Let’s Play the fMRI—Advantages of Gamified Paradigm in Examining the Motor Cortex of Young Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creating the Gamified Paradigm
2.2. Recruiting Patients
- Ten adults (5 women, mean age 40 ± 7.6 years and 5 men, mean age 36 ± 6.5 years)—this group was included for the initial testing of the paradigm and examined first.
- Sixty children (10 girls and 10 boys in each age group of 4, 5, and 6 years old). Each child was examined by a child life specialist with the following methods:
- Obtaining a developmental history from guardians;
- Observation of child’s behavior;
- The batteries of tests validated for the Polish population:
- CFT 1-R-Cattell Culture Fair Intelligence Test (particular subscales);
- Frosting-Developmental Test of Visual Perception;
- Raven’s Colored Progressive Matrices.
2.3. Preparation for the fMRI
2.4. fMRI Examination Protocol
2.5. Statistical Analysis
3. Results
3.1. Adults
3.2. Children
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Altman, N.R.; Bernal, B. Pediatric applications of functional magnetic resonance imaging. Pediatr. Radiol. 2015, 45 (Suppl. S3), 382–396. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Burgund, E.; Lugar, H.M.; Petersen, S.E.; Schlaggar, B.L. AComparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage 2003, 19, 16–28. [Google Scholar] [CrossRef]
- Vanderwal, T.; Kelly, C.; Eilbott, J.; Mayes, L.C.; Castellanos, F. Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging. NeuroImage 2015, 122, 222–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bookheimer, S.Y. Methodological issues in pediatric neuroimaging. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 161–165. [Google Scholar] [CrossRef]
- Hertz-Pannier, L.; Noulhiane, M.; Rodrigo, S.; Chiron, C. Pretherapeutic Functional Magnetic Resonance Imaging in Children. Neuroimaging Clin. N. Am. 2014, 24, 639–653. [Google Scholar] [CrossRef]
- Feczko, E.; Miezin, F.M.; Constantino, J.N.; Schlaggar, B.L.; Petersen, S.E.; Pruett, J.R. The hemodynamic response in children with Simplex Autism. Dev. Cogn. Neurosci. 2012, 2, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.; Yacubian, E.M.T.; Avanzini, G.; Sander, T.; Schmitz, B.; Wandschneider, B.; Koepp, M. Juvenile myoclonic epilepsy: A system disorder of the brain. Epilepsy Res. 2015, 114, 2–12. [Google Scholar] [CrossRef]
- Slifer, K.J.; Bucholtz, J.D.; Cataldo, M.D. Behavioral Training of Motion Control in Young Children Undergoing Radiation Treatment without Sedation. J. Pediatr. Oncol. Nurs. 1994, 11, 55–63. [Google Scholar] [CrossRef]
- Durand, D.J.; Young, M.; Nagy, P.; Tekes, A.; Huisman, T.A. Mandatory Child Life Consultation and Its Impact on Pediatric MRI Workflow in an Academic Medical Center. J. Am. Coll. Radiol. 2015, 12, 594–598. [Google Scholar] [CrossRef]
- De Bie, H.; Boersma, M.; Wattjes, M.P.; Adriaanse, S.; Vermeulen, R.J.; Oostrom, K.J.; Huisman, J.; Veltman, D.J.; Delemarre-Van de Waal, H.A. Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur. J. Pediatr. 2010, 169, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.J.; Greer, M.-L.C.; Gray, S.E.; Ware, R. Mock MRI: Reducing the need for anaesthesia in children. Pediatr. Radiol. 2010, 40, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, C.; Gee, M.S. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr. Radiol. 