Brain Signaling of Indispensable Amino Acid Deficiency
Abstract
:1. Introduction and History
2. The Search for the Sensor
3. Methods: Importance of the Prefeeding Method in Studying the Earliest Response
4. Conditioned Taste Aversion
5. Sensing Repletion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gietzen, D.W.; Lindstrom, S.H.; Sharp, J.W.; Teh, P.S.; Donovan, M.J. Indispensable amino acid-deficient diets induce seizures in ketogenic diet-fed rodents, demonstrating a role for amino acid balance in dietary treatments for epilepsy. J. Nutr. 2018, 148, 480–489. [Google Scholar] [CrossRef]
- Gietzen, D.W.; Rogers, Q.R. Nutritional homeostasis and indispensable amino acid sensing: A new solution to an old puzzle. Trends Neurosci. 2006, 29, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Magendie, M.F. Sur les proprietes nutritives des substances qui ne contiennent pas d’azote. Anal. Chim. Physiq. 1816, 3, 66–77. [Google Scholar]
- Wilcock, E.G.; Hopkins, F.G. The Importance of Individual amino-acids in Metabolism; observations on the effect of adding tryptophane to a dietary in which Zein is the sole nitrogenous constituent. J. Physiol. 1906, 35, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.W.; Sommer, B.E.; Rose, W.C. Experiments on the nutritive properties of gelatin. J. Biol. Chem. 1928, 80, 167–186. [Google Scholar] [CrossRef]
- McCoy, R.H.; Meyer, C.E.; Rose, W.C. Feeding experiments with mixtures of highly purified amino acids. VIII. Isolation and identification of a new essential amino acid. J. Biol. Chem. 1935, 112, 283–302. [Google Scholar] [CrossRef]
- Harper, A.E.; Benevenga, N.J.; Wohlhueter, R.M. Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 1970, 50, 428–558. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.E.; Rogers, Q.R. Amino acid imbalance. Proc. Nutr. Soc. 1965, 24, 173–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gietzen, D.W.; Leung, P.M.B.; Castonguay, T.W.; Hartmen, W.J.; Rogers, Q.R. Time course of of food intake and plasma and brain amino acid concentrations in rats fed amino acid-imblanced or -deficient diets. In Interaction of the Chemical Senses with Nutrition; Kare, M.R., Brand, J.G., Eds.; Academic Press: Orlando, FL, USA, 1986; pp. 415–456. [Google Scholar]
- Gloaguen, M.; Le Floc’h, N.; Corrent, E.; Primot, Y.; van Milgen, J. Providing a diet deficient in valine but with excess leucine results in a rapid decrease in feed intake and modifies the postprandial plasma amino acid and alpha-keto acid concentrations in pigs. J. Anim. Sci. 2012, 90, 3135–3142. [Google Scholar] [CrossRef]
- Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Vina, J.R. Structure of the blood brain barrier and its role in the transport of amino acids. J. Nutr. 2006, 136, 218S–226S. [Google Scholar] [CrossRef]
- Tews, J.K.; Woodcock, N.A.; Harper, A.E. Stimulation of amino acid transport in rat liver slices by epinephrine, glucagon, and adenosine 3’,5’-monophosphate. J. Biol. Chem. 1970, 245, 3026–3032. [Google Scholar] [CrossRef]
- Leung, P.M.; Larson, D.M.; Rogers, Q.R. Food intake and preference of olfactory bulbectomized rats fed amino acid imbalanced or deficient diets. Physiol. Behav. 1972, 9, 553–557. [Google Scholar] [CrossRef]
- Markison, S.; Gietzen, D.W.; Spector, A.C. Essential amino acid deficiency enhances long-term intake but not short-term licking of the required nutrient. J. Nutr. 1999, 129, 1604–1612. [Google Scholar] [CrossRef] [Green Version]
- Rogers, Q.R.; Leung, P.M.B. The Control of Food Intake: When and How are Amino Acids Involved? In The Chemical Senses and Nutrition; Kare, M.R., Maller, O., Eds.; Academic Press: New York, NY, USA, 1977; pp. 213–249. [Google Scholar]
- Bellinger, L.L.; Gietzen, D.W.; Williams, F.E. Liver denervation, 5-HT3 receptor antagonist, and intake of imbalanced amino acid diet. Brain Res. Bull. 1993, 32, 549–554. [Google Scholar] [CrossRef]
