The Prognostic Value of 18F-FDG PET Imaging at Staging in Patients with Malignant Pleural Mesothelioma: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
3. Results
3.1. Literature Research
3.2. Study Characteristics
3.3. Methodological Aspects
3.4. PET Prognostic Value
4. Discussion
4.1. PET Prognostic Role
4.2. New Promising PET Prognostic Parameters
4.3. Limitations
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nickell, L.T., Jr.; Lichtenberger, J.P., 3rd; Khorashadi, L.; Abbott, G.F.; Carter, B.W. Multimodality imaging for characterization, classification, and staging of malignant pleural mesothelioma. Radiographics 2014, 34, 1692–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opitz, I. Management of malignant pleural mesothelioma—The European experience. J. Thorac. Dis. 2014, 6 (Suppl. 2), S238–S252. [Google Scholar]
- Cardinale, L.; Ardissone, F.; Gned, D.; Sverzellati, N.; Piacibello, E.; Veltri, A. Diagnostic Imaging and workup of Malignant Pleural Mesothelioma. Acta Biomed. 2017, 88, 134–142. [Google Scholar] [PubMed]
- National Comprehensive Cancer Network Guidelines in Oncology: Malignant Pleural Mesothelioma. v.2.2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/mpm.pdf (accessed on 19 December 2021).
- Flores, R.M.; Routledge, T.; Seshan, V.E.; Dycoco, J.; Zakowski, M.; Hirth, Y.; Rusch, V.W. The impact of lymph node station on survival in 348 patients with surgically resected malignant pleural mesothelioma: Implications for revision of the American Joint Committee on Cancer staging system. J. Thorac. Cardiovasc. Surg. 2008, 136, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Tsao, A.S.; Wistuba, I.; Roth, J.A.; Kindler, H.L. Malignant pleural mesothelioma. J. Clin. Oncol. 2009, 27, 2081–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lococo, F. Malignant Pleural Mesothelioma: Time Is Running Out. J. Clin. Med. 2021, 10, 648. [Google Scholar] [CrossRef]
- de Gooijer, C.J.; Baas, P.; Burgers, J.A. Current chemotherapy strategies in malignant pleural mesothelioma. Transl. Lung Cancer Res. 2018, 7, 574–583. [Google Scholar] [CrossRef]
- Katzman, D.; Sterman, D.H. Updates in the diagnosis and treatment of malignant pleural mesothelioma. Curr. Opin. Pulm. Med. 2018, 24, 319–326. [Google Scholar] [CrossRef]
- Nakano, T. Current therapies for malignant pleural mesothelioma. Environ. Health Prev. Med. 2008, 13, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Scherpereel, A.; Astoul, P.; Baas, P.; Berghmans, T.; Clayson, H.; de Vuyst, P.; Dienemann, H.; Galateau-Salle, F.; Hennequin, C.; Hillerdal, G.; et al. Guidelines of the European Respiratory Society and the European Society of Thoracic Surgeons for the management of malignant pleural mesothelioma. Eur. Respir. J. 2010, 35, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Curran, D.; Sahmoud, T.; Therasse, P.; van Meerbeeck, J.; Postmus, P.E.; Giaccone, G. Prognostic factors in patients with pleural mesothelioma: The European Organization for Research and Treatment of Cancer experience. J. Clin. Oncol. 1998, 16, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Herndon, J.E.; Green, M.R.; Chahinian, A.P.; Corson, J.M.; Suzuki, Y.; Vogelzang, N.J. Factors predictive of survival among 337 patients with mesothelioma treated between 1984 and 1994 by the Cancer and Leukemia Group B. Chest 1998, 113, 723–731. [Google Scholar] [CrossRef]
- Imperatori, A.; Castiglioni, M.; Mortara, L.; Nardecchia, E.; Rotolo, N. The challenge of prognostic markers in pleural mesothelioma. J. Thorac. Dis. 2013, 5, 205–206. [Google Scholar]
