Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Training Cycle Characterization
2.3. MicroRNAs Concentration Analysis
2.4. IGF1R Expression Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, L.; Appleby, R.; Davis, P.; Wetherell, M.; Gustafsson, H. The Role of Coach-Athlete Relationship Quality in Team Sport Athletes’ Psychophysiological Exhaustion: Implications for Physical and Cognitive Performance. J. Sports Sci. 2018, 36, 1985–1992. [Google Scholar] [CrossRef]
- Clyne, B.; Olshaker, J.S. The C-Reactive Protein11Clinical Laboratory in Emergency Medicine Is Coordinated by Jonathan S. Olshaker, MD, of the University of Maryland Medical Center, Baltimore, Maryland. J. Emerg. Med. 1999, 17, 1019–1025. [Google Scholar] [CrossRef]
- Hekimsoy, Z.; Oktem, I.K. Serum Creatine Kinase Levels in Overt and Subclinical Hypothyroidism. Endocr. Res. 2005, 31, 171–175. [Google Scholar] [CrossRef]
- Dall, R.; Lange, K.H.W.; Kjær, M.; Jørgensen, J.O.L.; Christiansen, J.S.; Ørskov, H.; Flyvbjerg, A. No Evidence of Insulin-Like Growth Factor-Binding Protein 3 Proteolysis during a Maximal Exercise Test in Elite Athletes. J. Clin. Endocrinol. Metab. 2001, 86, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Wrigley, S.; Arafa, D.; Tropea, D. Insulin-Like Growth Factor 1: At the Crossroads of Brain Development and Aging. Front. Cell. Neurosci. 2017, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Yin, Z.; Tao, K.; Wang, G.; Gao, J. Function of Insulin-like Growth Factor 1 Receptor in Cancer Resistance to Chemotherapy (Review). Oncol. Lett. 2018, 15, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Johanna, Z.; Markus, S. Central Insulin and Insulin-Like Growth Factor-1 Signaling—Implications for Diabetes Associated Dementia. Curr. Diabetes Rev. 2011, 7, 356–366. [Google Scholar]
- Jung, H.J.; Suh, Y. Regulation of IGF -1 Signaling by MicroRNAs. Front. Genet. 2015, 5, 472. [Google Scholar] [CrossRef] [Green Version]
- Velloso, C.P. Regulation of Muscle Mass by Growth Hormone and IGF-I. Br. J. Pharmacol. 2008, 154, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Crown, A.L.; He, X.L.; Holly, J.M.; Lightman, S.L.; Stewart, C.E. Characterisation of the IGF System in a Primary Adult Human Skeletal Muscle Cell Model, and Comparison of the Effects of Insulin and IGF-I on Protein Metabolism. J. Endocrinol. 2000, 167, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Forbes, B.E.; Blyth, A.J.; Wit, J.M. Disorders of IGFs and IGF-1R Signaling Pathways. Mol. Cell. Endocrinol. 2020, 518, 111035. [Google Scholar] [CrossRef]
- Singh, P.; Alex, J.M.; Bast, F. Insulin Receptor (IR) and Insulin-like Growth Factor Receptor 1 (IGF-1R) Signaling Systems: Novel Treatment Strategies for Cancer. Med. Oncol. 2014, 31, 805. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-Y.; Kuo, W.-W.; Baskaran, R.; Kuo, C.-H.; Chen, Y.-A.; Chen, W.S.-T.; Ho, T.-J.; Day, C.H.; Mahalakshmi, B.; Huang, C.-Y. Swimming Exercise Stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α Survival Signaling to Suppress Apoptosis and Inflammation in Aging Hippocampus. Aging 2020, 12, 6852–6864. [Google Scholar] [CrossRef] [PubMed]
