Tips and Details for Successful Robotic Myomectomy: Single-Center Experience with the First 125 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Surgical Methods
2.3. Evaluation Indicators
2.4. Statistical Processing
3. Surgical Tips and Details
3.1. Preoperative Preparation
3.2. Location of the Abdominal Puncture Hole
3.3. Position and Direction of Uterine Incision
3.4. Myomectomy
3.5. Wound Suture
3.6. Uterine Fibroid Removal
3.7. Treatment of Several Special Fibroids
3.8. Postoperative Care and ERAS Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medikare, V.; Kandukuri, L.R.; Ananthapur, V.; Deenadayal, M.; Nallari, P. The genetic bases of uterine fibroids; A review. J. Reprod. Infertil. 2011, 12, 181–191. [Google Scholar]
- Munro, M.G.; Critchley, H.O.; Fraser, I.S. The FIGO classification of causes of abnormal uterine bleeding: Malcolm G. Munro, Hilary O.D. Crithcley, Ian S. Fraser, for the FIGO Working Group on Menstrual Disorders. Int. J. Gynaecol. Obstet. 2011, 113, 1–2. [Google Scholar] [CrossRef]
- Sandberg, A.A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: Leiomyoma. Cancer Genet. Cytogenet. 2005, 158, 1–26. [Google Scholar] [CrossRef]
- Bestel, E.; Donnez, J. The potential of selective progesterone receptor modulators for the treatment of uterine fibroids. Expert Rev. Endocrinol. Metab. 2014, 9, 79–92. [Google Scholar] [CrossRef]
- Islam, M.S.; Afrin, S.; Jones, S.I.; Segars, J. Selective Progesterone Receptor Modulators-Mechanisms and Therapeutic Utility. Endocr. Rev. 2020, 41, bnaa012. [Google Scholar] [CrossRef]
- Zhang, C.; Jacobson, H.; Ngobese, Z.E.; Setzen, R. Efficacy and safety of ultrasound-guided high intensity focused ultrasound ablation of symptomatic uterine fibroids in Black women: A preliminary study. BJOG 2017, 124 (Suppl. 3), 12–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Z.B.; Xu, Y.H. Efficacy, Efficiency, and Safety of Magnetic Resonance-Guided High-Intensity Focused Ultrasound for Ablation of Uterine Fibroids: Comparison with Ultrasound-Guided Method. Korean J. Radiol. 2018, 19, 724–732. [Google Scholar] [CrossRef]
- Sano, R.; Suzuki, S.; Shiota, M. Laparoscopic Myomectomy for the Removal of Large Uterine Myomas. Surg. J. (N. Y.) 2019, 6 (Suppl. 1), S44–S49. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, J.J.; Choi, Y.; Lee, M.; Hwang, H.J.; Chung, Y.J.; Cho, H.H.; Kim, M.R. Successfully removed uterine angioleiomyoma by robot-assisted laparoscopic myomectomy. Obstet. Gynecol. Sci. 2018, 61, 425–429. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M. Uterine fibroid management: From the present to the future. Hum. Reprod. Update 2016, 22, 665–686. [Google Scholar] [CrossRef]
- Lauterbach, R.; Matanes, E.; Lowenstein, L. Review of Robotic Surgery in Gynecology–The Future Is Here. Rambam Maimonides Med. J. 2017, 8, e0019. [Google Scholar] [CrossRef] [Green Version]
