Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Ethics
2.2. Clinical Definitions
2.3. Biochemical Parameters
2.4. Sampling of Blood for DNA Extraction and Serum Preparation
2.5. Serum Proteasome Measurement
2.6. Telomere Length Detection
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Latvian and Lithuanian Cohorts
3.2. Characteristics of Patients with Different Severity of DR
3.3. Telomere Length in Patients with Different Severity of DR
3.4. Serum Proteasome Concentration in Patients with Different Severity of DR
3.5. Correlations between Telomere Length, Proteasome Concentration, and Clinical Parameters
3.6. Association of Severe Diabetic Retinopathy with Telomere Length and Proteasome Concentration
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Congdon, N.G.; Friedman, D.S.; Lietman, T. Important Causes of Visual Impairment in the World Today. JAMA 2003, 290, 2057–2060. [Google Scholar] [CrossRef]
- Pusparajah, P.; Lee, L.-H.; Kadir, K.A. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front. Physiol. 2016, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, A.J.; Joglekar, M.V.; Hardikar, A.A.; Keech, A.C.; O’Neal, D.N.; Januszewski, A.S. Biomarkers in Diabetic Retinopathy. Rev. Diabet. Stud. 2015, 12, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A.L. Functions of the proteasome: From protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 2007, 35 Pt 1, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, Y.; Kurihara, T.; Tsubota, K.; Okano, H. Regulation of Posttranscriptional Modification as a Possible Therapeutic Approach for Retinal Neuroprotection. J. Ophthalmol. 2010, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, S.Y.; Gurel, Z.; Ghaffarieh, A.; Sorenson, C.M.; Sheibani, N. High glucose and diabetes modulate cellular proteasome function: Implications in the pathogenesis of diabetes complications. Biochem. Biophys. Res. Commun. 2013, 432, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Vadlapatla, R.K.; Vadlapudi, A.D.; Mitra, A.K. Hypoxia-Inducible Factor-1 (HIF-1): A Potential Target for Intervention in Ocular Neovascular Diseases. Curr. Drug Targets 2013, 14, 919–935. [Google Scholar] [CrossRef]
- Parim, B.; Uddandrao, V.V.S.; Saravanan, G. Diabetic cardiomyopathy: Molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail. Rev. 2018, 24, 279–299. [Google Scholar] [CrossRef]
- Shruthi, K.; Reddy, S.S.; Chitra, P.S.; Reddy, G.B. Ubiquitin-proteasome system and ER stress in the brain of diabetic rats. J. Cell. Biochem. 2018, 120, 5962–5973. [Google Scholar] [CrossRef]
- Sasaki, M.; Ozawa, Y.; Kurihara, T.; Kubota, S.; Yuki, K.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 2010, 53, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Suzuki, N.; Strihou, C.V.Y.D. Diabetic nephropathy: Are there new and potentially promising therapies targeting oxygen biology? Kidney Int. 2013, 84, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Im, E.; Yoon, J.-B.; Lee, H.-W.; Chung, K.C. Human Telomerase Reverse Transcriptase (hTERT) Positively Regulates 26S Proteasome Activity. J. Cell. Physiol. 2017, 232, 2083–2093. [Google Scholar] [CrossRef]
