COVID-19 Patient Management in Outpatient Setting: A Population-Based Study from Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Exposure Definition
2.4. Outcome Definition
2.5. Data Analysis
3. Results
Glucocorticoids N = 14,412 (%) | Azithromycin N = 16,843 (%) | Other Antibiotics N = 8360 (%) | Heparins N = 6322 (%) | Vitamin D N = 9486 (%) | Oxygen N = 2664 (%) | |
---|---|---|---|---|---|---|
% on Total Number of Patients with Confirmed SARS-CoV-2 Infection Diagnosis | ||||||
Incident users a | 13,258 (91.9) | 16,145 (95.9) | 6368 (76.2) | 5995 (94.8) | 7862 (82.8) | 2568 (96.4) |
Sex | ||||||
Males | 7083 (49.1) | 8287 (49.2) | 4191 (50.1) | 3196 (50.6) | 3876 (40.9) | 1533 (57.5) |
Females | 7329 (50.9) | 8556 (50.8) | 4169 (49.9) | 3126 (49.4) | 5610 (59.1) | 1131 (42.5) |
Median age (IQR) (years) | 50 (37–63) | 49 (34–61) | 56 (43–69) | 59 (48–71) | 52 (38–64) | 66 (55–77) |
Age groups (years) | ||||||
<18 | 462 (3.2) | 878 (5.2) | 259 (3.1) | 24 (0.4) | 313 (3.3) | 4 (0.2) |
18–44 | 5077 (35.2) | 6218 (36.9) | 2081 (24.9) | 1216 (19.2) | 3042 (32.1) | 261 (9.8) |
45–64 | 5790 (40.2) | 6542 (38.8) | 3436 (41.1) | 2762 (43.7) | 3906 (41.2) | 1033 (38.8) |
65–80 | 2245 (15.6) | 2416 (14.3) | 1830 (21.9) | 1608 (25.4) | 1656 (17.5) | 845 (31.7) |
>80 | 838 (5.8) | 789 (4.7) | 754 (9.0) | 712 (11.3) | 569 (6.0) | 521 (19.6) |
Comorbidities b | ||||||
Hypertension | 6754 (46.9) | 7348 (43.6) | 4875 (58.3) | 4152 (65.7) | 4764 (50.2) | 2022 (75.9) |
Ischemic cardiopathy | 773 (5.4) | 840 (5.0) | 713 (8.5) | 587 (9.3) | 537 (5.7) | 343 (12.9) |
Atrial fibrillation | 313 (2.2) | 314 (1.9) | 260 (3.1) | 183 (2.9) | 183 (1.9) | 158 (5.9) |
Heart failure | 230 (1.6) | 235 (1.4) | 197 (2.4) | 170 (2.7) | 161 (1.7) | 132 (5.0) |
Cerebrovascular diseases | 599 (4.2) | 579 (3.4) | 550 (6.6) | 461 (7.3) | 405 (4.3) | 291 (10.9) |
Diabetes mellitus | 1608 (11.2) | 2008 (11.9) | 1544 (18.5) | 1398 (22.1) | 1353 (14.3) | 737 (27.7) |
Chronic kidney disease | 239 (1.7) | 239 (1.4) | 219 (2.6) | 197 (3.1) | 165 (1.7) | 130 (4.9) |
Chronic pulmonary diseases | 654 (4.5) | 698 (4.1) | 551 (6.6) | 450 (7.1) | 408 (4.3) | 255 (9.6) |
Hepatopathies | 478 (3.3) | 522 (3.1) | 380 (4.5) | 328 (5.2) | 320 (3.4) | 171 (6.4) |
Neoplasms | 1157 (8.0) | 1261 (7.5) | 861 (10.3) | 763 (12.1) | 845 (8.9) | 377 (14.2) |
Prior use of drugs c | ||||||
Drugs for acid-related disorders | 5647 (39.2) | 5932 (35.2) | 4293 (51.4) | 3625 (57.3) | 4269 (45.0) | 1748 (65.6) |
Lipid-lowering drugs | 2609 (18.1) | 2864 (17.0) | 2094 (25.0) | 1826 (28.9) | 2017 (21.3) | 920 (34.5) |
Anti-platelet agents | 1839 (12.8) | 1945 (11.5) | 1615 (19.3) | 1437 (22.7) | 1379 (14.5) | 789 (29.6) |
Anticoagulants (excl. heparins) | 427 (3.0) | 419 (2.5) | 362 (4.3) | 202 (3.2) | 279 (2.9) | 238 (8.9) |
Class I and III antiarrhythmics | 280 (1.9) | 296 (1.8) | 239 (2.9) | 176 (2.8) | 198 (2.1) | 123 (4.6) |
Anti HIV drugs | 47 (0.3) | 46 (0.3) | 45 (0.5) | 34 (0.5) | 37 (0.4) | 19 (0.7) |
Anti-Parkinson drugs | 162 (1.1) | 156 (0.9) | 161 (1.9) | 145 (2.3) | 111 (1.2) | 95 (3.6) |
Antiepileptics | 668 (4.6) | 720 (4.3) | 522 (6.2) | 435 (6.9) | 467 (4.9) | 226 (8.5) |