- Seshadri, S.; El-Toukhy, T.; Douiri, A.; Jayaprakasan, K.; Khalaf, Y. Diagnostic accuracy of saline infusion sonography in the evaluation of uterine cavity abnormalities prior to assisted reproductive techniques: A systematic review and meta-analyses. Hum. Reprod. Update 2015, 21, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Lumsden, M.A.; Hamoodi, I.; Gupta, J.; Hickey, M. Fibroids: Diagnosis and management. BMJ 2015, 351, h4887. [Google Scholar] [CrossRef] [Green Version]
- Johnatty, S.E.; Stewart, C.J.R.; Smith, D.; Nguyen, A.; O’ Dwyer, J.; O’Mara, T.A.; Webb, P.M.; Spurdle, A.B. Co-existence of leiomyomas, adenomyosis and endometriosis in women with endometrial cancer. Sci. Rep. 2020, 10, 3621. [Google Scholar] [CrossRef]
- Karthik, S.; Augustine, A.J.; Shibumon, M.M.; Pai, M.V. Analysis of laparoscopic port site complications: A descriptive study. J. Minimal Access Surg. 2013, 9, 59–64. [Google Scholar]
- Chang, C.; Steinberg, Z.; Shah, A.; Gundeti, M.S. Patient positioning and port placement for robot-assisted surgery. J. Endourol. 2014, 28, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.J.; Chavali, J.S.S.; Yerram, N.; Babbar, P.; Kaouk, J.H. Current status of robotic single-port surgery. Urol. Ann. 2017, 9, 217–222. [Google Scholar]
- Jain, N. Multiple layer closure of myoma bed in laparoscopic myomectomy. J. Gynecol. Endosc. Surg. 2011, 2, 43–46. [Google Scholar] [CrossRef]
- Russell, J.A. Bench-to-bedside review: Vasopressin in the management of septic shock. Crit. Care 2011, 15, 226. [Google Scholar] [CrossRef] [Green Version]
- Dubuisson, J.B.; Fauconnier, A.; Deffarges, J.V.; Norgaard, C.; Kreiker, G.; Chapron, C. Pregnancy outcome and deliveries following laparoscopic myomectomy. Hum. Reprod. 2000, 15, 869–873. [Google Scholar] [CrossRef]
- Tan, G.; Chong, Y.S.; Biswas, A. Caesarean scar pregnancy: A diagnosis to consider carefully in patients with risk factors. Ann. Acad. Med. Singap. 2005, 34, 216–219. [Google Scholar] [PubMed]
- Milad, M.P.; Milad, E.A. Laparoscopic morcellator-related complications. J. Minim. Invasive Gynecol. 2014, 21, 486–491. [Google Scholar] [CrossRef]
- Zullo, F.; Venturella, R.; Raffone, A.; Saccone, G. In-bag manual versus uncontained power morcellation for laparoscopic myomectomy. Cochrane Database Syst. Rev. 2020, 5, CD013352. [Google Scholar] [CrossRef]
- Gui, T.; Qian, Q.; Cao, D.; Yang, J.; Peng, P.; Shen, K. Computerized tomography angiography in preoperative assessment of intravenous leiomyomatosis extending to inferior vena cava and heart. BMC Cancer 2016, 16, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Zhou, L. Diagnostic ambiguity of a uterine fibroid with abnormal appearance after severe red degeneration: A case report. Int. J. Gynaecol. Obstet. 2019, 147, 413–414. [Google Scholar] [CrossRef]
- Donnez, J.; Tatarchuk, T.F.; Bouchard, P.; Puscasiu, L.; Zakharenko, N.F.; Ivanova, T.; Ugocsai, G.; Mara, M.; Jilla, M.P.; Bestel, E.; et al. Ulipristal acetate versus placebo for fibroid treatment before surgery. N. Engl. J. Med. 2012, 366, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Engman, M.; Granberg, S.; Williams, A.R.; Meng, C.X.; Lalitkumar, P.G.; Gemzell-Danielsson, K. Mifepristone for treatment of uterine leiomyoma. A prospective randomized placebo controlled trial. Hum. Reprod. 2009, 24, 1870–1879. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Boyd, L.; Ringel, N.; Meyer, J.; Bennett, G.; Lerner, V. Preoperative MRI and LDH in women undergoing intra-abdominal surgery for fibroids: Effect on surgical route. PLoS ONE 2021, 16, e0246807. [Google Scholar] [CrossRef]