- Ambrogi, V.; Mineo, T.C.; Multidisciplinary Tor Vergata University Study Group for Malignant Pleural Mesothelioma. Clinical and biologic prognostic factors in malignant pleural mesothelioma. Thorac. Cancer 2012, 3, 289–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blyth, K.G.; Murphy, D.J. Progress and challenges in Mesothelioma: From bench to bedside. Respir. Med. 2018, 134, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frauenfelder, T.; Kestenholz, P.; Hunziker, R.; Nguyen, T.D.; Fries, M.; Veit-Haibach, P.; Husmann, L.; Stahel, R.; Weder, W.; Opitz, I. Use of computed tomography and positron emission tomography/computed tomography for staging of local extent in patients with malignant pleural mesothelioma. J. Comput. Assist. Tomogr. 2015, 39, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Rusch, V.W. A proposed new international TNM staging system for malignant pleural mesothelioma from the International Mesothelioma Interest Group. Lung Cancer 1996, 14, 1–12. [Google Scholar] [CrossRef]
- Flores, R.M.; Akhurst, T.; Gonen, M.; Larson, S.M.; Rusch, V.W. Positron emission tomography defines metastatic disease but not locoregional disease in patients with malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 2003, 126, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Kruse, M.; Sherry, S.J.; Paidpally, V.; Mercier, G.; Subramaniam, R.M. FDG PET/CT in the management of primary pleural tumors and pleural metastases. AJR Am. J. Roentgenol. 2013, 201, W215–W226. [Google Scholar] [CrossRef]
- Kitajima, K.; Doi, H.; Kuribayashi, K. Present and future roles of FDG-PET/CT imaging in the management of malignant pleural mesothelioma. Jpn. J. Radiol. 2016, 34, 537–547. [Google Scholar] [CrossRef]
- Fuccio, C.; Spinapolice, E.G.; Ferretti, A.; Castellucci, P.; Marzola, M.C.; Trifiro, G.; Rubello, D. 18F-FDG-PET/CT in malignant mesothelioma. Biomed. Pharmacother. 2013, 67, 539–542. [Google Scholar] [CrossRef]
- Sharif, S.; Zahid, I.; Routledge, T.; Scarci, M. Does positron emission tomography offer prognostic information in malignant pleural mesothelioma? Interact. Cardiovasc. Thorac. Surg. 2011, 12, 806–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aide, N.; Lasnon, C.; Veit-Haibach, P.; Sera, T.; Sattler, B.; Boellaard, R. EANM/EARL harmonization strategies in PET quantification: From daily practice to multicentre oncological studies. Eur. J. Nucl. Med. Mol. Imaging 2017, 44 (Suppl. 1), 17–31. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Tamaki, N. Quantitative FDG PET Assessment for Oncology Therapy. Cancers 2021, 13, 869. [Google Scholar] [CrossRef]
- Incerti, E.; Broggi, S.; Fodor, A.; Cuzzocrea, M.; Samanes Gajate, A.M.; Mapelli, P.; Fiorino, C.; Dell’Oca, I.; Pasetti, M.; Cattaneo, M.; et al. FDG PET-derived parameters as prognostic tool in progressive malignant pleural mesothelioma treated patients. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Tsutani, Y.; Takuwa, T.; Miyata, Y.; Fukuoka, K.; Hasegawa, S.; Nakano, T.; Okada, M. Prognostic significance of metabolic response by positron emission tomography after neoadjuvant chemotherapy for resectable malignant pleural mesothelioma. Ann. Oncol. 2013, 24, 1005–1010. [Google Scholar] [CrossRef]
- Kitajima, K.; Maruyama, M.; Minami, T.; Yokoi, T.; Kuribayashi, K.; Kijima, T.; Hashimoto, M.; Hasegawa, S.; Yamakado, K. Comparison of modified Response Evaluation Criteria in Solid Tumors, European Organization for Research and Treatment of Cancer criteria, and PET Response Criteria in Solid Tumors for evaluation of tumor response to chemotherapy and prognosis prediction in patients with unresectable malignant pleural mesothelioma. Nucl. Med. Commun. 2020, 41, 790–799. [Google Scholar] [PubMed]