Antipsychotics | 346 (2.4) | 351 (2.1) | 293 (3.5) | 239 (3.8) | 239 (2.5) | 133 (5.0) |
Antidepressants | 1111 (7.7) | 1149 (6.8) | 827 (9.9) | 670 (10.6) | 825 (8.7) | 359 (13.5) |
Symptoms at the date of SARS-CoV-2 diagnosis | ||||||
Asymptomatic | 5975 (41.5) | 7192 (42.7) | 3347 (40.0) | 2527 (40.0) | 4006 (42.2) | 869 (32.6) |
Mild | 4931 (34.2) | 5796 (34.4) | 2698 (32.3) | 1893 (29.9) | 3224 (34.0) | 759 (28.5) |
Moderate | 2650 (18.4) | 2956 (17.6) | 1685 (20.2) | 1399 (22.1) | 1739 (18.3) | 692 (26.0) |
Serious | 402 (2.8) | 394 (2.3) | 301 (3.6) | 284 (4.5) | 281 (3.0) | 216 (8.1) |
Missing values | 454 (3.2) | 505 (3.0) | 329 (3.9) | 219 (3.5) | 236 (2.5) | 128 (4.8) |
Patients with oximetry evaluation | 1592 (11.0) | 1576 (9.4) | 1157 (13.8) | 1089 (17.2) | 984 (10.4) | 707 (26.5) |
Median value at ID (IQR) | 96 (94–98) | 97 (95–98) | 96 (94–98) | 96 (93–97) | 96 (94–98) | 94 (91–96) |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Food and Drug Administration. FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19. 2020. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (accessed on 5 November 2021).
- Food and Drug Administration. FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19. 2021. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19-0 (accessed on 5 November 2021).
- Food and Drug Administration. FDA Authorizes Additional Monoclonal Antibody for Treatment of COVID-19. 2021. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19 (accessed on 5 November 2021).
- Fischer, W.A.; Eron, J.J.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.S.; Mollan, K.R.; Wolfe, C.R.; et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Donno, D.; Grattagliano, I.; Rossi, A.; Aprile, P.L.; Medea, G.; Lagolio, E.; Granata, G.; Petrosillo, N.; Cricelli, C. How to Treat COVID-19 Patients at Home in the Italian Context: An Expert Opinion. Infect. Dis. Rep. 2021, 13, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Perico, N.; Suter, F.; Remuzzi, G. A recurrent question from a primary care physician: How should I treat my COVID-19 patients at home? Clin. Med. Investig. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Suter, F.; Consolaro, E.; Pedroni, S.; Moroni, C.; Pastò, E.; Paganini, M.V.; Pravettoni, G.; Cantarelli, U.; Rubis, N.; Perico, N.; et al. A simple, home-therapy algorithm to prevent hospitalisation for COVID-19 patients: A retrospective observational matched-cohort study. EClinicalMedicine 2021, 37, 100941. [Google Scholar] [CrossRef]
- Italian Medicines Agency (AIFA). Management Principles of COVID-19 Cases in Home Setting. 2021. Available online: https://www.aifa.gov.it/documents/20142/1123276/SOC_territoriale_EN_09.12.2020.pdf/34923ad9-a8f0-958f-45c6-95ab2f9d3ced (accessed on 5 November 2021).
- Sultana, J.; Cutroneo, P.M.; Crisafulli, S.; Puglisi, G.; Caramori, G.; Trifirò, G. Azithromycin in COVID-19 Patients: Pharmaco-logical Mechanism, Clinical Evidence and Prescribing Guidelines. Drug Saf. 2020, 43, 691–698. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health (NIH). Antithrombotic Therapy in Patients with COVID-19. 2021. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antithrombotic-therapy/ (accessed on 5 November 2021).