- Suzuki, A.; Aoki, M.; Miyagawa, C.; Murakami, K.; Takaya, H.; Kotani, Y.; Nakai, H.; Matsumura, N. Differential Diagnosis of Uterine Leiomyoma and Uterine Sarcoma using Magnetic Resonance Images: A Literature Review. Healthcare 2019, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.D.; Narinedhat, R. Cervical myoma experienced as prolapse. J. Minim. Invasive Gynecol. 2009, 16, 248–249. [Google Scholar] [CrossRef]
- Tiltman, A.J. Leiomyomas of the uterine cervix: A study of frequency. Int. J. Gynecol. Pathol. 1998, 17, 231–234. [Google Scholar] [CrossRef]
- Mata, R.P.; Urzal, C.; Belo, A.I.; Guerreiro, F. Intravenous leiomyomatosis without extrapelvic involvement. BMJ Case Rep. 2020, 13, e234864. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Miao, Q.; Liu, X.; Zhang, C.; Liu, J.; Zheng, Y.; Shao, J.; Cheng, N.; Du, S.; Hu, Z.; et al. Different surgical strategies of patients with intravenous leiomyomatosis. Medicine (Baltim.) 2016, 95, e4902. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Ko, H.S.; Na, S.; Bae, J.Y.; Seong, W.J.; Kim, J.W.; Shin, J.; Cho, H.J.; Choi, G.Y.; Kim, J.; et al. Nationwide population-based cohort study of adverse obstetric outcomes in pregnancies with myoma or following myomectomy: Retrospective cohort study. BMC Pregnancy Childbirth 2020, 20, 716. [Google Scholar] [CrossRef]
- Barakat, E.E.; Bedaiwy, M.A.; Zimberg, S.; Nutter, B.; Nosseir, M.; Falcone, T. Robotic-assisted, laparoscopic, and abdominal myomectomy: A comparison of surgical outcomes. Obstet. Gynecol. 2011, 117, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Bedient, C.E.; Magrina, J.F.; Noble, B.N.; Kho, R.M. Comparison of robotic and laparoscopic myomectomy. Am. J. Obstet. Gynecol. 2009, 201, 566.e1–566.e5. [Google Scholar] [CrossRef]
- Sangha, R.; Strickler, R.; Dahlman, M.; Havstad, S.; Wegienka, G. Myomectomy to conserve fertility: Seven-year follow-up. J. Obstet. Gynaecol. Can. 2015, 37, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Hu, Y.; Chen, X.C.; Zheng, F.Y.; Lin, F.; Zhou, K.; Chen, F.D.; Gu, H.Z. Laparoscopic versus open myomectomy—A meta-analysis of randomized controlled trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 145, 14–21. [Google Scholar] [CrossRef]
- Shin, D.G.; Yoo, H.J.; Lee, Y.A.; Kwon, I.S.; Lee, K.H. Recurrence factors and reproductive outcomes of laparoscopic myomectomy and minilaparotomic myomectomy for uterine leiomyomas. Obstet. Gynecol. Sci. 2017, 60, 193–199. [Google Scholar] [CrossRef]
- Flyckt, R.; Coyne, K.; Falcone, T. Minimally Invasive Myomectomy. Clin. Obstet. Gynecol. 2017, 60, 252–272. [Google Scholar] [CrossRef]