2016, 46, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Arichi, T.; Price, A.; Dall’Orso, S.; Eden, J.; Noh, Y.; Rhode, K.; Burdet, E.; Neil, M.; Edwards, A.D.; et al. An eye tracking based virtual reality system for use inside magnetic resonance imaging systems. Sci. Rep. 2021, 11, 16301. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Gómez, D.; Sújar, A.; Ardoy-Cuadros, J.; Bejarano-Gómez, A.; Aguado, D.; Miguelez-Fernandez, C.; Blasco-Fontecilla, H.; Peñuelas-Calvo, I. Objective Assessment of Attention-Deficit Hyperactivity Disorder (ADHD) Using an Infinite Runner-Based Computer Game: A Pilot Study. Brain Sci. 2020, 10, 716. [Google Scholar] [CrossRef]
- McGuirt, D. Alternatives to Sedation and General Anesthesia in Pediatric Magnetic Resonance Imaging: A Literature Review. Radiol. Technol. 2016, 88, 18–26. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2012, 4, 133–142. [Google Scholar] [CrossRef]
- Pressdee, D.; May, L.; Eastman, E.; Grier, D. The use of play therapy in the preparation of children undergoing MR imaging. Clin. Radiol. 1997, 52, 945–947. [Google Scholar] [CrossRef]
- Yerys, B.E.; Jankowski, K.; Shook, D.; Rosenberger, L.R.; Barnes, K.A.; Berl, M.; Ritzl, E.K.; VanMeter, J.; Vaidya, C.J.; Gaillard, W.D. The fMRI success rate of children and adolescents: Typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Hum. Brain Mapp. 2009, 30, 3426–3435. [Google Scholar] [CrossRef] [Green Version]
- Tziraki, M.; Garg, S.; Harrison, E.; Wright, N.B.; Hawkes, R.; Akhtar, K.; Green, J.; Stivaros, S. A Neuroimaging Preparation Protocol Tailored for Autism. Autism Res. 2020, 14, 65–74. [Google Scholar] [CrossRef]
- Theys, C.; Wouters, J.; Ghesquière, P. Diffusion tensor imaging and resting-state functional MRI-scanning in 5- and 6-year-old children: Training protocol and motion assessment. PLoS ONE 2014, 9, e94019. [Google Scholar] [CrossRef] [Green Version]
- Mathiak, K.; Weber, R. Toward brain correlates of natural behavior: fMRI during violent video games. Hum. Brain Mapp. 2006, 27, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Mathiak, K.A.; Klasen, M.; Weber, R.; Ackermann, H.; Shergill, S.S.; Mathiak, K. Reward system and temporal pole contributions to affective evaluation during a first person shooter video game. BMC Neurosci. 2011, 12, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podgórski, M.; Matera, K.; Olewnik, Ł.; Puzio, T.; Barańska, D.; Grzelak, P. Let’s Play the fMRI—Advantages of Gamified Paradigm in Examining the Motor Cortex of Young Children. J. Clin. Med. 2022, 11, 2929. https://doi.org/10.3390/jcm11102929
Podgórski M, Matera K, Olewnik Ł, Puzio T, Barańska D, Grzelak P. Let’s Play the fMRI—Advantages of Gamified Paradigm in Examining the Motor Cortex of Young Children. Journal of Clinical Medicine. 2022; 11(10):2929. https://doi.org/10.3390/jcm11102929
Chicago/Turabian StylePodgórski, Michał, Katarzyna Matera, Łukasz Olewnik, Tomasz Puzio, Dobromiła Barańska, and Piotr Grzelak. 2022. "Let’s Play the fMRI—Advantages of Gamified Paradigm in Examining the Motor Cortex of Young Children" Journal of Clinical Medicine 11, no. 10: 2929. https://doi.org/10.3390/jcm11102929
APA StylePodgórski, M., Matera, K., Olewnik, Ł., Puzio, T., Barańska, D., & Grzelak, P. (2022). Let’s Play the fMRI—Advantages of Gamified Paradigm in Examining the Motor Cortex of Young Children. Journal of Clinical Medicine, 11(10), 2929. https://doi.org/10.3390/jcm11102929