- Washburn, B.S.; Jiang, J.C.; Cummings, S.L.; Dixon, K.; Gietzen, D.W. Anorectic responses to dietary amino acid imbalance: Effects of vagotomy and tropisetron. Am. J. Physiol. 1994, 266, R1922–R1927. [Google Scholar] [CrossRef]
- Stickney, G.G.; Leung, P.M.B.; Rogers, Q.R.; Lepkovsky, S.; Schmidt, P. The effect of total gastrectomy on free feeding patterns in rats. In Federation Proceedings; Federation of American Societies for Experimental Biology: Bethesda, MD, USA, 1976; Volume 35, p. 520. [Google Scholar]
- Hammer, V.A.; Gietzen, D.W.; Sworts, V.D.; Beverly, J.L.; Rogers, Q.R. Adrenal hormones and the anorectic response and adaptation of rats to amino acid imbalance. J. Nutr. 1990, 120, 1617–1623. [Google Scholar] [CrossRef]
- Leung, P.M.B.; Rogers, Q.R. Food intake: Regulation by plasma amino acid pattern. Life Sci. 1969, 8, 1–9. [Google Scholar] [CrossRef]
- Tobin, G.; Boorman, K.N. Carotid or jugular amino acid infusions and food intake in the cockerel. Br. J. Nutr. 1979, 41, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Tews, J.K.; Good, S.S.; Harper, A.E. Transport of threonine and tryptophan by rat brain slices: Relation to other amino acids at concentrations found in plasma. J. Neurochem. 1978, 31, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Tews, J.K.; Repa, J.J.; Harper, A.E. Induction of conditioned taste avaersion in rats by GABA or other amino acids. Physiol. Behav. 1979, 42, 591–597. [Google Scholar] [CrossRef]
- Tews, J.K.; Bradford, A.M.; Harper, A.E. Induction of lysine imbalance in rats: Relation to competition for lysine transport into the brain in vitro. J. Nutr. 1981, 111, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Tackman, J.M.; Tews, J.K.; Harper, A.E. Dietary disproportions of amino acids in the rat: Effects on food intake, plasma and brain amiino acids and brain serotonin. J. Nutr. 1990, 120, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Gietzen, D.W. Neural mechanisms in the responses to amino acid deficiency. J. Nutr. 1993, 123, 610–625. [Google Scholar] [CrossRef]
- Leung, P.M.; Rogers, Q.R. Importance of prepyriform cortex in food-intake response of rats to amino acids. Am. J. Physiol. 1971, 221, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Hoover, K.C. Smell With Inspiration: The Evolutionary Significnace of Olfaction. Yearb. Phys. Anthropol. 2010, 53, 63–74. [Google Scholar] [CrossRef]
- Firman, J.D.; Kuenzel, W.J. Neuroanatomical regions of the chick brain involved in monitoring amino acid deficient diets. Brain Res. Bull. 1988, 21, 637–642. [Google Scholar] [CrossRef]
- Noda, K.; Chikamori, K. Effect of ammonia via prepyriform cortex on regulation of food intake in the rat. Am. J. Physiol. 1976, 231, 1263–1266. [Google Scholar] [CrossRef] [Green Version]
- Gale, K.; Zhong, P.; Miller, L.P.; Murray, T.F. Amino acid neurotransmitter interactions in ‘area tempestas’: An epileptogenic trigger zone in the deep prepiriform cortex. Epilepsy Res. Suppl. 1992, 8, 229–234. [Google Scholar]
- Beverly, J.L.; Gietzen, D.W.; Rogers, Q.R. Effect of dietary limiting amino acid in prepyriform cortex on food intake. Am. J. Physiol. 1990, 259, R709–R715. [Google Scholar] [CrossRef]
- Beverly, J.L., 3rd; Gietzen, D.W.; Rogers, Q.R. Protein synthesis in the prepyriform cortex: Effects on intake of an amino acid-imbalanced diet by Sprague-Dawley rats. J. Nutr. 1991, 121, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Beverly, J.L.; Hrupka, B.J.; Gietzen, D.W.; Rogers, Q.R. Distribution of dietary limiting amino acid injected into the prepyriform cortex. Am. J. Physiol. 1991, 260, R525–R532. [Google Scholar] [CrossRef]
- Beverly, J.L.; Hrupka, B.J.; Gietzen, D.W.; Rogers, Q.R. Timing and dose of amino acids injected into prepyriform cortex influence food intake. Physiol. Behav. 1993, 53, 899–903. [Google Scholar] [CrossRef]
