Influence of Overhanging Bleb on Corneal Higher-Order Aberrations after Trabeculectomy
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quigley, H.A.; Addicks, E.M.; Green, W.R.; Maumenee, A.E. Optic nerve damage in human glaucoma. Arch. Ophthalmol. 1981, 99, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.E. Trabeculectomy. Preliminary report of a new method. Am. J. Ophthalmol. 1968, 66, 673–679. [Google Scholar] [CrossRef]
- Lama, P.J.; Fechtner, R.D. Antifibrotics and wound healing in glaucoma surgery. Surv. Ophthalmol. 2003, 48, 314–346. [Google Scholar] [CrossRef]
- Ou-Yang, P.B.; Qi, X.; Duan, X.C. Histopathology and treatment of a huge overhanging filtering bleb. BMC Ophthalmol. 2016, 16, 175. [Google Scholar] [CrossRef] [Green Version]
- Desai, K.; Krishna, R. Surgical management of a dysfunctional filtering bleb. Ophthal. Surg. Lasers 2002, 33, 501–503. [Google Scholar] [CrossRef]
- Lanzl, I.M.; Katz, L.J.; Shindler, R.L.; Spaeth, G.L. Surgical management of overhanging blebs after filtering procedures. J. Glaucoma 1999, 8, 247–249. [Google Scholar] [CrossRef]
- Claridge, K.G.; Galbraith, J.K.; Karmel, V.; Bates, A.K. The effect of trabeculectomy on refraction, keratometry and corneal topography. Eye 1995, 9, 292–298. [Google Scholar] [CrossRef]
- Fukuoka, S.; Amano, S.; Honda, N.; Mimura, T.; Usui, T.; Araie, M. Effect of trabeculectomy on ocular and corneal higher-order aberrations. JPN J. Ophthalmol. 2011, 55, 460–466. [Google Scholar] [CrossRef]
- Pesudovs, K.; Coster, D.J. Penetrating keratoplasty for keratoconus: The nexus between corneal wavefront aberrations and visual performance. J. Refract. Surg. 2006, 22, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Pesudovs, K.; Figueiredo, F.C. Corneal first surface wavefront aberrations before and after pterygium surgery. J. Refract. Surg. 2006, 22, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Gumus, K.; Erkilic, K.; Topaktas, D.; Colin, J. Effect of pterygia on refractive indices, corneal topography, and ocular aberrations. Cornea 2011, 30, 24–29. [Google Scholar] [CrossRef]
- Minami, K.; Tokunaga, T.; Okamoto, K.; Miyata, K.; Oshika, T. Influence of pterygium size on corneal higher-order aberration evaluated using anterior-segment optical coherence tomography. BMC Ophthalmol. 2018, 18, 166. [Google Scholar] [CrossRef]
- Miyata, K.; Minami, K.; Otani, A.; Tokunaga, T.; Tokuda, S.; Amano, S. Proposal for a novel severity grading system for Pterygia based on corneal topographic data. Cornea 2017, 36, 834–840. [Google Scholar] [CrossRef]
- Scheie, H.G.; Guehl, J.J. Surgical management of overhanging blebs after filtering procedures. Arch. Ophthalmol. 1979, 97, 325–326. [Google Scholar] [CrossRef]
- Ulrich, G.G.; Proia, A.D.; Shields, M.B. Clinicopathologic features and surgical management of dissecting glaucoma filtering blebs. Ophthalmic. Surg. Lasers 1997, 28, 151–155. [Google Scholar] [CrossRef]
- Wilson, M.R.; Kotas-Neumann, R. Free conjunctival patch for repair of persistent late bleb leak. Am. J. Ophthalmol. 1994, 117, 569–574. [Google Scholar] [CrossRef]
- Geyer, O. Management of large, leaking, and inadvertent filtering blebs with the neodymium: YAG laser. Ophthalmology 1998, 105, 983–987. [Google Scholar] [CrossRef]
- Ng, D.S.C.; Ching, R.H.Y.; Yam, J.C.S.; Chan, C.W.N. Safe excision of a large overhanging cystic bleb following autologous blood injection and compression suture. Korean J. Ophthalmol. 2013, 27, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Zhu, Y.; Zhang, Y.; Li, Z.; Ge, J.; Zhuo, Y. Dry eye disease in patients with functioning filtering blebs after trabeculectomy. PLoS ONE 2016, 11, e0152696. [Google Scholar] [CrossRef]