- The RECOVERY Group. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Annane, D. Corticosteroids for COVID-19. J. Intensiv. Med. 2021, 1, 14–25. [Google Scholar] [CrossRef]
- Akiyama, S.; Hamdeh, S.; Micic, D.; Sakuraba, A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: A systematic review and meta-analysis. Ann. Rheum. Dis. 2020, 80, 218946. [Google Scholar] [CrossRef]
- Spila Alegiani, S.; Crisafulli, S.; Giorgi Rossi, P.; Mancuso, P.; Salvarani, C.; Atzeni, F.; Gini, R.; Kirchmayer, U.; Belleudi, V.; Kurotschka, P.K.; et al. Risk of COVID-19 hospitalization and mortality in rheumatic patients treated with hydroxychloroquine or other conventional DMARDs in Italy. Rheumatology 2021, 60, SI25–SI36. [Google Scholar] [CrossRef]
- Sultana, J.; Trifirò, G.; Ientile, V.; Fontana, A.; Rossi, F.; Capuano, A.; Ferrajolo, C. Traceability of Pediatric Antibiotic Purchasing Pathways in Italy: A Nationwide Re-al-World Drug Utilization Analysis. Front. Pharmacol. 2020, 11, 1232. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, A.; Ambrosino, F.; Gallinella, F.; Fabrizi, A.; Trapanese, M.; Trotta, F.; Biffoli, C. Drug use during the covid-19 pandemic in Italy. Recenti Prog. Med. 2021, 112, 338–342. [Google Scholar]
- Hinks, T.S.C.; Cureton, L.; Knight, R.; Wang, A.; Cane, J.L.; Barber, V.S.; Black, J.; Dutton, S.J.; Melhorn, J.; Jabeen, M.; et al. Azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): An open-label, randomised trial. Lancet Respir. Med. 2021, 9, 1130–1140. [Google Scholar] [CrossRef]
- PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at in-creased risk of an adverse clinical course in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet 2021, 397, 1063–1074. [Google Scholar] [CrossRef]
- Oldenburg, C.E.; Pinsky, B.A.; Brogdon, J.; Chen, C.; Ruder, K.; Zhong, L.; Nyatigo, F.; Cook, C.A.; Hinterwirth, A.; Lebas, E.; et al. Effect of Oral Azithromycin vs Placebo on COVID-19 Symptoms in Outpatients with SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA 2021, 326, 490–498. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE. 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Seabra, G.; Mendes, R.F.V.; Amorim, L.F.V.d.s.; Peregrino, I.V.; Branquinha, M.H.; dos Santos, A.L.S.; Nunes, A.P.F. Azithromycin Use in COVID-19 Patients: Implications on the Antimicrobial Resistance. Curr. Top. Med. Chem. 2021, 21, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Parra, J.; Muiño-Miguez, A.; Bendala-Estrada, A.D.; Ramos-Martínez, A.; Muñez-Rubio, E.; Carracedo, E.F.; Montes, J.T.; Rubio-Rivas, M.; Arnalich-Fernandez, F.; Pérez, J.L.B.; et al. Inappropriate antibiotic use in the COVID-19 era: Factors associated with inappropriate prescribing and secondary complications. Analysis of the registry Semi-Covid. PLoS ONE 2021, 16, e0251340. [Google Scholar] [CrossRef] [PubMed]
- Stroehlein, J.K.; Wallqvist, J.; Iannizzi, C.; Mikolajewska, A.; Metzendorf, M.-I.; Benstoem, C.; Meybohm, P.; Becker, M.; Skoetz, N.; Stegemann, M.; et al. Vitamin D supplementation for the treatment of COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2021, 2021, CD015043. [Google Scholar] [CrossRef]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients 2020, 12, 1359. [Google Scholar] [CrossRef] [PubMed]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Nicolau, D.V.; Langford, B.; Mahdi, M.; Jeffers, H.; Mwasuku, C.; Krassowska, K.; Fox, R.; Binnian, I.; Glover, V.; et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 763–772. [Google Scholar] [CrossRef]
- European Medicines Agency. Insufficient Data on Use of Inhaled Corticosteroids to Treat COVID-19. 2021. Available online: https://www.ema.europa.eu/en/news/insufficient-data-use-inhaled-corticosteroids-treat-covid-19 (accessed on 5 November 2021).
- Italian Medicines Agency. Vitamin D Prescribing Guidelines. 2019. Available online: https://www.aifa.gov.it/en/Nota-96 (accessed on 5 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisafulli, S.; Ientile, V.; L’Abbate, L.; Fontana, A.; Linguiti, C.; Manna, S.; Mercaldo, M.; Pagliaro, C.; Vezzaro, M.; Santacà, K.; et al. COVID-19 Patient Management in Outpatient Setting: A Population-Based Study from Southern Italy. J. Clin. Med. 2022, 11, 51. https://doi.org/10.3390/jcm11010051
Crisafulli S, Ientile V, L’Abbate L, Fontana A, Linguiti C, Manna S, Mercaldo M, Pagliaro C, Vezzaro M, Santacà K, et al. COVID-19 Patient Management in Outpatient Setting: A Population-Based Study from Southern Italy. Journal of Clinical Medicine. 2022; 11(1):51. https://doi.org/10.3390/jcm11010051
Chicago/Turabian StyleCrisafulli, Salvatore, Valentina Ientile, Luca L’Abbate, Andrea Fontana, Claudio Linguiti, Sonia Manna, Mariangela Mercaldo, Claudia Pagliaro, Michele Vezzaro, Katia Santacà, and et al. 2022. "COVID-19 Patient Management in Outpatient Setting: A Population-Based Study from Southern Italy" Journal of Clinical Medicine 11, no. 1: 51. https://doi.org/10.3390/jcm11010051
APA StyleCrisafulli, S., Ientile, V., L’Abbate, L., Fontana, A., Linguiti, C., Manna, S., Mercaldo, M., Pagliaro, C., Vezzaro, M., Santacà, K., Lora, R., Moretti, U., Reno, C., Fantini, M. P., Corrao, S., Barbato, D., Tari, M., Trifirò, G., & the ITA-COVID: COV-OUT Group. (2022). COVID-19 Patient Management in Outpatient Setting: A Population-Based Study from Southern Italy. Journal of Clinical Medicine, 11(1), 51. https://doi.org/10.3390/jcm11010051