- Sixt, S.U.; Dahlmann, B. Extracellular, circulating proteasomes and ubiquitin—Incidence and relevance. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2008, 1782, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Hohensinner, P.J.; Goronzy, J.J.; Weyand, C.M. Telomere Dysfunction, Autoimmunity and Aging. Aging Dis. 2011, 2, 524–537. [Google Scholar]
- Jeanclos, E.; Krolewski, A.; Skurnick, J.; Kimura, M.; Aviv, H.; Warram, J.H.; Aviv, A. Shortened telomere length in white blood cells of patients with IDDM. Diabetes 1998, 47, 482–486. [Google Scholar] [CrossRef]
- Sampson, M.J.; Winterbone, M.S.; Hughes, J.C.; Dozio, N.; Hughes, D.A. Monocyte Telomere Shortening and Oxidative DNA Damage in Type 2 Diabetes. Diabetes Care 2006, 29, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Demissie, S.; Levy, D.; Benjamin, E.J.; Cupples, L.A.; Gardner, J.P.; Herbert, A.; Kimura, M.; Larson, M.G.; Meigs, J.B.; Keaney, J.F.; et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006, 5, 325–330. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Cao, L.; Sun, Y.; Qiu, Y.; Zhang, Y.; Cao, R.; Covasa, M.; Zhong, L. Association between telomere length and diabetes mellitus: A meta-analysis. J. Int. Med. Res. 2016, 44, 1156–1173. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Tiitu, A.; Saijonmaa, O.; Forsblom, C.; Groop, P.-H.; on behalf of the FinnDiane Study Group. Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. J. Intern. Med. 2010, 267, 278–286. [Google Scholar] [CrossRef]
- Sanchez, M.; Hoang, S.; Kannengiesser, C.; Potier, L.; Hadjadj, S.; Marre, M.; Roussel, R.; Velho, G.; Mohammedi, K. Leukocyte Telomere Length, DNA Oxidation, and Risk of Lower-Extremity Amputation in Patients with Long-Standing Type 1 Diabetes. Diabetes Care 2020, 43, 828–834. [Google Scholar] [CrossRef]
- Gurung, R.L.; Yiammunia, M.; Liu, S.; Liu, J.-J.; Lim, S.C. Short Leukocyte Telomere Length Predicts Albuminuria Progression in Individuals with Type 2 Diabetes. Kidney Int. Rep. 2017, 3, 592–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januszewski, A.S.; Sutanto, S.S.; McLennan, S.; O’Neal, D.N.; Keech, A.C.; Twigg, S.M.; Jenkins, A.J. Shorter telomeres in adults with Type 1 diabetes correlate with diabetes duration, but only weakly with vascular function and risk factors. Diabetes Res. Clin. Pract. 2016, 117, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Gupta, A.; Thungapathra, M.; Bansal, R. Telomere mean length in patients with diabetic retinopathy. Sci. Rep. 2015, 5, 18368. [Google Scholar] [CrossRef]
- Her, Y.R.; Chung, I.K. Ubiquitin Ligase RLIM Modulates Telomere Length Homeostasis through a Proteolysis of TRF1. J. Biol. Chem. 2009, 284, 8557–8566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKerlie, M.; Lin, S.; Zhu, X.-D. ATM regulates proteasome-dependent subnuclear localization of TRF1, which is important for telomere maintenance. Nucleic Acids Res. 2012, 40, 3975–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungar, L.; Yosef, N.; Sela, Y.; Sharan, R.; Ruppin, E.; Kupiec, M. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res. 2009, 37, 3840–3849. [Google Scholar] [CrossRef] [Green Version]