- Hakuno, F.; Takahashi, S.-I. 40 YEARS OF IGF1: IGF1 Receptor Signaling Pathways. J. Mol. Endocrinol. 2018, 61, T69–T86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragala, M.S.; Jajtner, A.R.; Townsend, J.R.; Gonzalez, A.M.; Wells, A.J.; Oliveira, L.P.; Hoffman, J.R.; Stout, J.R.; Fukuda, D.H. Leukocyte IGF-1 Receptor Expression during Muscle Recovery. Med. Sci. Sports Exerc. 2015, 47, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imperlini, E.; Spaziani, S.; Mancini, A.; Caterino, M.; Buono, P.; Orrù, S. Synergistic Effect of DHT and IGF-1 Hyperstimulation in Human Peripheral Blood Lymphocytes. Proteomics 2015, 15, 1813–1818. [Google Scholar] [CrossRef]
- Pilling, L.C.; Joehanes, R.; Kacprowski, T.; Peters, M.; Jansen, R.; Karasik, D.; Kiel, D.P.; Harries, L.W.; Teumer, A.; Powell, J.; et al. Gene Transcripts Associated with Muscle Strength: A CHARGE Meta-Analysis of 7,781 Persons. Physiol. Genom. 2016, 48, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, K.; Edgett, B.A.; Burrows, H.W.; Castro, C.; Griffin, J.L.; Schwertani, A.G.; Gurd, B.J.; Funk, C.D. Whole Blood Transcriptomics and Urinary Metabolomics to Define Adaptive Biochemical Pathways of High-Intensity Exercise in 50–60 Year Old Masters Athletes. PLoS ONE 2014, 9, e92031. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.; de Paula Vieira, R.; Bischof, F.; Walter, M.; Movassaghi, M.; Berchtold, N.C.; Niess, A.M.; Cotman, C.W.; Northoff, H. Sex-Specific Variation in Signaling Pathways and Gene Expression Patterns in Human Leukocytes in Response to Endotoxin and Exercise. J. Neuroinflamm. 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farabaugh, S.M.; Boone, D.N.; Lee, A.V. Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front. Endocrinol. 2015, 6, 59. [Google Scholar] [CrossRef]
- Xu, Z.; Xiang, W.; Chen, W.; Sun, Y.; Qin, F.; Wei, J.; Yuan, L.; Zheng, L.; Li, S. Circ-IGF1R Inhibits Cell Invasion and Migration in Non-Small Cell Lung Cancer. Thorac. Cancer 2020, 11, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.; Lackner, M.R. Targeting the Insulin-like Growth Factor Receptor-1R Pathway for Cancer Therapy. Clin. Cancer Res. 2010, 16, 2512–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekyalongo, R.C.; Yee, D. Revisiting the IGF-1R as a Breast Cancer Target. NPJ Precis. Oncol. 2017, 1, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolarz, B.; Ciesla, M.; Dryglewska, M.; Rosenthal, A.K.; Majdan, M. Hypermethylation of the MiR-155 Gene in the Whole Blood and Decreased Plasma Level of MiR-155 in Rheumatoid Arthritis. PLoS ONE 2020, 15, e0233897. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, Y. DNA Methylation in Human Diseases. Genes Dis. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Choudhuri, S. Small Noncoding RNAs: Biogenesis, Function, and Emerging Significance in Toxicology. J. Biochem. Mol. Toxicol. 2010, 24, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.-P.; et al. An Estimate of the Total Number of True Human MiRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondal, T.; Nielsen, S.J.; Baker, A.; Andreasen, D.; Mouritzen, P.; Teilum, M.W.; Dahlsveen, I.K. Assessing Sample and MiRNA Profile Quality in Serum and Plasma or Other Biofluids. Methods 2013, 59, S1–S6. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Burwinkel, B. Extracellular MiRNAs: The Mystery of Their Origin and Function. Trends Biochem. Sci. 2012, 37, 460–465. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Q.; Yao, J.; Dai, Y.; Wang, H.; Xiao, J. Circulating MicroRNAs in Response to Exercise. Scand. J. Med. Sci. Sports 2015, 25, e149–e154. [Google Scholar] [CrossRef] [PubMed]