- Koehnle, T.J.; Russell, M.C.; Gietzen, D.W. Rats rapidly reject diets deficient in essential amino acids. J. Nutr. 2003, 133, 2331–2335. [Google Scholar] [CrossRef]
- Kadowaki, M.; Kanazawa, T. Amino acids as regulators of proteolysis. J. Nutr. 2003, 133, 2052S–2056S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beverly, J.L.; Gietzen, D.W.; Rogers, Q.R. Effect of dietary limiting amino acid in prepyriform cortex on meal patterns. Am. J. Physiol. 1990, 259, R716–R723. [Google Scholar] [CrossRef] [PubMed]
- Straus, D.S.; Takemoto, C.D. Amino acid limitation negativelly regulates insulin-like growth factor II mRNA levels and E-domain pepide secretion at a post transcriptional step in BRL-3A rat liver cells. J. Biol. Chem. 1988, 263, 18404–18410. [Google Scholar] [CrossRef]
- Hao, S.; Sharp, J.W.; Ross-Inta, C.M.; McDaniel, B.J.; Anthony, T.G.; Wek, R.C.; Cavener, D.R.; McGrath, B.C.; Rudell, J.B.; Koehnle, T.J.; et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005, 307, 1776–1778. [Google Scholar] [CrossRef] [PubMed]
- Maurin, A.C.; Jousse, C.; Averous, J.; Parry, L.; Bruhat, A.; Cherasse, Y.; Zeng, H.; Zhang, Y.; Harding, H.P.; Ron, D.; et al. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab. 2005, 1, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki, A.; Chelikani, P.K. Low protein diets and energy balance: Mechanisms of action on energy intake and expenditure. Front. Nutr. 2021, 13, 655833. [Google Scholar] [CrossRef]
- Berthoud, H.-R.; Morrison, C.D.; Ackroff, K.; Sclafani, A. Learning of food preferences: Mechanisms and implications for obesity & metabolic diseases. Int. J. Obes. 2021, 45, 2156–2168. [Google Scholar] [CrossRef]
- Tomé, D.; Benoit, S.; Azzout-Marniche, D. Protein metabolism and related body function: Mechanistic approaches and health consequences. Proc. Nutr. Soc. 2021, 80, 243–251. [Google Scholar] [CrossRef]
- Wang, M.; Lin, H. Understanding the function of mammalian sirtuins and protein lysine acylation. Annu. Rev. Biochem. 2021, 90, 245–285. [Google Scholar] [CrossRef]
- Huynh, L.N.T.; Chen, T.; Cottrell, R.; Mitchell, J.M.; Praetorius-Ibba, M. Linking tRNA localization with activation of nutritional stress responses. Cell Cycle 2010, 9, 3184–3190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Even, P.; Gehring, J.; Tome, D. What does self-selection of dietary proteins in rats tell us about protein requirements and body weight control. Obes. Rev. 2020, 22, e13194. [Google Scholar] [CrossRef]
- Hu, S.; Guo, F. Amino acid sensing in metabolic homeostasis and health. Endocr. Rev. 2021, 42, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.J.; Domroese, M.E.; Johnson, D.M.; Feig, S.L.; Knodel, S.M.; Behan, M.; Haberly, L.B. A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy. J. Comp. Neurol. 2001, 434, 289–307. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.W.; Ross-Inta, C.M.; Baccelli, I.; Payne, J.A.; Rudell, J.B.; Gietzen, D.W. Effects of essential amino acid deficiency: Down-regulation of KCC2 and the GABAa receptor: Disinhibition in the anterior piriform cortes. J. Neurochem. 2013, 127, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Gietzen, D.W.; Aja, S.M. The Brain’s Response to an Essential Amino Acid-Deficient Diet and the Circuitous Route to a Better Meal. Mol. Neurobiol. 2012, 46, 332–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monda, M.; Sullo, A.; De Luca, V.; Pellicano, M.P.; Viggiano, A. L-threonine injection into PPC modifies food intake, lateral hypothalamic activity, and sympathetic discharge. Am. J. Physiol. 1997, 273, R554–R559. [Google Scholar] [CrossRef] [PubMed]
- Blevins, J.E.; Dixon, K.D.; Hernandez, E.J.; Barrett, J.A.; Gietzen, D.W. Effects of threonine injections in the lateral hypothalamus on intake of amino acid imbalanced diets in rats. Brain Res. 2000, 879, 65–72. [Google Scholar] [CrossRef]