- Kahl, V.F.S.; da Silva, J.; da Silva, F.R. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach. Mutat. Res. 2016, 791–792, 19–26. [Google Scholar] [CrossRef]
- Ahola, A.J.; Radzeviciene, L.; Zaharenko, L.; Bulum, T.; Skrebinska, S.; Prakapiene, E.; Blaslov, K.; Roso, V.; Rovite, V.; Pirags, V.; et al. Association between symptoms of depression, diabetes complications and vascular risk factors in four European cohorts of individuals with type 1 diabetes—InterDiane Consortium. Diabetes Res. Clin. Pract. 2020, 170, 108495. [Google Scholar] [CrossRef]
- Rovite, V.; Wolff-Sagi, Y.; Zaharenko, L.; Nikitina-Zake, L.; Grens, E.; Klovins, J. Genome Database of the Latvian Population (LGDB): Design, Goals, and Primary Results. J. Epidemiol. 2018, 28, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Sokolovska, J.; Dekante, A.; Baumane, L.; Pahirko, L.; Valeinis, J.; Dislere, K.; Rovite, V.; Pirags, V.; Sjakste, N. Nitric oxide metabolism is impaired by type 1 diabetes and diabetic nephropathy. Biomed. Rep. 2020, 12, 251–258. [Google Scholar] [CrossRef]
- Zole, E.; Zadinane, K.; Pliss, L.; Ranka, R. Linkage between mitochondrial genome alterations, telomere length and aging population. Mitochondrial DNA Part A 2017, 29, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, H.K.; Ko, J.-H.; Bang, H.; Lee, D.C. The Relationship between Leukocyte Mitochondrial DNA Copy Number and Telomere Length in Community-Dwelling Elderly Women. PLoS ONE 2013, 8, e67227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Carroll, L.; Joglekar, M.V.; Januszewski, A.S.; Wong, K.K.; A Hardikar, A.; Jenkins, A.J.; Ma, R.C.W. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2020, 9, 117–126. [Google Scholar] [CrossRef]
- Sjakste, T.; Paramonova, N.; Wu, L.S.-S.; Zemeckiene, Z.; Sitkauskiene, B.; Sakalauskas, R.; Wang, J.-Y.; Sjakste, N. PSMA6 (rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3 (rs2348071) genetic diversity in Latvians, Lithuanians and Taiwanese. Meta Gene 2014, 2, 283–298. [Google Scholar] [CrossRef]
- Senthilkumar, P.; Klingelhutz, A.; Jacobus, J.; Lehmler, H.-J.; Robertson, L.; Ludewig, G. Airborne polychlorinated biphenyls (PCBs) reduce telomerase activity and shorten telomere length in immortal human skin keratinocytes (HaCat). Toxicol. Lett. 2011, 204, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Kipen, H.M.; Gandhi, S.; Rich, D.Q.; Ohman-Strickland, P.; Laumbach, R.; Fan, Z.-H.; Chen, L.; Laskin, D.L.; Zhang, J.; Madura, K. Acute Decreases in Proteasome Pathway Activity after Inhalation of Fresh Diesel Exhaust or Secondary Organic Aerosol. Environ. Health Perspect. 2011, 119, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Izumiyama-Shimomura, N.; Kimbara, Y.; Nakamura, K.-I.; Ishikawa, N.; Aida, J.; Chiba, Y.; Mori, S.; Arai, T.; Aizawa, T.; et al. β-Cell Telomere Attrition in Diabetes: Inverse Correlation Between HbA1c and Telomere Length. J. Clin. Endocrinol. Metab. 2014, 99, 2771–2777. [Google Scholar] [CrossRef] [Green Version]