- Felekkis, K.; Papaneophytou, C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggish, A.L.; Hale, A.; Weiner, R.B.; Lewis, G.D.; Systrom, D.; Wang, F.; Wang, T.J.; Chan, S.Y. Dynamic Regulation of Circulating MicroRNA during Acute Exhaustive Exercise and Sustained Aerobic Exercise Training. J. Physiol. 2011, 589, 3983–3994. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Qipshidze Kelm, N.; Piell, K.M.; Wang, E.; Cole, M.P. MicroRNAs as Predictive Biomarkers for Myocardial Injury in Aged Mice Following Myocardial Infarction. J. Cell. Physiol. 2018, 233, 5214–5221. [Google Scholar] [CrossRef]
- Alexander, M.S.; Kunkel, L.M. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases. J. Neuromuscul. Dis. 2015, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Güller, I.; Russell, A.P. MicroRNAs in Skeletal Muscle: Their Role and Regulation in Development, Disease and Function. J. Physiol. 2010, 588, 4075–4087. [Google Scholar] [CrossRef] [Green Version]
- Flowers, E.; Aouizerat, B.E.; Abbasi, F.; Lamendola, C.; Grove, K.M.; Fukuoka, Y.; Reaven, G.M. Circulating MicroRNA-320a and MicroRNA-486 Predict Thiazolidinedione Response: Moving Towards Precision Health for Diabetes Prevention. Metabolism 2015, 64, 1051–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, S.; Liu, X.; Xu, M.; Gao, X.; Chen, S.; Zhang, L.; Li, R. MicroRNA-320a Acts as a Tumor Suppressor in Endometrial Carcinoma by Targeting IGF-1R. Int. J. Mol. Med. 2019, 43, 1505–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.-L.; Liu, B.; Diao, H.-Y.; Shi, Y.-F.; Zhang, J.-C.; Li, Y.-X.; Liu, N.; Yu, Y.-P.; Wang, G.; Wang, J.-P.; et al. Down-Regulation of MicroRNA-320 Suppresses Cardiomyocyte Apoptosis and Protects against Myocardial Ischemia and Reperfusion Injury by Targeting IGF-1. Oncotarget 2016, 7, 39740–39757. [Google Scholar] [CrossRef]
- Hawley, J.A. Specificity of Training Adaptation: Time for a Rethink? J. Physiol. 2008, 586, 1. [Google Scholar] [CrossRef]
- Li, Y.; Yao, M.; Zhou, Q.; Cheng, Y.; Che, L.; Xu, J.; Xiao, J.; Shen, Z.; Bei, Y. Dynamic Regulation of Circulating MicroRNAs During Acute Exercise and Long-Term Exercise Training in Basketball Athletes. Front. Physiol. 2018, 9, 282. [Google Scholar] [CrossRef]
- Ramsbottom, R.; Brewer, J.; Williams, C. A Progressive Shuttle Run Test to Estimate Maximal Oxygen Uptake. Br. J. Sports Med. 1988, 22, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Busk, P.K. A Tool for Design of Primers for MicroRNA-Specific Quantitative RT-QPCR. BMC Bioinform. 2014, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Faraldi, M.; Gomarasca, M.; Sansoni, V.; Perego, S.; Banfi, G.; Lombardi, G. Normalization Strategies Differently Affect Circulating MiRNA Profile Associated with the Training Status. Sci. Rep. 2019, 9, 1584. [Google Scholar] [CrossRef] [Green Version]
- Donati, S.; Ciuffi, S.; Brandi, M.L. Human Circulating MiRNAs Real-Time QRT-PCR-Based Analysis: An Overview of Endogenous Reference Genes Used for Data Normalization. Int. J. Mol. Sci. 2019, 20, 4353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of Circulating MicroRNA: Preanalytical and Analytical Challenges. Clin. Chem. 2011, 57, 833–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, K.; Furu, M.; Yoshitomi, H.; Ishikawa, M.; Shibuya, H.; Hashimoto, M.; Imura, Y.; Fujii, T.; Ito, H.; Mimori, T.; et al. Comprehensive MicroRNA Analysis Identifies MiR-24 and MiR-125a-5p as Plasma Biomarkers for Rheumatoid Arthritis. PLoS ONE 2013, 8, e69118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Foroni, L.; Wilson, G.; Gerrard, G.; Mason, J.; Grimwade, D.; White, H.E.; de Castro, D.G.; Austin, S.; Awan, A.; Burt, E.; et al. Guidelines for the Measurement of BCR-ABL1 Transcripts in Chronic Myeloid Leukaemia. Br. J. Haematol. 