- Zucali, P.A.; Lopci, E.; Ceresoli, G.L.; Giordano, L.; Perrino, M.; Ciocia, G.; Gianoncelli, L.; Lorenzi, E.; Simonelli, M.; De Vincenzo, F.; et al. Prognostic and predictive role of [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) in patients with unresectable malignant pleural mesothelioma (MPM) treated with up-front pemetrexed-based chemotherapy. Cancer Med. 2017, 6, 2287–2296. [Google Scholar] [CrossRef]
- Lopci, E.; Zucali, P.A.; Ceresoli, G.L.; Perrino, M.; Giordano, L.; Gianoncelli, L.; Lorenzi, E.; Gemelli, M.; Santoro, A.; Chiti, A. Quantitative analyses at baseline and interim PET evaluation for response assessment and outcome definition in patients with malignant pleural mesothelioma. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Ceresoli, G.L.; Chiti, A.; Zucali, P.A.; Rodari, M.; Lutman, R.F.; Salamina, S.; Incarbone, M.; Alloisio, M.; Santoro, A. Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J. Clin. Oncol. 2006, 24, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
- Genestreti, G.; Moretti, A.; Piciucchi, S.; Tiseo, M.; Bersanelli, M.; Scarlattei, M.; Scarpi, E.; Dubini, A.; Matteucci, F.; Sanna, S. Prognostic value of 18F-FDG standard uptake value by integrated PET/CT in the staging of malignant pleural mesothelioma. Technol. Cancer Res. Treat. 2012, 11, 163–167. [Google Scholar] [CrossRef]
- Ozyurek, B.A.; Ozmen, O.; Ozdemirel, T.S.; Erdogan, Y.; Kaplan, B.; Kaplan, T. Relation between neutrophil/lymphocyte ratio and primary tumor metabolic activity in patients with malign pleural mesothelioma. Clin. Respir. J. 2018, 12, 646–651. [Google Scholar] [CrossRef]
- Nowak, A.K.; Francis, R.J.; Phillips, M.J.; Millward, M.J.; van der Schaaf, A.A.; Boucek, J.; Musk, A.W.; McCoy, M.J.; Segal, A.; Robins, P.; et al. A novel prognostic model for malignant mesothelioma incorporating quantitative FDG-PET imaging with clinical parameters. Clin. Cancer Res. 2010, 16, 2409–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.Y.; Hyun, S.H.; Lee, K.S.; Kim, B.T.; Kim, J.; Shim, Y.M.; Ahn, M.J.; Kim, T.S.; Yi, C.A.; Chung, M.J. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: Prediction of therapeutic response and prognostic implications. Ann. Surg. Oncol. 2010, 17, 2787–2794. [Google Scholar] [CrossRef]
- Veit-Haibach, P.; Schaefer, N.G.; Steinert, H.C.; Soyka, J.D.; Seifert, B.; Stahel, R.A. Combined FDG-PET/CT in response evaluation of malignant pleural mesothelioma. Lung Cancer 2010, 67, 311–317. [Google Scholar] [CrossRef]
- Klabatsa, A.; Chicklore, S.; Barrington, S.F.; Goh, V.; Lang-Lazdunski, L.; Cook, G.J. The association of 18F-FDG PET/CT parameters with survival in malignant pleural mesothelioma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Tamura, K.; Sakata, I.; Ishida, J.; Ozeki, Y.; Tamura, A.; Uematsu, K.; Sakai, H.; Goya, T.; Kanazawa, M.; et al. Clinical implications of 18F-fluorodeoxyglucose positron emission tomography/computed tomography at delayed phase for diagnosis and prognosis of malignant pleural mesothelioma. Oncol. Rep. 2012, 27, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Kaira, K.; Serizawa, M.; Koh, Y.; Takahashi, T.; Hanaoka, H.; Oriuchi, N.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. Relationship between 18F-FDG uptake on positron emission tomography and molecular biology in malignant pleural mesothelioma. Eur. J. Cancer 2012, 48, 1244–1254. [Google Scholar] [CrossRef]