- Blevins, J.E.; Truong, B.G.; Gietzen, D.W. NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets. Brain Res. 2004, 1019, 124–133. [Google Scholar] [CrossRef]
- Rose, W.C. The nutritional significance of the amino acids. Physiol. Rev. 1938, 18, 109–136. [Google Scholar] [CrossRef]
- Nakai, J.; Totani, Y.; Hatakeyama, D.; Dyakonova VEIto, E. Another example of conditioned taste avaersion: Case of snails. Biology 2020, 9, 422. [Google Scholar] [CrossRef]
- Gelperin, A. Rapid food aversion learning by a terrestrial mollusk. Science 1975, 189, 567–570. [Google Scholar] [CrossRef]
- Chambers, K.C. A neural model for conditioned taste aversions. Annu. Rev. Neurosci. 1990, 13, 373–385. [Google Scholar] [CrossRef]
- Rzo’ska, J. Bait shyness, a study in rat behavior. Br. J. Anim. Behav. 1953, 1, 128–135. [Google Scholar] [CrossRef]
- Garcia, J.; Kimeldorf, D.J.; Koelling, R.A. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 1955, 122, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Logue, A.W. Taste aversion and the generality of the laws of learning. Psychol. Bull. 1979, 86, 276–296. [Google Scholar] [CrossRef]
- Dixon, K.D.; Williams, F.E.; Wiggins RLPavelka, J.; Lucente, J.; Bellinger, L.L.; Gietzen, D.W. Differential effects of selective vagotomy and tropisetron in aminoprivic feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Booth, D.A.; Simson, P.C. Food preferences acquired by association with variations in amino acid nutrition. Q. J. Exp. Psychol. 1971, 23, 135–145. [Google Scholar] [CrossRef]
- Riley, A.L.; Tuck, D.L. Conditioned food aversions: A bibliography. Ann. N. Y. Acad. Sci. 1985, 443, 381–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cummings, S.L.; Gietzen, D.W. Temporal-spatial pattern of c-Fos expression in the rat brain in response to indispensable amino acid deficiency. II. The learned taste aversion. Brain Res. Mol. Brain Res. 1996, 40, 35–41. [Google Scholar] [CrossRef]
- Meliza, L.L.; Leung, P.M.; Rogers, Q.R. Effect of anterior prepyriform and medial amygdaloid lesions on acquisition of taste-avoidance and response to dietary amino acid imbalance. Physiol. Behav. 1981, 26, 1031–1035. [Google Scholar] [CrossRef]
- Aja, S.; Sisouvong, S.; Barrett, J.A.; Gietzen, D.W. Basolateral and central amygdaloid lesions leave aversion to dietary amino acid imbalance intact. Physiol. Behav. 2000, 71, 533–541. [Google Scholar] [CrossRef]
- Leung, P.M.; Rogers, Q.R. Effect of amygdaloid lesions on dietary intake of disproportionate amounts of amino acids. Physiol. Behav. 1973, 11, 221–226. [Google Scholar] [CrossRef]
- Zhang-Molina, C.; Schmit MBCai, H. Neural circuit mechanism underlying the feeding controlled by insula-central amygdala pathway. iScience 2020, 23, 101033. [Google Scholar] [CrossRef]
- Haley, M.S.; Bruno, S.; Fontanini, A.; Maffei, A. LTD at amygdalocortical synapses as a novel mechanism for hedonic learning. eLife 2020, 9, e55175. [Google Scholar] [CrossRef]
- Escobar, M.L.; Figueroa-Guzman, Y.; Gomez-Palacio-Schjetnan, A. In vivo insular cortex LTP induced by brain-derived neurotrophic factor. Brain Res. 2003, 991, 274–279. [Google Scholar] [CrossRef]
- Li, J.B.; Jefferson, L.S. Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochem. Biophys. Acta 1978, 544, 351–359. [Google Scholar] [CrossRef]