2011, 153, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Lee, M.; Sharpe, O.; Salamone, L.; Noonan, E.J.; Hoang, C.D.; Levine, S.; Robinson, W.H.; Shrager, J.B. Oxidative Stress-Responsive MicroRNA-320 Regulates Glycolysis in Diverse Biological Systems. FASEB J. 2012, 26, 4710–4721. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Zhao, Y.; Yin, Z.; Wang, D.W.; Chen, C. The Role of MiR-320 in Glucose and Lipid Metabolism Disorder-Associated Diseases. Int. J. Biol. Sci. 2021, 17, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Anna, Z.; Stefan, K.; Ignat, D.; Peter, W.; Ursula, M.; Marianna, P.; Agnes, M.; Siegfried, W.; Friedrich, O.; Enzo, B.; et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef]
- Song, C.-L.; Liu, B.; Diao, H.-Y.; Shi, Y.-F.; Li, Y.-X.; Zhang, J.-C.; Lu, Y.; Wang, G.; Liu, J.; Yu, Y.-P.; et al. The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model. Int. J. Mol. Sci. 2014, 15, 17442–17456. [Google Scholar] [CrossRef]
- Dahlmans, D.; Houzelle, A.; Andreux, P.; Jörgensen, J.A.; Wang, X.; de Windt, L.J.; Schrauwen, P.; Auwerx, J.; Hoeks, J. An Unbiased Silencing Screen in Muscle Cells Identifies MiR-320a, MiR-150, MiR-196b, and MiR-34c as Regulators of Skeletal Muscle Mitochondrial Metabolism. Mol. Metab. 2017, 6, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Aoi, W.; Ichikawa, H.; Mune, K.; Tanimura, Y.; Mizushima, K.; Naito, Y.; Yoshikawa, T. Muscle-Enriched MicroRNA MiR-486 Decreases in Circulation in Response to Exercise in Young Men. Front. Physiol. 2013, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Dey, B.K.; Gagan, J.; Dutta, A. MiR-206 and -486 Induce Myoblast Differentiation by Downregulating Pax7. Mol. Cell. Biol. 2011, 31, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Olguin, H.C.; Olwin, B.B. Pax-7 up-Regulation Inhibits Myogenesis and Cell Cycle Progression in Satellite Cells: A Potential Mechanism for Self-Renewal. Dev. Biol. 2004, 275, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Hitachi, K.; Tsuchida, K. Role of MicroRNAs in Skeletal Muscle Hypertrophy. Front. Physiol. 2014, 4, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stambolic, V.; Suzuki, A.; de la Pompa, J.L.; Brothers, G.M.; Mirtsos, C.; Sasaki, T.; Ruland, J.; Penninger, J.M.; Siderovski, D.P.; Mak, T.W. Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell 1998, 95, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Devaux, Y.; Mueller, M.; Haaf, P.; Goretti, E.; Twerenbold, R.; Zangrando, J.; Vausort, M.; Reichlin, T.; Wildi, K.; Moehring, B.; et al. Diagnostic and Prognostic Value of Circulating MicroRNAs in Patients with Acute Chest Pain. J. Intern. Med. 2015, 277, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Yin, Y.; Cao, H.; Wang, Y. Exercise Improves Endothelial Function via the LncRNA MALAT1/MiR-320a Axis in Obese Children and Adolescents. Cardiol. Res. Pract. 2021, 2021, 8840698. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, C.; Wang, J.; Cao, L.; Zhong, L.; Wang, D. MicroRNA-320a Is Downregulated in Non-Small Cell Lung Cancer and Suppresses Tumor Cell Growth and Invasion by Directly Targeting Insulin-like Growth Factor 1 Receptor. Oncol. Lett. 2017, 13, 3247–3252. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Ghaderi, M.; Mirzaei, B.; Faraji, H. Acute IGF-1, Cortisol and Creatine Kinase Responses to Very Short Rest Intervals Between Sets During Resistance Exercise to Failure in Men. World Appl. Sci. J. 2010, 8, 1287–1293. [Google Scholar]