- Terada, T.; Tabata, C.; Tabata, R.; Okuwa, H.; Kanemura, S.; Shibata, E.; Nakano, T. Clinical utility of 18-fluorodeoxyglucose positron emission tomography/computed tomography in malignant pleural mesothelioma. Exp. Ther. Med. 2012, 4, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abakay, A.; Komek, H.; Abakay, O.; Palanci, Y.; Ekici, F.; Tekbas, G.; Tanrikulu, A.C. Relationship between 18 FDG PET-CT findings and the survival of 177 patients with malignant pleural mesothelioma. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1233–1241. [Google Scholar]
- Koyuncu, A.; Koksal, D.; Ozmen, O.; Demirag, F.; Bayiz, H.; Aydogdu, K.; Berkoglu, M. Prognostic factors in malignant pleural mesothelioma: A retrospective study of 60 Turkish patients. J. Cancer Res. Ther. 2015, 11, 216–222. [Google Scholar]
- Pinelli, V.; Roca, E.; Lucchini, S.; Laroumagne, S.; Loundou, A.; Dutau, H.; Maldonado, F.; Astoul, P. Positron Emission Tomography/Computed Tomography for the Pleural Staging of Malignant Pleural Mesothelioma: How Accurate Is It? Respiration 2015, 89, 558–564. [Google Scholar] [CrossRef]
- Bille, A.; Krug, L.M.; Woo, K.M.; Rusch, V.W.; Zauderer, M.G. Contemporary Analysis of Prognostic Factors in Patients with Unresectable Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2016, 11, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Ozmen, O.; Koyuncu, A.; Koksal, D.; Tatci, E.; Alagoz, E.; Demirag, F.; Gokcek, A.; Arslan, N. The potential value of volume-based quantitative PET parameters and increased bone marrow uptake for the prediction of survival in patients with malignant pleural mesothelioma. Nucl Med. Commun. 2016, 37, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.O.; Hooper, C.E.; Searle, J.; Darby, M.; White, P.; Harvey, J.E.; Braybrooke, J.P.; Maskell, N.A.; Masani, V.; Lyburn, I.D. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma. Nucl. Med. Commun. 2018, 39, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Kuribayashi, K.; Kitajima, K.; Yamakado, K.; Kijima, T. Development of a Novel Prognostic Risk Classification System for Malignant Pleural Mesothelioma. Clin. Lung Cancer 2020, 21, 66–74.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.H.; Choi, J.Y.; Im, Y.; Yoo, H.; Jhun, B.W.; Jeong, B.H.; Park, H.Y.; Lee, K.; Kim, H.; Kwon, O.J.; et al. Prognostic value of SUVmax on 18F-fluorodeoxyglucose PET/CT scan in patients with malignant pleural mesothelioma. PLoS ONE 2020, 15, e0229299. [Google Scholar] [CrossRef] [Green Version]
- Lococo, F.; Rena, O.; Torricelli, F.; Filice, A.; Rapicetta, C.; Boldorini, R.; Paci, M.; Versari, A. 18F-fluorodeoxyglucose positron emission tomography in malignant pleural mesothelioma: Diagnostic and prognostic performance and its correlation to pathological results. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 593–596. [Google Scholar] [CrossRef]
- Pavic, M.; Bogowicz, M.; Kraft, J.; Vuong, D.; Mayinger, M.; Kroeze, S.G.C.; Friess, M.; Frauenfelder, T.; Andratschke, N.; Huellner, M.; et al. FDG PET versus CT radiomics to predict outcome in malignant pleural mesothelioma patients. EJNMMI Res. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Keyes, J.W., Jr. SUV: Standard uptake or silly useless value? J. Nucl. Med. 1995, 36, 1836–1839. [Google Scholar] [PubMed]
- Bianco, A.; Valente, T.; De Rimini, M.L.; Sica, G.; Fiorelli, A. Clinical diagnosis of malignant pleural mesothelioma. J. Thorac. Dis. 2018, 10 (Suppl. 2), S253–S261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genestreti, G.; Moretti, A.; Piciucchi, S.; Giovannini, N.; Galassi, R.; Scarpi, E.; Burgio, M.A.; Amadori, D.; Sanna, S.; Poletti, V.; et al. FDG PET/CT Response Evaluation in Malignant Pleural Mesothelioma Patients Treated with Talc Pleurodesis and Chemotherapy. J. Cancer 2012, 3, 241–245. [Google Scholar] [CrossRef]