- O’Neill, M.; Moran, P.S.; Teljeur, C.; O’Sullivan, O.E.; O’Reilly, B.A.; Hewitt, M.; Flattery, M.; Ryan, M. Robot-assisted hysterectomy compared to open and laparoscopic approaches: Systematic review and meta-analysis. Arch. Gynecol. Obstet. 2013, 287, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Advincula, A.P.; Song, A.; Burke, W.; Reynolds, R.K. Preliminary experience with robot-assisted laparoscopic myomectomy. J. Am. Assoc. Gynecol. Laparosc. 2004, 11, 511–518. [Google Scholar] [CrossRef]
- Quaas, A.M.; Einarsson, J.I.; Srouji, S.; Gargiulo, A.R. Robotic myomectomy: A review of indications and techniques. Rev. Obstet. Gynecol. 2010, 3, 185–191. [Google Scholar]
- Shim, J.I.; Jo, E.H.; Kim, M.; Kim, M.K.; Kim, M.L.; Yun, B.S.; Seong, S.J.; Jung, Y.W. A comparison of surgical outcomes between robot and laparoscopy-assisted adenomyomectomy. Medicine 2019, 98, e15466. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, A.; Chung, Y.J.; Sinan, N.; Kang, H.; Ko, M.; Lee, S.; Song, J.Y.; Kim, M.R. A novel technique for myometrial defect closure after robot-assisted laparoscopic adenomyomectomy: A retrospective cohort study. Taiwan J. Obstet. Gynecol. 2022, 61, 75–79. [Google Scholar] [CrossRef]
- Moghadamyeghaneh, Z.; Hanna, M.H.; Carmichael, J.C.; Pigazzi, A.; Stamos, M.J.; Mills, S. Comparison of open, laparoscopic, and robotic approaches for total abdominal colectomy. Surg. Endosc. 2016, 30, 2792–2798. [Google Scholar] [CrossRef]
- Gobern, J.M.; Rosemeyer, C.J.; Barter, J.F.; Steren, A.J. Comparison of robotic, laparoscopic, and abdominal myomectomy in a community hospital. JSLS J. Soc. Laparoendosc. Surg. 2013, 17, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tang, H.; Xie, Z.; Deng, S. Robotic-assisted vs. laparoscopic and abdominal myomectomy for treatment of uterine fibroids: A meta-analysis. Minim. Invasive Ther. Allied Technol. 2018, 27, 249–264. [Google Scholar] [CrossRef]
- Arian, S.E.; Munoz, J.L.; Kim, S.; Falcone, T. Robot-assisted laparoscopic myomectomy: Current status. Robot. Surg. 2017, 4, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Tapper, A.M.; Hannola, M.; Zeitlin, R.; Isojärvi, J.; Sintonen, H.; Ikonen, T.S. A systematic review and cost analysis of robot-assisted hysterectomy in malignant and benign conditions. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 177, 1–10. [Google Scholar] [CrossRef]
- Pellegrino, A.; Damiani, G.R.; Fachechi, G.; Corso, S.; Pirovano, C.; Trio, C.; Villa, M.; Turoli, D.; Youssef, A. Cost analysis of minimally invasive hysterectomy vs. open approach performed by a single surgeon in an Italian center. J. Robot. Surg. 2017, 11, 115–121. [Google Scholar] [CrossRef]
- Soomro, N.A.; Hashimoto, D.A.; Porteous, A.J.; Ridley, C.J.A.; Marsh, W.J.; Ditto, R.; Roy, S. Systematic review of learning curves in robot-assisted surgery. BJS Open 2020, 4, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Du, D.F.; Jiang, H. The learning curves of robotic and three-dimensional laparoscopic surgery in cervical cancer. J. Cancer 2016, 7, 2304–2308. [Google Scholar] [CrossRef] [Green Version]