- Testa, R.; Olivieri, F.; Sirolla, C.; Spazzafumo, L.; Rippo, M.R.; Marra, M.; Bonfigli, A.R.; Ceriello, A.; Antonicelli, R.; Franceschi, C.; et al. Leukocyte telomere length is associated with complications of Type 2 diabetes mellitus. Diabet. Med. 2011, 28, 1388–1394. [Google Scholar] [CrossRef]
- Hovatta, I.; De Mello, V.D.F.; Kananen, L.; Lindström, J.; Eriksson, J.G.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Peltonen, M.; Tuomilehto, J.; Uusitupa, M. Leukocyte Telomere Length in the Finnish Diabetes Prevention Study. PLoS ONE 2012, 7, e34948. [Google Scholar] [CrossRef]
- Boccardi, V.; Barbieri, M.; Rizzo, M.R.; Marfella, R.; Esposito, A.; Marano, L.; Paolisso, G. A new pleiotropic effect of statins in elderly: Modulation of telomerase activity. FASEB J. 2013, 27, 3879–3885. [Google Scholar] [CrossRef]
- Ghosh, A.; Saginc, G.; Leow, S.C.; Khattar, E.; Shin, E.M.; Yan, T.D.; Wong, M.; Zhang, Z.; Li, G.; Sung, W.-K.; et al. Telomerase directly regulates NF-κB-dependent transcription. Nat. Cell Biol. 2012, 14, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G. New insights into the pathophysiology of diabetic nephropathy: From haemodynamics to molecular pathology. Eur. J. Clin. Investig. 2004, 34, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Q.; Zhu, W.; Liu, T.; Xie, S.-H.; Zhong, L.-X.; Cai, Y.-Y.; Li-Xin, Z.; Liang, M.; Chen, W.; et al. The Association of Telomere Length in Peripheral Blood Cells with Cancer Risk: A Systematic Review and Meta-analysis of Prospective Studies. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, K.; Ninomiya, R.; Shin, T.; Nomura, T.; Kajiwara, T.; Hijiya, N.; Moriyama, M.; Mimata, H.; Hamada, F. Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1. Cancer Sci. 2018, 109, 3159–3170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, J.-Z.; Guan, W.-P.; Maeda, T.; Makino, N. Different levels of hypoxia regulate telomere length and telomerase activity. Aging Clin. Exp. Res. 2012, 24, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.R.; Kim, D.-K. Alterations in telomere length and mitochondrial DNA copy number in human lymphocytes on short-term exposure to moderate hypoxia. Toxicol. Rep. 2020, 7, 1443–1447. [Google Scholar] [CrossRef]
- Takiyama, Y.; Haneda, M. Hypoxia in Diabetic Kidneys. BioMed Res. Int. 2014, 2014, 837421. [Google Scholar] [CrossRef] [Green Version]
- Broca, C.; Varin, E.; Armanet, M.; Tourrel-Cuzin, C.; Bosco, D.; Dalle, S.; Wojtusciszyn, A. Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets. PLoS ONE 2014, 9, e92066. [Google Scholar]
- Dong, X.; Liu, J.; Zheng, H.; Glasford, J.W.; Huang, W.; Chen, Q.H.; Harden, N.R.; Li, F.; Gerdes, A.M.; Wang, X. In situ dynamically monitoring the proteolytic function of the ubiquitin-proteasome system in cultured cardiac myocytes. Am. J. Physiol. Circ. Physiol. 2004, 287, H1417–H1425. [Google Scholar] [CrossRef] [Green Version]
Whole Cohort, n = 306 | Latvia, n = 186 | Lithuania, n = 120 | p-Value * | |
---|---|---|---|---|