- Nguyen, N.C.; Tran, I.; Hueser, C.N.; Oliver, D.; Farghaly, H.R.; Osman, M.M. F-18 FDG PET/CT characterization of talc pleurodesis-induced pleural changes over time: A retrospective study. Clin. Nucl. Med. 2009, 34, 886–890. [Google Scholar] [CrossRef]
- Kwek, B.H.; Aquino, S.L.; Fischman, A.J. Fluorodeoxyglucose positron emission tomography and CT after talc pleurodesis. Chest 2004, 125, 2356–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, A.; Kasahara, K.; Saito, K.; Fujimura, M.; Nakao, S. Granulocyte colony-stimulating factor-producing malignant pleural mesothelioma with the expression of other cytokines. Int. J. Clin. Oncol. 2005, 10, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.G.; Abrams, K.R.; Leverment, J.N.; Spyt, T.J.; Waller, D.A.; O’Byrne, K.J. Prognostic factors for malignant mesothelioma in 142 patients: Validation of CALGB and EORTC prognostic scoring systems. Thorax 2000, 55, 731–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajima, K.; Nakamichi, T.; Hasegawa, S.; Kuribayashi, K.; Yamakado, K. Fluorodeoxyglucose versus Choline Positron Emission Tomography/Computed Tomography Response Evaluation in Two Malignant Pleural Mesothelioma Patients Treated with Talc Pleurodesis and Neoadjuvant Chemotherapy. Cureus 2018, 10, e3654. [Google Scholar] [CrossRef] [Green Version]
First Author | Year of Publication | Journal | Country | Study Design | Study Population with MPM | Gender (% Males) | Age (Mean ± SD or Median + Range) | Patients with Available Data for PET Prognostic Assessment | MPM Subtype (n) | Stage of Disease (n) | Clinical Indication for PET Study | Pleurodesis before PET (n) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nowak AK [34] | 2010 | Clin Cancer Res | Australia | P | 89 | 88 | n.r. | 89 | E (69), B (13), S (7) | TNM-CT based: I (12), II (8), III (31), IV (33) | Staging | Yes (28/89) |
Lee HY [35] | 2010 | Ann Surg Oncol | Korea | R | 23 | 69 | 54 (37–61) | 13 | E (9), B (3), S (1) | TNM: III (12), IV (1) | Staging | No |
Abe Y [38] | 2012 | Oncol Rep | Japan | n.r. (likely R) | 31 | 87 | 67 (47–79) | 23 | E (14), B (6), S (4), O (2), U (5) | any stage | Diagnosis, staging | No |
Kaira K [39] | 2012 | Eur J Cancer | Japan | R | 21 | 86 | 66 (19–79) | 21 | E (16), B (2), S (1), D (2) | TNM: I (8), II (1), III (5), IV (7) | Staging | No |
Genestreti G [32] | 2012 | Tech Cancer Res Treat | Italy | R | 27 | 78 | 65 (54–77) | 27 | E (23), B (4) | TNM: I (15), II (4), III (8) | Staging | Yes (13/27) |
Terada T [40] | 2012 | Exp Ther Med | Japan | n.r. (likely R) | 47 | 81 | 65.2 ± 9.6 | 47 | E (31), B (4), S (6), D (1), U (5) | TNM: I (9), II (10), III (9), IV (19) | Staging | n.r. |
Abakay A [41] | 2013 | Eur Rev Med Pharm Sci | Turkey | R | 177 | 56 | 55.4 ± 11.3 | 177 | E (144), U (33) | TNM: I-II (90), III-IV (87) | Diagnosis, staging | Yes (60/177) |
Klabatsa A [37] | 2014 | EJNMMI | UK | R | 60 | 85 | 65 | 60 | E (31), S (5), D (2), U (9), Mix (13) | AJCC: 1 (9), 2 (13), 3 (27), 4 (11) | Staging | No |
Koyuncu A [42] | 2015 | J Cancer Res Ther | Turkey | R | 60 | 57 | 53.6 ± 10.6 | 60 | E (45), B (14), Und (1) | TNM: I (15), II (13), III (19), IV (13) | Staging | n.s. |
Pinelli V [43] | 2015 | Respiration | Italy, USA, France | R | 32 | 75 | 63 (45–74) | 32 | E (29), S (1), Mix (2) | TNM: I (3), II (6), III (15), IV (8) | Staging | No |
Billé A [44] | 2016 | J Thorac Oncol | USA | R | 191 | 77 | 71 (46–90) | 143 | E (128), B (20), S (28), U (15) | TNM: I-II (34), III (87), IV (70) | Staging | Yes (n.r.) |