- Mojzis, P.; Majerova, K.; Plaza-Puche, A.B.; Hrckova, L.; Alio, J.L. Visual outcomes of a new toric trifocal diffractive intraocular lens. J. Cataract. Refract. Surg. 2015, 41, 2695–2706. [Google Scholar] [CrossRef]
- Song, I.S.; Park, J.H.; Park, J.H.; Yoon, S.Y.; Kim, J.Y.; Kim, M.J.; Tchah, H. Corneal coma and trefoil changes associated with incision location in cataract surgery. J. Cataract. Refract. Surg. 2015, 41, 2145–2151. [Google Scholar] [CrossRef]
- Oshika, T.; Sugita, G.; Miyata, K.; Tokunaga, T.; Samejima, T.; Okamoto, C.; Ishii, Y. Influence of tilt and decentration of scleral-sutured intraocular lens on ocular higher-order wavefront aberration. Br. J. Ophthalmol. 2007, 91, 185–188. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, F.; Yamane, N.; Okamoto, C.; Hiraoka, T.; Oshika, T. Changes in higher-order aberrations after scleral buckling surgery for rhegmatogenous retinal detachment. Ophthalmology 2008, 115, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Dietze, P.J.; Oram, O.; Kohnen, T.; Feldman, R.M.; Koch, D.D.; Gross, R.L. Visual function following trabeculectomy, effect on corneal topography and contrast sensitivity. J. Glaucoma 1997, 6, 99–103. [Google Scholar] [CrossRef]
- Fard, A.M.; Sorkhabi, R.D.; Nasiri, K.; Tajlil, A. Effect of trabeculectomy on ocular higher-order aberrations in patients with open angle glaucoma. North. Clin. Istanb. 2018, 5, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Weale, R.A. Pterygium. In Epidemiology of Eye Disease, 2nd ed.; Johnson, G.J., Minassian, D.C., Weale, R.A., West, S.K., Eds.; Arnold Publishers: London, UK, 2003. [Google Scholar]
- Grostern, R.J.; Torczynski, E.; Brown, S.V. Surgical repair and histopathologic features of a dissecting glaucoma filtration bleb. Arch. Ophthalmol. 1999, 117, 1566–1567. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hirota, A.; Hirooka, K.; Kiuchi, Y. Improvements in optical characteristics after excision of an overhanging bleb developed following trabeculectomy. Case Rep. Ophthalmol. Med. 2021, 4, 7433987. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, K.; Yang, J.; Lu, Y. Changes of corneal higher-order aberrations after cataract surgery. Optom. Vis. Sci. 2014, 91, 1244–1250. [Google Scholar] [CrossRef]
- Villegas, E.A.; Alcón, E.; Rubio, E.; Marín, J.M.; Artal, P. One-year follow-up of changes in refraction and aberrations induced by corneal incision. PLoS ONE 2019, 14, e0224823. [Google Scholar] [CrossRef]
- Montés-Micó, R.; Cáliz, A.; Alió, J.L. Wavefront analysis of higher-order aberrations in dry eye patients. J. Refract. Surg. 2004, 20, 243–247. [Google Scholar] [CrossRef] [Green Version]
- He, J.C. Theoretical model of the contributions of corneal asphericity and anterior chamber depth to peripheral wavefront aberrations. Ophthalmic. Physiol. Opt. 2014, 34, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.H.; Seo, J.H. Short-term change in higher-order aberrations after mitomycin-C-augmented trabeculectomy. Int. Ophthalmol. 2019, 39, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, J.; Sun, X.; Chu, R.; Zhuang, H.; He, J.C. Dynamic wavefront aberrations and visual acuity in control and dry eyes. Clin. Exp. Optom. 2009, 92, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.; Maeda, N.; Hori, Y.; Inoue, T.; Watanabe, H.; Hirohara, Y.; Mihashi, T.; Fujikado, T.; Tano, Y. Effects of suppression of blinking on quality of vision in borderline cases of evaporative dry eye. Cornea 2008, 27, 275–278. [Google Scholar] [CrossRef]
- Denoyer, A.; Rabut, G.; Baudouin, C. Tear film aberration dynamics and vision-related quality of life in patients with dry eye disease. Ophthalmology 2012, 119, 1811–1818. [Google Scholar] [CrossRef]
Control (n = 65) | OHB (n = 61) | p | |
---|---|---|---|
Age (years) | 66.23 ± 19.32 | 67.47 ± 11.11 | 0.66 |
Gender (Male/Female) | 42/23 | 34/27 | 0.31 |