Age, years | 37 (27–48) | 38 (28–49) | 35 (25–47) | 0.11 |
Male/female, n (%) | 162/144 (53/47) | 90/96 (48/52) | 72/48 (60/40) | 0.06 |
BMI, kg/m2 | 24.8 (22.2–28.1) | 25.0 (22.5–28.5) | 24.1 (22.0–27.7) | 0.12 |
Waist/hip ratio | 0.85 (0.78–0.92) | 0.85 (0.78–0.91) | 0.84 (0.78–0.93) | 0.95 |
Systolic blood pressure, mmHg | 126.5 (117.9–138.0) | 126.0 (118.0–138.0) | 127.5 (117.5–137.5) | 0.84 |
Diastolic blood pressure, mmHg | 80.0 (74.0–89.0) | 82.5 (74.2–89.8) | 80.0 (74.2–87.8) | 0.25 |
Arterial hypertension, n (%) | 174 (57) | 115 (62) | 59 (49) | 0.04 |
Duration of diabetes, years | 20 (14–28) | 21 (15–31) | 19 (13–27) | 0.03 |
Diabetic nephropathy, n (%) | 43 (14) | 25 (13) | 18 (15) | 0.47 |
NDR, n (%) | 108 (35) | 69 (37) | 39 (33) | 0.14 |
NPDR, n (%) | 79 (26) | 38 (20) | 41 (34) | |
PDR/LPC, n (%) | 119 (39) | 79 (42) | 40 (33) | |
Cardiovascular disease, n (%) | 31 (10) | 26 (14) | 5 (4) | 0.001 |
Polyneuropathy, n (%) | 201 (66) | 112 (60) | 89 (74) | 0.02 |
Smoking, n (%) | 69 (23) | 49 (26) | 20 (17) | 0.07 |
HbA1c, % | 8.5 (7.5–9.8) | 8.5 (7.7–9.9) | 8.4 (7.3–9.6) | 0.17 |
HbA1c, mmol/mol | 69.4 (58.7–83.6) | 69.4 (60.7–84.7) | 68.3 (56.8–81.4) | 0.17 |
Total cholesterol, mmol/L | 4.9 (4.2–5.8) | 4.8 (4.0–5.7) | 5.2 (4.5–5.8) | 0.01 |
High-density lipoprotein, mmol/L | 1.6 (1.3–1.9) | 1.5 (1.2–1.8) | 1.6 (1.3–2.0) | 0.13 |
Low-density lipoprotein, mmol/L | 2.8 (2.2–3.4) | 2.6 (2.0–3.3) | 2.9 (2.5–3.5) | 0.005 |
Triglycerides, mmol/L | 1.0 (0.7–1.4) | 1.1 (0.7–1.7) | 0.9 (0.7–1.2) | 0.001 |
eGFR, mL/min/1.73 m2 | 110 (87–122) | 112 (93–125) | 100 (80–120) | 0.009 |
Statins usage, n (%) | 50 (16) | 41 (22) | 9 (8) | 0.001 |
ACEI/ARB usage, n (%) | 101 (33) | 65 (35) | 36 (30) | 0.44 |
Serum proteasome concentration, ng/mL | 140 (90–218) | 120 (80–200) | 150 (120–240) | <0.001 |
Relative telomere length | 0.19 (0.11–0.28) | 0.14 (0.09–0.26) | 0.24 (0.18–0.28) | <0.001 |
Latvia | Lithuania | Whole Cohort | |||||||
---|---|---|---|---|---|---|---|---|---|
NDR/NPDR n = 107 | PDR/LPC n = 79 | p-Value | NDR/NPDR n = 80 | PDR/LPC n = 40 | p-Value | NDR/NPDR n = 187 | PDR/LPC n = 119 | p-Value | |
Age, years | 32 (26–43) | 46 (38–55) | <0.001 | 31 (24–47) | 41 (33–48) | 0.004 | 31 (25–44) | 44 (35–54) | <0.001 |
Male/female, n (%) | 55/52 (51/49) | 35/44 (44/56) | 0.419 | 47/33 (59/41) | 25/15 (63/37) | 0.843 | 102/85 (55/45) | 60/59 (50/50) | 0.557 |
Body mass index, kg/m2 | 24.8 (22.2–28.0) | 25.6 (23.4–29.0) | 0.198 | 24.1 (22.0–27.7) | 24.5 (21.9–28.1) | 0.654 | 24.5 (22.2–27.9) | 25.5 (22.5–28.6) | 0.143 |
Waist/hip ratio | 0.84 (0.78–0.90) | 0.86 (0.79–0.94) | 0.120 | 0.82 (0.77–0.92) | 0.88 (0.80–0.93) | 0.070 | 0.83 (0.77–0.90) | 0.87 (0.79–0.94) | 0.019 |
Systolic blood pressure, mmHg | 126 (118–135) | 126 (119–146) | 0.347 | 126 (118–138) | 128 (120–142) | 0.351 | 126 (118–138) | 127 (119–143) | 0.217 |
Diastolic blood pressure, mmHg | 82 (75–89) | 83 (74–90) | 0.988 | 80 (75–88) | 80 (74–87) | 0.758 | 80 (75–88) | 80 (74–90) | 0.837 |
Arterial hypertension, n (%) | 49 (46) | 66 (84) | <0.001 | 30 (38) | 29 (73) | <0.001 | 79 (42) | 95 (80) | <0.001 |