- Bamman, M.M.; Shipp, J.R.; Jiang, J.; Gower, B.A.; Hunter, G.R.; Goodman, A.; McLafferty, C.L.; Urban, R.J. Mechanical Load Increases Muscle IGF-I and Androgen Receptor MRNA Concentrations in Humans. Am. J. Physiol.-Endocrinol. Metab. 2001, 280, E383–E390. [Google Scholar] [CrossRef]
- Cappon, J.; Brasel, J.A.; Mohan, S.; Cooper, D.M. Effect of Brief Exercise on Circulating Insulin-like Growth Factor I. J. Appl. Physiol. 1994, 76, 2490–2496. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Marchitelli, L.; Gordon, S.E.; Harman, E.; Dziados, J.E.; Mello, R.; Frykman, P.; McCurry, D.; Fleck, S.J. Hormonal and Growth Factor Responses to Heavy Resistance Exercise Protocols. J. Appl. Physiol. 1990, 69, 1442–1450. [Google Scholar] [CrossRef]
- Dumont, N.; Frenette, J. Macrophages Protect against Muscle Atrophy and Promote Muscle Recovery in Vivo and in Vitro: A Mechanism Partly Dependent on the Insulin-Like Growth Factor-1 Signaling Molecule. Am. J. Pathol. 2010, 176, 2228–2235. [Google Scholar] [CrossRef]
- Poehlman, E.T.; Copeland, K.C. Influence of Physical Activity on Insulin-like Growth Factor-I in Healthy Younger and Older Men. J. Clin. Endocrinol. Metab. 1990, 71, 1468–1473. [Google Scholar] [CrossRef]
- Koziris, L.P.; Hickson, R.C.; Chatterton, R.T.; Groseth, R.T.; Christie, J.M.; Goldflies, D.G.; Unterman, T.G. Serum Levels of Total and Free IGF-I and IGFBP-3 Are Increased and Maintained in Long-Term Training. J. Appl. Physiol. 1999, 86, 1436–1442. [Google Scholar] [CrossRef]
- Puche, J.E.; Castilla-Cortázar, I. Human Conditions of Insulin-like Growth Factor-I (IGF-I) Deficiency. J. Transl. Med. 2012, 10, 224. [Google Scholar] [CrossRef] [Green Version]
- Maggio, M.; De Vita, F.; Lauretani, F.; Buttò, V.; Bondi, G.; Cattabiani, C.; Nouvenne, A.; Meschi, T.; Dall’Aglio, E.; Ceda, G.P. IGF-1, the Cross Road of the Nutritional, Inflammatory and Hormonal Pathways to Frailty. Nutrients 2013, 5, 4184–4205. [Google Scholar] [CrossRef] [Green Version]
- Erlandsson, M.C.; Silfverswärd, S.T.; Nadali, M.; Turkkila, M.; Svensson, M.N.D.; Jonsson, I.-M.; Andersson, K.M.E.; Bokarewa, M.I. IGF-1R Signalling Contributes to IL-6 Production and T Cell Dependent Inflammation in Rheumatoid Arthritis. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 2158–2170. [Google Scholar] [CrossRef] [PubMed]
- Laurberg, T.B.; Ellingsen, T.; Thorsen, J.; Møller, B.K.; Hansen, I.; Tarp, U.; Hetland, M.L.; Hørslev-Petersen, K.; Flyvbjerg, A.; Frystyk, J.; et al. Insulin-like Growth Factor I Receptor Density on CD4+T-Lymphocytes from Active Early Steroid- and DMARD-Naïve Rheumatoid Arthritis Patients Is up-Regulated and Not Influenced by 1 Year of Clinically Effective Treatment. Rheumatol. Int. 2012, 32, 501–504. [Google Scholar] [CrossRef]
- Urso, M.L.; Fiatarone Singh, M.A.; Ding, W.; Evans, W.J.; Cosmas, A.C.; Manfredi, T.G. Exercise Training Effects on Skeletal Muscle Plasticity and IGF-1 Receptors in Frail Elders. Age 2005, 27, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; Lu, L.; Lin, X.; Wang, X. Crucial Role of Androgen Receptor in Resistance and Endurance Trainings-Induced Muscle Hypertrophy through IGF-1/IGF-1R- PI3K/Akt- MTOR Pathway. Nutr. Metab. 2020, 17, 26. [Google Scholar] [CrossRef]