Ozmen O [45] | 2016 | Nucl Med Commun | Turkey | R | 51 | 49 | 56.2 ± 11.4 | 51 | E (30), B (13), S (1), U (7) | Locally advanced and metastatic disease | Staging | No |
Zucali PA [29] * | 2017 | Cancer Med | Italy | R | 142 | 66 | n.r. | 142 | E (116), O (25), U (1) | Unresectable | Staging and treatment response | Yes (77/142) |
Özyürek BA [33] | 2018 | Clin Resp J | Turkey | R | 73 | 51 | 56.1 ± 11.4 | 67 | E (45), B (16), U (12) | TNM: I (6), II (15), III (20), IV (32) | Staging | n.r. |
Hall DO [46] * | 2018 | Nucl Med Commun | UK | P | 73 | 86 | 73 | 65 with baseline PET; 54 with both baseline and post-treatment PET | E (50), B (8), S (15) | TNM: I (8), II (5), III (34), IV (26) | Staging and treatment response | Yes (27/73) |
Doi H [47] | 2020 | Clin Lung Cancer | Japan | R | 188 | 83 | 68 (31–84) | 188 | E (139), non-E (49) | TNM: I-II (63), III-IV (125) | Staging | n.r. |
Lim JH [48] | 2020 | PLoS One | South Korea | R | 54 | 76 | 64 (53–71) | 54 | E (34), B (3), S (10), U (7) | TNM: I (18), II (2), III (24), IV (10) | Staging | n.r. |
Lococo F [49] | 2020 | Inter Card Thorac Surg | Italy | R | 141 | 72 | 69 ± 9 | 141 | E (89), B (36), S (16) | TNM: I (15), II (56), III (57), IV (13) | Staging | No |
Pavic M [50] | 2020 | EJNMMI Res | Switzerland | R | 72 | 89 | 40–76 | 72 | E (61), B (9), S (2) | Eligible for curative surgery | Staging | n.r. |
First Author | PET Modality | PET/CT with c.e. | Injected Activity (MBq) | Scan Delay (Minutes p.i.) | Dual Time Imaging (Timing) | FOV | Semiquantitative PET Image Analysis | Tumor Contouring (for Volumetric Analysis) | Treatment Strategy (after PET) |
---|---|---|---|---|---|---|---|---|---|
Nowak AK [34] | PET | No | 215/m2 | 90 | No | n.r. | SUV-based + volumetric parameters | VOI on pleural lesion by iterative algorithm based on adaptive threshold | CHT, trimodality treatment, palliative RT |
Lee HY [35] | PET/CT | No | n.r. | n.r. | No | n.r. | SUV-based + volumetric parameters | VOI over primary lesion using an isocontour with threshold set as liver SUVmean + 2SD | Surgery, palliative CHT |
Abe Y [38] | PET/CT | No | 3.7/Kg | 60 | Yes (delayed phase at 120 min p.i.) | n.r. | SUV-based | - | CHT, surgery + CHT, BSC |
Kaira K [39] | PET/CT | No | 200–250 | 60 | No | skull top-groin | SUV-based | - | Surgery ± CHT, CHT, RT, BSC |
Genestreti G [32] | PET/CT | No | 5.18/Kg | 50–60 | No | skull-upper thighs | SUV-based | - | CHT, surgery ± CHT |
Terada T [40] | PET/CT | No | n.r. | 60 | No | head-foot | SUV-based | - | CHT, surgery + RT |
Abakay A [41] | PET/CT | Yes (oral contrast agent only) | 215/m2 | 60 | No | n.r. | SUV-based | - | CHT, multimodality treatment, BSC |
Klabatsa A [37] | PET/CT | No | 350–400 | 90 | No | n.r. | SUV-based + volumetric parameters | VOI on tumor areas with threshold of 40% of SUVmax in 41 pts, 20% in 16 pts and 60% in 3 pts | Radical trimodality treatment, palliative therapy |
Koyuncu A [42] | PET/CT | No | n.r. | n.r. | No | n.r. | SUV-based | - | Surgery, CHT, multimodality treatment, BSC |
Pinelli V [43] | PET/CT | No | 5.5/Kg | 60 | No | skull base-mid thighs | SUV-based | - | n.r. |
Billé A [44] | PET | n.s. | n.r. | n.r. | No | n.r. | SUV-based | - | CHT, CHT + RT, RT |
Ozmen O [45] | PET/CT | Yes (for specific cases) | 370–555 | 60 | No | vertex- proximal femur | SUV-based + volumetric parameters | VOI on pleural tumor with threshold of 40% of SUVmax | BSC, CHT, multimodality treatment, surgery |
Özyürek BA [33] | PET/CT | No | 370–555 | 60 | No | skull base-high thighs | SUV-based | - | CHT, CHT + palliative RT (n = 9, 12%), surgery + CHT |