Duration of diabetes, years | 17 (13–22) | 31 (22–36) | <0.001 | 15 (11–21) | 27 (21–33) | <0.001 | 16 (12–22) | 28 (22–36) | <0.001 |
Diabetic nephropathy, n (%) | 7 (7) | 18 (23) | 0.003 | 8 (10) | 10 (25) | 0.058 | 15 (8) | 28 (24) | <0.001 |
Cardiovascular disease, n (%) | 2 (2) | 24 (30) | <0.001 | 4 (5) | 1 (3) | 0.872 | 6 (3) | 25 (21) | <0.001 |
Polyneuropathy, n (%) | 54 (50) | 58 (73) | 0.003 | 51 (64) | 38 (95) | <0.001 | 105 (56) | 96 (81) | <0.001 |
Smoking, n (%) | 36 (34) | 13 (16) | 0.014 | 9 (11) | 11 (28) | 0.046 | 45 (24) | 24 (20) | 0.513 |
HbA1c, % | 8.6 (7.9–10.2) | 8.4 (7.6–9.6) | 0.143 | 8.4 (7.3–9.7) | 8.5 (7.7–9.7) | 0.529 | 8.5 (7.5–9.9) | 8.4 (7.6–9.6) | 0.508 |
HbA1c, mmol/mol | 70.0 (62.3–88.0) | 67.8 (59.6–81.4) | 0.143 | 68.3 (56.3–81.0) | 69.4 (60.3–82.0) | 0.529 | 69.4 (58.5–84.7) | 67.8 (59.8–81.4) | 0.508 |
Total cholesterol, mmol/L | 4.6 (4.0–5.7) | 4.9 (3.8–5.8) | 0.724 | 5.0 (4.4–5.8) | 5.4 (4.8–6.4) | 0.027 | 4.8 (4.1–5.7) | 5.2 (4.2–5.8) | 0.186 |
HDL, mmol/L | 1.5 (1.2–1.8) | 1.5 (1.2–2.0) | 0.469 | 1.6 (1.3–2.0) | 1.5 (1.3–1.9) | 0.709 | 1.6 (1.2–1.8) | 1.5 (1.3–1.9) | 0.506 |
LDL, mmol/L | 2.6 (2.1–3.3) | 2.6 (2.0–3.3) | 0.754 | 2.8 (2.3–3.3) | 3.3 (2.7–3.9) | 0.007 | 2.7 (2.2–3.3) | 2.9 (2.2–3.5) | 0.325 |
Triglycerides, mmol/L | 1.0 (0.7–1.5) | 1.2 (0.8–1.7) | 0.067 | 0.8 (0.6–1.1) | 1.1 (0.7–1.3) | 0.045 | 0.9 (0.7–1.3) | 1.1 (0.8–1.6) | 0.003 |
eGFR, mL/min/1.73 m2 | 119 (110–128) | 99 (76–113) | <0.001 | 106 (86–123) | 93 (71–111) | 0.007 | 115 (99–126) | 98 (72–112) | <0.001 |
Statin usage, n (%) | 7 (7) | 34 (43) | <0.001 | 4 (5) | 5 (12.5) | 0.270 | 11 (6) | 39 (33) | <0.001 |
ACEI/ARB usage, n (%) | 22 (21) | 43 (54) | <0.001 | 15 (19) | 21 (52.5) | <0.001 | 37 (20) | 64 (54) | <0.001 |
Serum proteasome concentration, ng/mL | 120 (80–200) | 120 (77.5–192.5) | 0.423 | 165 (120–240) | 150 (120–213.75) | 0.401 | 150 (100–240) | 130 (90–210) | 0.023 * |
Relative telomere length | 0.13 (0.07–0.26) | 0.17 (0.1–0.26) | 0.135 | 0.22 (0.16–0.28) | 0.26 (0.19–0.28) | 0.281 | 0.18 (0.1–0.28) | 0.21 (0.12–0.28) | 0.036 * |
All Patients, R (p-Value) | NDR/NPDR, R (p-Value) | PDR/LPC, R (p-Value) | |||||||
---|---|---|---|---|---|---|---|---|---|
Latvia, n = 186 | Lithuania, n = 120 | Whole Cohort, n = 306 | Latvia, n = 107 | Lithuania, n = 80 | Whole Cohort, n = 187 | Latvia, n = 79 | Lithuania, n = 40 | Whole Cohort, n = 119 | |
Age | –0.02 (0.82) | –0.15 (0.104) | –0.04 (0.449) | −0.22 (0.022) | –0.21 (0.056) | −0.17 (0.019) | 0.18 (0.113) | –0.18 (0.264) | 0.08 (0.366) |
Body mass index | –0.02 (0.799) | −0.19 (0.041) | –0.6 (0.268) | −0.24 (0.015) | −0.23 (0.045) | −0.21 (0.004) | 0.25 (0.028) | –0.15 (0.355) | 0.14 (0.138) |
Waist/hip ratio | –0.05 (0.489) | –0.13 (0.153) | –0.7 (0.212) | −0.21 (0.028) | −0.22 (0.050) | −0.21 (0.005) | 0.14 (0.235) | 0.01 (0.973) | 0.11 (0.260) |
Systolic blood pressure | −0.16 (0.026) | 0.04 (0.704) | –0.8 (0.195) | –0.18 (0.063) | 0.1 (0.387) | –0.05 (0.543) | –0.14 (0.219) | –0.11 (0.491) | –0.13 (0.177) |