- Schwiebert, C.; Kühnen, P.; Becker, N.-P.; Welsink, T.; Keller, T.; Minich, W.B.; Wiegand, S.; Schomburg, L. Antagonistic Autoantibodies to Insulin-Like Growth Factor-1 Receptor Associate with Poor Physical Strength. Int. J. Mol. Sci. 2020, 21, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.H. MicroRNA in Myogenesis and Muscle Atrophy. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, W.J.; Ratamess, N.A. Hormonal Responses and Adaptations to Resistance Exercise and Training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A.; Hymer, W.C.; Nindl, B.C.; Fragala, M.S. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front. Endocrinol. 2020, 11, 33. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Esser, K.A. Anabolic and Catabolic Pathways Regulating Skeletal Muscle Mass. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 230–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, A.C.; Kraemer, W.J.; Stone, M.H.; Warren, B.J.; Fleck, S.J.; Kearney, J.T.; Gordon, S.E. Endocrine Responses to Overreaching before and after 1 Year of Weightlifting. Can. J. Appl. Physiol. 1994, 19, 400–410. [Google Scholar] [CrossRef]
- McCall, G.E.; Byrnes, W.C.; Fleck, S.J.; Dickinson, A.; Kraemer, W.J. Acute and Chronic Hormonal Responses to Resistance Training Designed to Promote Muscle Hypertrophy. Can. J. Appl. Physiol. 1999, 24, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Schwanbeck, S.R.; Cornish, S.M.; Barss, T.; Chilibeck, P.D. Effects of Training With Free Weights Versus Machines on Muscle Mass, Strength, Free Testosterone, and Free Cortisol Levels. J. Strength Cond. Res. 2020, 34, 1851–1859. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, C.; Li, Y.; Gao, S.; Han, Y.-C.; Wang, X.; Du, J.; Zhang, C. MicroRNA-223-3p Promotes Skeletal Muscle Regeneration by Regulating Inflammation in Mice. J. Biol. Chem. 2020, 295, 10212–10223. [Google Scholar] [CrossRef]
- Johnnidis, J.B.; Harris, M.H.; Wheeler, R.T.; Stehling-Sun, S.; Lam, M.H.; Kirak, O.; Brummelkamp, T.R.; Fleming, M.D.; Camargo, F.D. Regulation of Progenitor Cell Proliferation and Granulocyte Function by MicroRNA-223. Nature 2008, 451, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.; Fasanaro, P.; Castelvecchio, S.; D’Alessandra, Y.; Arcelli, D.; Donato, M.D.; Malavazos, A.; Capogrossi, M.C.; Menicanti, L.; Martelli, F. MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes 2012, 61, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.M.; Graf, G.A.; van der Westhuyzen, D.R. New Developments in Selective Cholesteryl Ester Uptake. Curr. Opin. Lipidol. 2013, 24, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. J. Sports Sci. Med. 2015, 14, 536–547. [Google Scholar] [PubMed]
- Tao, L.; Bei, Y.; Zhang, H.; Xiao, J.; Li, X. Exercise for the Heart: Signaling Pathways. Oncotarget 2015, 6, 20773–20784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, B.; Zierath, J.R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef] [Green Version]
- Guth, L.M.; Roth, S.M. Genetic Influence on Athletic Performance. Curr. Opin. Pediatr. 2013, 25, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, M. Exercise and Gene Expression. Prog. Mol. Biol. Transl. Sci. 2015, 135, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Soci, U.P.R.; Melo, S.F.S.; Gomes, J.L.P.; Silveira, A.C.; Nóbrega, C.; de Oliveira, E.M. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. Adv. Exp. Med. Biol. 2017, 1000, 281–322. [Google Scholar] [CrossRef]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.; O’Connor, P.L.; Zierath, J.R.; O’Gorman, D.J. Time Course Analysis Reveals Gene-Specific Transcript and Protein Kinetics of Adaptation to Short-Term Aerobic Exercise Training in Human Skeletal Muscle. PLoS ONE 2013, 8, e74098. [Google Scholar] [CrossRef]