BCVA (logMAR) | −0.0086 ± 0.14 | 0.16 ± 0.30 | <0.0001 |
IOP (mmHg) | 14.00 ± 3.66 | 11.60 ± 4.43 | 0.0012 |
Lens status (phakic/IOL) | 43/22 | 27/34 | 0.013 |
Spherical equivalents | −2.25 ± 3.65 | −2.98 ± 2.87 | 0.22 |
Control (n = 65) | OHB (n = 61) | |
---|---|---|
Type of glaucoma | ||
PACG (%) | 3 (4.6) | 4 (6.6) |
POAG (%) | 37 (56.9) | 46 (75.4) |
Exfoliation G (%) | 4 (6.2) | 5 (8.2) |
Uveitic G (%) | 0 (0) | 3 (4.9) |
Rubeotic G (%) | 1 (0) | 1 (1.6) |
Childhood G (%) | 2 (3.1) | 2 (3.3) |
Steroid-induced G (%) | 3 (3.1) | 0 (0) |
PPG (%) | 16 (24.6) | 0 (0) |
PAC (%) | 1 (1.5) | 0 (0) |
Operation (First time) | ||
TLE (%) | - | 53 (86.89) |
TLE + PEA + IOL (%) | - | 6 (9.84) |
Ex-PRESS (%) | - | 2 (3.28) |
Average number of TLE surgeries | - | 1.33 ± 0.85 |
1st time (%) | - | 51 (83.61) |
2nd time (%) | - | 4 (6.56) |
3rd time or more (%) | - | 6 (9.84) |
Period after the last surgery (year) | - | 3.18 ± 3.81 |
Control (n = 65) | OHB (n = 61) | p | |
---|---|---|---|
Corneal total higher-order aberrations (μm, RMS) | 0.26 ± 0.14 | 0.36 ± 0.40 | 0.47 |
Corneal coma aberrations (μm, RMS) | 0.10 ± 0.05 | 0.16 ± 0.13 | 0.042 |
Corneal spherical aberrations (μm, RMS) | 0.04 ± 0.62 | 0.04 ± 0.07 | 0.72 |
Corneal coma-like aberrations (μm, RMS) | 0.16 ± 0.09 | 0.31 ± 0.32 | 0.022 |
Corneal spherical-like aberrations (μm, RMS) | 0.09 ± 0.71 | 0.16 ± 0.21 | 0.11 |
Corneal Total Higher-Order Aberrations (μm, RMS) | Corneal Coma Aberrations (μm, RMS) | Corneal Spherical Aberrations (μm, RMS) | Corneal Coma-Like Aberrations (μm, RMS) | Corneal Spherical-Like Aberrations (μm, RMS) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | |
Ratio of cornea covered by bleb | 0.38 | 0.0026 | 0.39 | 0.0018 | 0.34 | 0.0071 | 0.10 | 0.43 | 0.30 | 0.021 |
Number of TLE ≥ 2 | 0.21 | 0.11 | 0.24 | 0.061 | 0.099 | 0.45 | 0.077 | 0.56 | 0.13 | 0.31 |
IOP < 8 | −0.54 | 0.17 | −0.31 | 0.45 | −0.16 | 0.71 | −0.48 | 0.23 | −0.03 | 0.94 |
Age | v0.03 | 0.84 | 0.14 | 0.28 | 0.0067 | 0.96 | −0.046 | 0.73 | −0.12 | 0.36 |
Corneal Total Higher-Order Aberrations (μm, RMS) | Corneal Coma Aberrations (μm, RMS) | Corneal Spherical Aberrations (μm, RMS) | Corneal Coma-Like Aberrations (μm, RMS) | Corneal Spherical-Like Aberrations (μm, RMS) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | p | VIF | β | p | VIF | β | p | VIF | β | p | VIF | β | p | VIF | |
Ratio of cornea covered by bleb | 0.37 | 0.0034 | 1.01 | 0.40 | 0.0013 | 1.01 | 0.34 | 0.0084 | 1.01 | 0.093 | 0.48 | 1.01 | 0.28 | 0.03 | 1.01 |
Number of TLE ≥ 2 | 0.038 | 0.78 | 1.29 | 0.048 | 0.72 | 1.29 | −0.085 | 0.55 | 1.29 | 0.038 | 0.80 | 1.29 | 0.0035 | 0.98 | 1.29 |
IOP < 8 | −0.51 | 0.12 | 1.25 | −0.45 | 0.43 | 1.25 | −0.18 | 0.69 | 1.25 | −0.33 | 0.52 | 1.25 | −0.0031 | 0.99 | 1.25 |
Age | −0.025 | 0.84 | 1.02 | 0.20 | 0.11 | 1.02 | 0.0056 | 0.65 | 1.02 | −0.024 | 0.86 | 1.02 | −0.072 | 0.57 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, Y.; Hirooka, K.; Kiuchi, Y. Influence of Overhanging Bleb on Corneal Higher-Order Aberrations after Trabeculectomy. J. Clin. Med. 2022, 11, 177. https://doi.org/10.3390/jcm11010177
Mizuno Y, Hirooka K, Kiuchi Y. Influence of Overhanging Bleb on Corneal Higher-Order Aberrations after Trabeculectomy. Journal of Clinical Medicine. 2022; 11(1):177. https://doi.org/10.3390/jcm11010177
Chicago/Turabian StyleMizuno, Yu, Kazuyuki Hirooka, and Yoshiaki Kiuchi. 2022. "Influence of Overhanging Bleb on Corneal Higher-Order Aberrations after Trabeculectomy" Journal of Clinical Medicine 11, no. 1: 177. https://doi.org/10.3390/jcm11010177
APA StyleMizuno, Y., Hirooka, K., & Kiuchi, Y. (2022). Influence of Overhanging Bleb on Corneal Higher-Order Aberrations after Trabeculectomy. Journal of Clinical Medicine, 11(1), 177. https://doi.org/10.3390/jcm11010177