Different Coronary Arteries and Types of Coronary Spasm" Journal of Clinical Medicine 11, no. 1: 130. https://doi.org/10.3390/jcm11010130
APA StyleTeragawa, H., Oshita, C., Uchimura, Y., Akazawa, R., & Orita, Y. (2022). Coronary Microvascular Vasodilatory Function: Related Clinical Features and Differences According to the Different Coronary Arteries and Types of Coronary Spasm. Journal of Clinical Medicine, 11(1), 130. https://doi.org/10.3390/jcm11010130