- Perry, C.G.R.; Lally, J.; Holloway, G.P.; Heigenhauser, G.J.F.; Bonen, A.; Spriet, L.L. Repeated Transient MRNA Bursts Precede Increases in Transcriptional and Mitochondrial Proteins during Training in Human Skeletal Muscle. J. Physiol. 2010, 588, 4795–4810. [Google Scholar] [CrossRef]
Parameter | Period I | Period II | Period III | Period IV | p-Value |
---|---|---|---|---|---|
miR-223 | 0.73 ± 0.37 | 0.18 ± 0.05 | 0.98 ± 0.57 | 0.37 ± 0.18 | <0.0001 |
miR-320a | 0.74 ± 0.43 | 0.62 ± 0.2 | 1.19 ± 0.44 | 0.67 ± 0.24 | 0.00021 |
miR-486 | 0.75 ± 0.38 | 1.07 ± 0.42 | 1.44 ± 0.58 | 1.04 ± 0.49 | 0.0037 |
IGF1R | 1.91 ± 1.57 | 3.15 ± 1.76 | 3.84 ± 2.55 | 2.41 ± 1.08 | 0.00092 |
CK (U/L) | 101.82 ± 51.12 | 126.92 ± 96.27 | 145.25 ± 61.12 | 210.58 ± 80.91 | <0.0001 |
Cortisol (µg/dL) | 25.57 ± 7.45 | 19.36 ± 3.97 | 17.27 ± 4.09 | 16.66 ± 4.26 | <0.0001 |
Body Composition Parameter | Period I | Period II | Period III | Period IV | p-Value |
---|---|---|---|---|---|
Weight, kg | 77.3 ± 10.08 | 77.83 ± 10.12 | 77.98 ± 10.61 | 78.17 ± 10.49 | 0.064 |
BMI, kg/m2 | 22.68 ± 2.18 | 22.8 ± 2.21 | 22.83 ± 2.22 | 22.85 ± 2.18 | 0.33 |
Fat, % | 20.83 ± 3.77 | 19.38 ± 3.08 | 19.14 ± 3.71 | 18.66 ± 3.58 | 0.00001 A |
Fat mass, kg | 16.33 ± 4.76 | 15.28 ± 4.22 | 15.09 ± 4.73 | 14.89 ± 4.7 | 0.00048 B |
FFM, kg | 60.98 ± 6.38 | 62.56 ± 6.57 | 62.96 ± 6.64 | 63.53 ± 6.85 | <0.00001 C |
TBW, kg | 44.63 ± 4.66 | 45.81 ± 4.81 | 46.16 ± 4.9 | 46.45 ± 5.05 | <0.00001 D |
BMR, kJ | 7568.75 ± 848.73 | 7740.33 ± 881.37 | 7835.58 ± 959.55 | 7828.5 ± 910.59 | 0.00015 E |
miR-223 | miR-320a | miR-486 | IGF1R | WEIGHT | BMI | BMR | FAT% | FAT MASS | FFM | TBW | CK | Cortisol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
miR-223 | 1 | 0.54 (p < 0.001) | 0.06 | −0.16 | −0.19 | −0.03 | −0.16 | −0.11 | −0.18 | −0.18 | −0.18 | 0.004 | 0.02 |
miR-320a | 0.54 (p < 0.001) | 1 | 0.73 (p < 0.001) | 0.2 | 0.03 | −0.12 | 0.06 | 0.02 | −0.01 | 0.06 | 0.05 | 0.09 | −0.29 (p = 0.048) |
miR-486 | 0.06 | 0.73 (p < 0.001) | 1 | 0.23 | 0.17 | −0.09 | 0.21 | 0.03 | 0.09 | 0.21 | 0.2 | 0.05 | −0.49 (p < 0.001) |
IGF1R | −0.16 | 0.2 | 0.23 | 1 | −0.13 | −0.37 p = 0.01 | −0.09 | −0.1 | −0.08 | −0.06 | −0.06 | −0.19 | −0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podgórski, R.; Cieśla, M.; Podgórska, D.; Bajorek, W.; Płonka, A.; Czarny, W.; Trybulski, R.; Król, P. Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players. J. Clin. Med. 2022, 11, 263. https://doi.org/10.3390/jcm11010263
Podgórski R, Cieśla M, Podgórska D, Bajorek W, Płonka A, Czarny W, Trybulski R, Król P. Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players. Journal of Clinical Medicine. 2022; 11(1):263. https://doi.org/10.3390/jcm11010263
Chicago/Turabian StylePodgórski, Rafał, Marek Cieśla, Dominika Podgórska, Wojciech Bajorek, Artur Płonka, Wojciech Czarny, Robert Trybulski, and Paweł Król. 2022. "Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players" Journal of Clinical Medicine 11, no. 1: 263. https://doi.org/10.3390/jcm11010263
APA StylePodgórski, R., Cieśla, M., Podgórska, D., Bajorek, W., Płonka, A., Czarny, W., Trybulski, R., & Król, P. (2022). Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players. Journal of Clinical Medicine, 11(1), 263. https://doi.org/10.3390/jcm11010263