Doi H [46] | PET/CT | No | 4.0/Kg | 60 | No | head-toes | SUV-based + volumetric parameters | VOI on tumor lesions by gradient-based tumor segmentation | CHT |
Lim JH [48] | PET/CT | No | 5.0/Kg | 60 | No | n.r. | SUV-based | - | Surgery ± CHT, palliative CHT |
Lococo F [49] | PET/CT | No | n.r. | n.r. | No | n.r. | SUV-based | - | Surgery (when indicated) |
Pavic M [50] | PET/CT | Yes (not in all pts) | 188–417 | 46–91 | No | n.r. | SUV-based + volumetric parameters + radiomics analysis | n.s. | Surgery ± CHT |
First Author | PET Modality | PET/CT with c.e. | Injected Activity (MBq) | Scan Delay (Minutes p.i.) | Dual Time Imaging | FOV | Semiquantitative PET Image Analysis | Tumor Contouring (for Volumetric Analysis) | Treatment Type | PET after Treatment (Timing) |
---|---|---|---|---|---|---|---|---|---|---|
Zucali PA [29] | PET/CT (115/142), PET alone (27/142) | No | n.r. | 60 | No | skull base-thighs | SUV-based + volumetric parameters | VOI on metabolic tumor-related areas using a semiautomated iterative threshold-based, region-growing algorithm or a semiautomated liver-based threshold contouring | CHT (pemetrexed) | after 2 cycles of CHT |
Hall DO [46] * | PET/CT | No | 400 | 90 | No | n.r. | SUV-based + volumetric parameters | VOI defined as all voxels with SUV > 2.5, within both lungs | CHT (pemetrexed + cisplatin/carboplatin); BSC | after 2 cycles of CHT |
First Author | Evaluated PET Parameters | PET Prognostic Value | Best PET Prognostic Parameters | Optimal Cut-Off of PET Prognostic Parameters | Other Prognostic Factors | Prognostic Endpoint |
---|---|---|---|---|---|---|
Nowak AK [34] | SUVmax, TGV | Yes (in non-sarcomatoid type) | TGV (poor prognosis for higher values) | TGV > median value (n.s.) | Sarcomatoid histology, weight loss (poor prognosis) | OS |
Lee HY [35] | SUVmax, SUVmean, MTV, TLG | Yes | MTV and TLG (poor prognosis for higher values) | MTV > 250 mL; TLG > 1250 | Sarcomatoid histology (poor prognosis) | TTP |
Abe Y [38] | SUVmax (at early and delayed phase) | Yes | SUVmax (poor prognosis for higher values) | early SUVmax > 3.65; delayed SUVmax > 6.0 | n.s.s. | OS |
Kaira K [39] | SUVmax, T/M ratio (tumor SUVpeak/mediastinal SUVmean) | Yes | SUVmax and T/M ratio (poor prognosis for higher values) | SUVmax > 5.20; T/M ratio > 4.23 | n.r. | OS |
Genestreti G [32] | SUVmax, SUVmean | No | None | - | n.r. | OS |
Terada T [40] | SUVmax | Yes | SUVmax (poor prognosis for higher values) | SUVmax > 3.5 | Age > 65 years (poor prognosis) | OS |
Abakay A [41] | SUVmax | Yes | SUVmax (poor prognosis for higher values) | SUVmax > 5 | Male gender, KPS < 60, BSC, stage III-IV (poor prognosis) | OS |
Klabatsa A [37] | SUVmax, SUVmean, SUVpeak, MTV, TLG | Yes (borderline significance at multivariate analysis) | MTV and TLG (only TLG evaluated at multivariate analysis) (poor prognosis for higher values) | MTV > 755 mL; TLG > 2914 | Epithelioid histology (better prognosis) | OS |
Koyuncu A [42] | SUVmax | Yes (only at univariate analysis) | SUVmax (poor prognosis for higher values) | SUVmax > 8 | Leukocytosis, advanced stage, BSC, MAI > 1 (poor prognosis) | OS |
Pinelli V [43] | SUVmax | Yes | SUVmax (poor prognosis for higher values) | SUVmax ≥ 6.1 | n.r. | OS |
Billé A [44] | SUVmax | Yes (only at univariate analysis) | SUVmax (poor prognosis for higher values) | SUV max > 8.1 | Biphasic or sarcomatoid histotype, platelet count >450,000, PS 2–3 (poor prognosis) | OS |