- Marino, P.; Houvenaeghel, G.; Narducci, F.; Boyer-Chammard, A.; Ferron, G.; Uzan, C.; Bats, A.S.; Mathevet, P.; Dessogne, P.; Guyon, F.; et al. Cost-Effectiveness of Conventional vs. Robotic-Assisted Laparoscopy in Gynecologic Oncologic Indications. Int. J. Gynecol. Cancer 2015, 25, 1102–1108. [Google Scholar] [CrossRef]
- Aggarwal, P.; Mittal, S.; Hooda, D. Total Robotic Myomectomy in a Complex Case: Extending the Limits. Gynecol. Minim. Invasive Ther. 2020, 9, 175–178. [Google Scholar] [CrossRef]
- Iavazzo, C.; Mamais, I.; Gkegkes, I.D. Robotic assisted vs. laparoscopic and/or open myomectomy: Systematic review and meta-analysis of the clinical evidence. Arch. Gynecol. Obstet. 2016, 294, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Frick, A.C.; Barakat, E.E.; Stein, R.J.; Mora, M.; Falcone, T. Robotic-assisted laparoscopic management of ureteral endometriosis. JSLS 2011, 15, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Velilla, G.; Ballestero, R.; Gómez, M.; Zubillaga, S.; Herrero, E.; Yllera, E.; Gutiérrez, J.L. Robotic surgery in the management of complex pelvic endometriosis. Int. Braz. J. Urol. 2019, 45, 411. [Google Scholar] [CrossRef]
- Burttet, L.M.; Abreu, F.J.D.S.; Varaschin, G.A.; Berger, M. Robotic assisted laparoscopic excision of a retroperitoneal Ganglioneuroma. Int. Braz. J. Urol. 2017, 43, 997. [Google Scholar] [CrossRef] [Green Version]
- Bindal, V.; Bhatia, P.; Kalhan, S.; Khetan, M.; John, S.; Ali, A.; Singh, R.; Rath, A.; Wadhera, S.; Bansal, N. Robot-assisted excision of a large retroperitoneal schwannoma. JSLS 2014, 18, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Cucinella, G.; Culmone, S.; Guastella, E.; Gentile, F.; De Maria, F.; Granà, R.; Carlisi, B.; Rotolo, S.; Calagna, G. Uterine preservation in pelvic organ prolapse and urinary stress incontinence using robot-assisted laparoscopic surgery. Case report. Int. J. Surg. Case Rep. 2020, 77, S143–S146. [Google Scholar] [CrossRef] [PubMed]
- Iavazzo, C.; Gkegkes, I.D. Possible role of DaVinci Robot in uterine transplantation. J. Turk. Ger. Gynecol. Assoc. 2015, 16, 179–180. [Google Scholar] [CrossRef]
- Baik, S.; Park, S.; Park, J. Haptic Glove Using Tendon-Driven Soft Robotic Mechanism. Front. Bioeng. Biotechnol. 2020, 8, 541105. [Google Scholar] [CrossRef]
- Ran, L.; Zhang, Y.; Zhang, Q.; Yang, T. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images. Sensors 2017, 17, 1341. [Google Scholar] [CrossRef]
- Esposito, C.; Settimi, A.; Del Conte, F.; Cerulo, M.; Coppola, V.; Farina, A.; Crocetto, F.; Ricciardi, E.; Esposito, G.; Escolino, M. Image-Guided Pediatric Surgery Using Indocyanine Green (ICG) Fluorescence in Laparoscopic and Robotic Surgery. Front. Pediatr. 2020, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Omisore, O.M.; Han, S.; Al-Handarish, Y.; Du, W.; Duan, W.; Akinyemi, T.O.; Wang, L. Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems. Micromachines 2020, 11, 386. [Google Scholar] [CrossRef] [Green Version]
Robot (n = 125) | Laparoscope (n = 110) | p Value | |
---|---|---|---|
Median age (mean, range) (y) | 35 (36.6, 23–48) | 38 (37.1, 24–52) | 0.59 |
Median BMI (mean, range) | 26 (26.7, 18–33) | 24 (25.1, 20–31) | 0.61 |