Diastolic blood pressure | –0.12 (0.113) | –0.15 (0.106) | –0.11 (0.053) | –0.09 (0.378) | –0.16 (0.155) | –0.10 (0.180) | –0.17 (0.148) | –0.12 (0.451) | –0.14 (0.126) |
Duration of diabetes | 0.07 (0.328) | –0.08 (0.397) | 0.02 (0.676) | 0.01 (0.932) | −0.27 (0.015) | –0.11 (0.129) | 0.07 (0.523) | –0.04 (0.796) | 0.07 (0.432) |
HbA1c | –0.03 (0.673) | 0.26 (0.005) | 0.08 (0.193) | –0.05 (0.616) | 0.35 (0.002) | 0.11 (0.152) | 0.1 (0.394) | 0.08 (0.644) | 0.08 (0.413) |
Total cholesterol | −0.18 (0.023) | –0.14 (0.135) | −0.15 (0.010) | −0.25 (0.014) | –0.11 (0.345) | −0.18 (0.021) | –0.08 (0.512) | –0.23 (0.147) | –0.13 (0.160) |
High-density lipoproteins | –0.1 (0.213) | –0.01 (0.873) | –0.05 (0.420) | –0.12 (0.259) | 0.06 (0.612) | –0.01 (0.900) | –0.09 (0.452) | –0.14 (0.388) | –0.14 (0.254) |
Low-density lipoproteins | −0.19 (0.013) | –0.16 (0.088) | −0.17 (0.004) | −0.21 (0.037) | –0.18 (0.12) | −0.20 (0.010) | –0.14 (0.237) | –0.22 (0.177) | –0.14 (0.145) |
Triglycerides | –0.11 (0.142) | –0.09 (0.361) | –0.09 (0.135) | –0.2 (0.059) | –0.03 (0.784) | –0.11 (0.156) | –0.04 (0.717) | −0.32 (0.047) | –0.10 (0.294) |
eGFR | 0.01 (0.945) | 0.21 (0.026) | 0.09 (0.121) | 0.2 (0.047) | 0.4 (<0.001) | 0.28 (<0.001) | –0.05 (0.638) | –0.12 (0.478) | –0.05 (0.570) |
Serum proteasome concentration | –0.06 (0.45) | 0.03 (0.711) | –0.03 (0.667) | –0.06 (0.539) | 0.07 (0.556) | –0.02 (0.833) | –0.01 (0.924) | –0.03 (0.865) | –0.02 (0.796) |
All Patients, R (p-Value) | NDR/NPDR, R (p-Value) | PDR/LPC Group, R (p-Value) | |||||||
---|---|---|---|---|---|---|---|---|---|
Latvia, n = 186 | Lithuania, n = 120 | Whole Cohort, n = 306 | Latvia, n = 107 | Lithuania, n = 80 | Whole Cohort, n = 187 | Latvia, n = 79 | Lithuania, n = 40 | Whole Cohort, n = 119 | |
Age | −0.02 (0.754) | 0.25 (0.006) | 0.11 (0.055) | −0.02 (0.809) | 0.16 (0.150) | 0.09 (0.232) | −0.01 (0.917) | 0.58 (<0.001) | 0.23 (0.014) |
Body mass index | 0.08 (0.277) | 0.10 (0.306) | 0.09 (0.110) | −0.05 (0.609) | 0.14 (0.215) | 0.06 (0.413) | 0.27 (0.019) | 0.02 (0.889) | 0.17 (0.076) |
Waist/hip ratio | 0.13 (0.088) | 0.08 (0.391) | 0.11 (0.069) | 0.09 (0.369) | 0.06 (0.593) | 0.08 (0.297) | 0.21 (0.077) | 0.17 (0.296) | 0.18 (0.055) |
Systolic blood pressure | 0.01 (0.930) | 0.33 (<0.001) | 0.16 (0.008) | −0.04 (0.687) | 0.32 (0.004) | 0.14 (0.061) | 0.07 (0.569) | 0.4 (0.011) | 0.20 (0.032) |
Diastolic blood pressure | −0.01 (0.917) | −0.04 (0.637) | −0.02 (0.738) | −0.11 (0.262) | −0.01 (0.902) | −0.05 (0.545) | 0.12 (0.294) | −0.07 (0.656) | 0.02 (0.800) |
Duration of diabetes | 0.03 (0.706) | 0.05 (0.559) | 0.04 (0.490) | 0.14 (0.168) | 0.00 (0.995) | 0.07 (0.377) | −0.07 (0.558) | 0.34 (0.029) | 0.11 (0.237) |
HbA1c | −0.04 (0.609) | −0.01 (0.947) | −0.03 (0.612) | −0.06 (0.536) | 0.03 (0.803) | −0.03 (0.692) | −0.01 (0.932) | −0.08 (0.633) | −0.05 (0.639) |
Total cholesterol | −0.04 (0.632) | −0.04 (0.709) | −0.05 (0.450) | −0.06 (0.549) | 0.06 (0.595) | −0.03 (0.729) | 0.01 (0.937) | −0.17 (0.295) | −0.06 (0.556) |
High-density lipoproteins | −0.10 (0.195) | −0.04 (0.693) | −0.07 (0.261) | −0.11 (0.316) | −0.03 (0.787) | −0.07 (0.401) | −0.12 (0.314) | −0.05 (0.747) | −0.08 (0.379) |