- Hara, K.; Yonezawa, K.; Weng, Q.P.; Kozlowski, M.T.; Belham, C.; Avruch, J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4EBP1 through a common effector mechanism. J. Biol. Chem. 1998, 273, 14484–14494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism and disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, S.; Ross-Inta, C.M.; Gietzen, D.W. The sensing of essential amino acid deficiency in the anterior piriform cortex, that requres the uncharged tRNA/GCN2 pathway, is sensitive to wortmannin but not rapamycin. Pharmacol. Biochem. Behav. 2010, 94, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Blais, A.; Huneau, J.F.; Magrum, L.J.; Koehnle, T.J.; Sharp, J.W.; Tome, D.; Gietzen, D.W. Threonine deprivation rapidly activated the system A amino acid transporter in primary cultures of rat neurons from the essential amino acid sensor in the anterior piriform cortex. J. Nutr. 2003, 133, 2156–2164. [Google Scholar] [CrossRef] [Green Version]
- Cota, D.; Proulx, K.; Smith, K.A.; Kozma, S.C.; Thomas, G.; Woods, S.C.; Seeley, R.J. Hypothalamic mTOR signaling regulates food intake. Science 2006, 312, 927–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, K.; Mimura, T.; Yugari, Y. Biochemical mechanism of umami taste perception and effect of dietary protein on the taste preference for amino acids and sodium chloride in rats. In Umami: A Basic Taste; Kawamura, Y., Kare, M.R., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1987; pp. 513–563. [Google Scholar]
- Hrupka, B.J.; Lin, Y.M.; Gietzen, D.W.; Rogers, Q.R. Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats. J. Nutr. 1997, 127, 777–784. [Google Scholar] [CrossRef]
- Naito-Hoopes, M.; McArthur, L.H.; Gietzen, D.W.; Rogers, Q.R. Learned preference and aversion for complete and isoleucine-devoid diets in rats. Physiol. Behav. 1993, 53, 485–494. [Google Scholar] [CrossRef]
- Rogers, Q.R.; Chen, D.M.; Harper, A.E. The importance of dispensable amino acids for maximal growth in the rat. Proc. Soc. Exp. Biol. Med. 1970, 134, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Halstead, W.C.; Gallagher, B.B. Autoregulation of amino acids intake in the albino rat. J. Comp. Physiol. Psychol. 1962, 55, 107–111. [Google Scholar] [CrossRef]
- Murphy, M.E.; Pearcy, S.D. Dietary amino acid complementation as a foraging strategy for wild birds. Physiol. Behav. 1993, 53, 689–698. [Google Scholar] [CrossRef]
- Musten, B.; Pearce, D.; Anderson, G.H. Food intake regulation in the weanling rat: Self selection of protein and energy. J. Nutr. 1974, 104, 563–572. [Google Scholar] [CrossRef]
- Lappe, F.M. Diet for a Small Planet (Revised and Updated); Ballantine Books: New York, NY, USA, 2021; p. 301. [Google Scholar]
Indispensable Amino Acids | Dispensable Amino Acids |
---|---|
Histidine (H, His) | Alanine (A, Ala) |
Isoleucine (I, Ile) | Arginine (R, Arg) |
Leucine (L Leu) | Asparagine (N, Asn) |
Lysine (K, Lys) | Aspartic Acid (D, Asp) |
Methionine (M, Met) | Cysteine (C, Cys) |
Phenylalanine (P, Phe) | Glutamic Acid (E, Glu) |
Threonine (T, Thr) | Glutamine (Q, Gln) |
Tryptophan, (W, Trp) | Glycine (G, Gly) |
Valine (V, Val) | Proline (P, Pro) |
Serine (S, Ser) | |
Tyrosine (Y, Tyr) |
Brain Area | Effects of Lesions on Intake of Deficient Diet | Concentrations of Threonine |
---|---|---|
µm/g Wet Tissue | ||
A | B | C |
AMYGDALA | ↑ * | ↑ 7% NS |
ANTERIOR CINGULATE CORTEX | -- | ↓ 50%, * p < 0.05 |
ANTERIOR PIRIFORM CORTEX | ↑ | ↓ 43%, * p < 0.05 |
LATERAL HYPOTHALAMUS | -- | ↑ 16% NS |
LOCUS COERULUS | -- | ↓ 30% NS |
NUCLEUS OF SOLITARY TRACT | -- | ↓ 43%, * p < 0.05% |
VENTRAL TEGMENTAL AREA | ↓ | ↓ 24% NS |
VENTROMEDIAL HYPOTHALAMUS | -- | ↑ 2% NS |
PITUITARY | ↓ | N/D |
OLFACTORY BULB | -- | N/D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gietzen, D.W. Brain Signaling of Indispensable Amino Acid Deficiency. J. Clin. Med. 2022, 11, 191. https://doi.org/10.3390/jcm11010191
Gietzen DW. Brain Signaling of Indispensable Amino Acid Deficiency. Journal of Clinical Medicine. 2022; 11(1):191. https://doi.org/10.3390/jcm11010191
Chicago/Turabian StyleGietzen, Dorothy W. 2022. "Brain Signaling of Indispensable Amino Acid Deficiency" Journal of Clinical Medicine 11, no. 1: 191. https://doi.org/10.3390/jcm11010191