Ozmen O [45] | SUVmax, SUVmean, MTV, TLG, BM visual score (range 0–2), BM/liver ratio (BM SUVmean/liver SUVmean) | Yes | SUVmax, MTV, BM visual score (poor prognosis for higher values) | SUVmax > 8.6; MTV > 112; BM score > 2 | n.s.s. | OS |
Zucali PA [29] * | baseline SUVmax, baseline TLG, changes in SUVmax (ΔSUVmax) and TLG (ΔTLG) between baseline and post-treatment PET | Yes (different significance in pts with and without pleurodesis) | baseline SUVmax and TLG, ΔSUVmax and ΔTLG (poor prognosis for higher baseline values and for lower Δ values) | baseline SUVmax > 9.3 and baseline TLG > 534 (in pts with pleurodesis); baseline SUVmax > 6.2 and baseline TLG > 927.3 (in pts without pleurodesis); ΔSUVmax ≥ 25%; ΔTLG ≥ 30% (in pts without pleurodesis) | PS 1–2, non-epithelioid histology (poor prognosis) | PFS, OS |
Özyürek BA [33] | SUVmax | No | None | - | Age ≥ 55 years (poor prognosis) | OS |
Hall DO [46] * | baseline SUVmax, baseline MTV, baseline TLG, changes in SUVmax (ΔSUVmax), MTV (ΔMTV) and TLG (ΔTLG) between baseline and post-treatment PET | Yes (significance at multivariate analysis, only if histotype was excluded) | baseline SUVmax, baseline MTV, baseline TLG (only SUVmax at multivariate analysis) (poor prognosis for higher values) | SUVmax > 10.6; MTV > 460 mm3; TLG > 1806 | Epithelioid histology (better prognosis) | PFS, OS |
Doi H [47] | SUVmax, MTV, TLG | Yes | SUVmax, MTV and TLG (poor prognosis for higher values) | SUVmax ≥ 5.6; MTV ≥ 270; TLG ≥ 525 (only TLG significant at multivariate analysis) | Non-epitheliod histology, elevated LDH levels, NLR ≥ 5 (poor prognosis) | OS |
Lim JH [48] | SUVmax | Yes (no significance in non-epitheliod subtype) | SUVmax (poor prognosis for higher values) | SUVmax > 10.1 (all pts); SUVmax > 8.5 (epitheliod subtype) | Epitheliod subtype, stage I–II, chemotherapy (better prognosis) | OS |
Lococo F [49] | SUVmax | Yes | SUVmax (poor prognosis for higher values) | SUVmax > median SUVmax value, SUVmax > SUVmax at Q25%, SUVmax > SUVmax at Q75% | Stage II-IV, non-epithelioid histology (poor prognosis) | OS |
Pavic M [50] | SUVmax, SUVmean, metabolic volume (at six different SUVmax-thresholds), radiomic features (n = 780) | Yes | 3 radiomic features (prognostic power for PFS; PFS radiomics prognostic model also discriminating for OS), metabolic volume (prognostic power for OS) | n.r. | n.r. | PFS, OS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taralli, S.; Giancipoli, R.G.; Caldarella, C.; Scolozzi, V.; Ricciardi, S.; Cardillo, G.; Calcagni, M.L. The Prognostic Value of 18F-FDG PET Imaging at Staging in Patients with Malignant Pleural Mesothelioma: A Literature Review. J. Clin. Med. 2022, 11, 33. https://doi.org/10.3390/jcm11010033
Taralli S, Giancipoli RG, Caldarella C, Scolozzi V, Ricciardi S, Cardillo G, Calcagni ML. The Prognostic Value of 18F-FDG PET Imaging at Staging in Patients with Malignant Pleural Mesothelioma: A Literature Review. Journal of Clinical Medicine. 2022; 11(1):33. https://doi.org/10.3390/jcm11010033
Chicago/Turabian StyleTaralli, Silvia, Romina Grazia Giancipoli, Carmelo Caldarella, Valentina Scolozzi, Sara Ricciardi, Giuseppe Cardillo, and Maria Lucia Calcagni. 2022. "The Prognostic Value of 18F-FDG PET Imaging at Staging in Patients with Malignant Pleural Mesothelioma: A Literature Review" Journal of Clinical Medicine 11, no. 1: 33. https://doi.org/10.3390/jcm11010033
APA StyleTaralli, S., Giancipoli, R. G., Caldarella, C., Scolozzi, V., Ricciardi, S., Cardillo, G., & Calcagni, M. L. (2022). The Prognostic Value of 18F-FDG PET Imaging at Staging in Patients with Malignant Pleural Mesothelioma: A Literature Review. Journal of Clinical Medicine, 11(1), 33. https://doi.org/10.3390/jcm11010033