Low-density lipoproteins | 0.01 (0.898) | −0.07 (0.438) | −0.04 (0.497) | 0.01 (0.906) | 0.07 (0.526) | 0.01 (0.912) | 0.00 (0.985) | −0.28 (0.076) | −0.12 (0.190) |
Triglycerides | −0.01 (0.924) | 0.07 (0.456) | 0.03 (0.609) | −0.07 (0.491) | 0.02 (0.894) | −0.03 (0.687) | 0.08 (0.485) | 0.22 (0.178) | 0.14 (0.130) |
eGFR | −0.03 (0.704) | −0.20 (0.030) | −0.11 (0.053) | −0.10 (0.307) | −0.21 (0.062) | −0.17 (0.025) | 0.02 (0.889) | −0.33 (0.045) | −0.12 (0.191) |
Relative telomere length | −0.06 (0.450) | 0.03 (0.711) | −0.03 (0.667) | −0.06 (0.539) | 0.07 (0.556) | −0.02 (0.833) | −0.01 (0.924) | −0.03 (0.865) | −0.02 (0.796) |
Predictor | Relative Telomere Length Ratio | ELISA Proteasome Concentration | Relative Telomere Length Ratio + ELISA Proteasome Concentration | ||||
---|---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | ||
Latvia | Model 1 | 2.04 (0.44, 9.45) | 0.361 | 0.66 (0.38, 1.14) | 0.132 | TL 2.79 (0.53, 14.66) PR 0.63 (0.36, 1.09) | 0.224 0.099 |
Model 2 | 1.82 (0.25, 13.31) | 0.558 | 0.28 (0.06, 1.25) | 0.095 | TL 2.88 (0.24, 34.21) PR 0.28 (0.07, 1.08) | 0.402 0.064 | |
Lithuania | Model 1 | 5.48 (0.41, 73.12) | 0.198 | 0.34 (0.05, 2.44) | 0.285 | TL 5.26 (0.37, 75.07) PR 0.34 (0.04, 2.63) | 0.221 0.299 |
Model 2 | 3.98 (0.28, 56.92) | 0.309 | 0.33 (0.04, 2.91) | 0.317 | TL 3.85 (0.25, 59.96) PR 0.33 (0.04, 3.09) | 0.336 0.331 | |
Whole cohort | Model 1 | 2.56 (0.72, 9.13) | 0.148 | 0.63 (0.38, 1.05) | 0.074 | TL 3.25 (0.82, 12.85) PR 0.61 (0.36, 1.01) | 0.093 0.055 |
Model 2 | 2.49 (0.52, 11.78) | 0.252 | 0.36 (0.13, 1.03) | 0.057 | TL 3.61 (0.60, 21.56) PR 0.35 (0.13, 0.97) | 0.160 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svikle, Z.; Pahirko, L.; Zariņa, L.; Baumane, K.; Kardonaite, D.; Radzeviciene, L.; Daugintyte-Petrusiene, L.; Balciuniene, V.J.; Verkauskiene, R.; Tiščuka, A.; et al. Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania. J. Clin. Med. 2022, 11, 2768. https://doi.org/10.3390/jcm11102768
Svikle Z, Pahirko L, Zariņa L, Baumane K, Kardonaite D, Radzeviciene L, Daugintyte-Petrusiene L, Balciuniene VJ, Verkauskiene R, Tiščuka A, et al. Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania. Journal of Clinical Medicine. 2022; 11(10):2768. https://doi.org/10.3390/jcm11102768
Chicago/Turabian StyleSvikle, Zane, Leonora Pahirko, Līga Zariņa, Kristīne Baumane, Deimante Kardonaite, Lina Radzeviciene, Laura Daugintyte-Petrusiene, Vilma Jurate Balciuniene, Rasa Verkauskiene, Angeļina Tiščuka, and et al. 2022. "Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania" Journal of Clinical Medicine 11, no. 10: 2768. https://doi.org/10.3390/jcm11102768
APA StyleSvikle, Z., Pahirko, L., Zariņa, L., Baumane, K., Kardonaite, D., Radzeviciene, L., Daugintyte-Petrusiene, L., Balciuniene, V. J., Verkauskiene, R., Tiščuka, A., Rovite, V., Sjakste, N., & Sokolovska, J. (2022). Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania. Journal of Clinical Medicine, 11(10), 2768. https://doi.org/10.3390/jcm11102768