Preoperative symptoms | |||
Increased menstrual flow | 68 (54%) | 64 (58%) | 0.56 |
Urinary incontinence/constipation | 29 (23%) | 23 (21%) | 0.67 |
Abdominal pain | 19 (15%) | 16 (15%) | 0.89 |
Infertility/miscarriage | 9 (7.2%) | 7 (6.4%) | 0.80 |
Fibroids | |||
Single | 49 (39%) | 39 (35%) | 0.55 |
Multiple | 76 (61%) | 71 (65%) | |
Maximum diameter (Mean, range) (cm) | 7.9 (7.3, 5–13) | 7.1 (7.0, 5–12) | 0.83 |
Fibroid degeneration | 28 (22%) | 21 (19%) | 0.53 |
Cervical fibroids | 11 (8.8%) | 7 (6.4%) | 0.48 |
Broad ligament fibroids (including endovascular leiomyomatosis) | 12 (9.6%) | 7 (6.4%) | 0.36 |
Intraperitoneal disseminated leiomyomatosis | 2 (1.6%) | 1 (0.9%) | 0.64 |
History of pelvic surgery | 53 (42%) | 44 (40%) | 0.71 |
Robot (n = 125) | Laparoscope (n = 110) | p Value | |
---|---|---|---|
Operation time (min) | |||
Docking time | 8.8 (6.1–15.4) | 0 | 0.00 ** |
Suture time | 22 (14–35) | 41 (21–59) | 0.00 ** |
Tumor retrieval time | 6 (4–15) | 5 (3–21) | 0.59 |
Total time | 72 (46–105) | 96 (72–135) | 0.01 ** |
Number of fibroids removed | 4.8 (1–9) | 4.4 (1–7) | 0.50 |
Median blood loss (mL) | 45 (5–200) | 75 (10–300) | 0.01 ** |
Total specimen weight (g) | 420 (180–780) | 400 (150–695) | 0.66 |
Anal exhaust time (h) | 12 (3–24) | 18 (6–39) | 0.00 ** |
Hospital stay (d) | 2 (1–5) | 3 (1–6) | 0.02 * |
Pain scale (VAS) | |||
12 h after surgery | 4.2 (2–5) | 4.1 (2–6) | 0.34 |
24 h after surgery | 3.1 (2–4) | 3.0 (2–5) | 0.49 |
72 h after surgery | 1.3 (0–3) | 1.4 (0–4) | 0.55 |
Symptom improvement | 113 (90%) | 103 (94%) | 0.36 |
Complications | 3 (2.4%) | 12 (11%) | 0.01** |
Relapse | 9 (7.2%) | 11 (10%) | 0.44 |
Total cost (RMB) | 51,231 (47,114–63,587) | 26,899 (24,503–30,218) | 0.00 ** |
Robot (n = 125) | Laparoscope (n = 110) | p Value | |
---|---|---|---|
Operating expenses (RMB) | 31,561 (30,104–33,291) | 6694 (3420–3990) | 0.00 ** |
Other expenses (RMB) | 19,870 (14,478–23,664) | 20,205 (14,792–27,036) | 0.66 |
Composition ratio of other expenses | |||
Consumable | 39% | 43% | 0.78 |
Inspection and laboratory | 27% | 22% | 0.65 |
Drug | 16% | 17% | 0.81 |
Treatment | 8.4% | 8.7% | 0.63 |
Nursing | 6.1% | 6.5% | 0.45 |
Other | 3.3% | 3.2% | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, L.; Zhang, Y. Tips and Details for Successful Robotic Myomectomy: Single-Center Experience with the First 125 Cases. J. Clin. Med. 2022, 11, 3221. https://doi.org/10.3390/jcm11113221
Dou L, Zhang Y. Tips and Details for Successful Robotic Myomectomy: Single-Center Experience with the First 125 Cases. Journal of Clinical Medicine. 2022; 11(11):3221. https://doi.org/10.3390/jcm11113221
Chicago/Turabian StyleDou, Lei, and Yi Zhang. 2022. "Tips and Details for Successful Robotic Myomectomy: Single-Center Experience with the First 125 Cases" Journal of Clinical Medicine 11, no. 11: 3221. https://doi.org/10.3390/jcm11113221
APA StyleDou, L., & Zhang, Y. (2022). Tips and Details for Successful Robotic Myomectomy: Single-Center Experience with the First 125 Cases. Journal of Clinical Medicine, 11(11), 3221. https://doi.org/10.3390/jcm11113221