Short- and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods and Design
2.2. Participants
3. Procedure
3.1. Randomization
3.2. Strength Training
- Mandatory warm up: stepping, sideways walk, and two-legged knee bends.
- Strength-training level 1: pelvic lifts (2 × 15 RM), one-legged knee bends with maximum 60° flexion (2 × 10 RM per leg), and hip abductions with elastic band (2 × 10 RM per leg).
- Strength-training level 2: pelvic lifts (3 × 15 RM), one-legged knee bends with maximum 60° flexion (3 × 10 RM per leg), hip abductions with elastic band (2 × 10 RM per leg), sideways slide lunges (2 × 10 RM per leg), and backward slide lunges (2 × 10 RM per leg).
3.3. Laser Therapy and Blinding
3.4. Concomitant Interventions
3.5. Outcomes
3.5.1. VAS (Pain)
3.5.2. KOOS (Pain, Disability, and QoL)
3.5.3. Global Health Change
3.5.4. Analgesics
3.5.5. AROM
3.5.6. Sit-to-Stand Test Chair Stands
3.5.7. PPT
3.5.8. RTU
3.6. Statistical Analysis
4. Results
4.1. Within-Group Changes from Baseline
4.2. Between-Group Changes from Baseline
5. Discussion
5.1. Patient-Reported Outcomes
5.2. Physical Tests
5.3. RTU Assessments
5.4. Laser Dosing
5.5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features—Part 1. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomazoni, S.S.; Leal-Junior, E.C.P.; Frigo, L.; Pallotta, R.C.; Teixeira, S.; De Almeida, P.; Bjordal, J.M.; Lopes-Martins, R.; Álvaro, B. Isolated and combined effects of photobiomodulation therapy, topical nonsteroidal anti-inflammatory drugs, and physical activity in the treatment of osteoarthritis induced by papain. J. Biomed. Opt. 2016, 21, 108001. [Google Scholar] [CrossRef] [PubMed]
- Tomazoni, S.S.; Leal-Junior, E.C.P.; Pallotta, R.C.; Teixeira, S.; De Almeida, P.; Lopes-Martins, R.; Álvaro, B. Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med. Sci. 2017, 32, 101–108. [Google Scholar] [CrossRef]
- Assis, L.; Milares, L.; Almeida, T.; Tim, C.; Magri, A.; Fernandes, K.; Medalha, C.; Renno, A.M. Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr. Cartil. 2016, 24, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Pallotta, R.C.; Bjordal, J.M.; Frigo, L.; Leal-Junior, E.C.P.; Teixeira, S.; Marcos, R.L.; Ramos, L.; Messias, F.; Lopes-Martins, R.A.B. Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med. Sci. 2012, 27, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Xiang, A.; Deng, H.; Cheng, K.; Liu, H.; Lin, L.; Qu, X.; Liu, S.; Shen, X. Laser photobiomodulation for cartilage defect in animal models of knee osteoarthritis: A systematic review and meta-analysis. Lasers Med. Sci. 2020, 35, 789–796. [Google Scholar] [CrossRef]
- Geenen, R.; Overman, C.L.; Christensen, R.; Åsenlöf, P.; Capela, S.; Huisinga, K.L.; Husebø, M.E.P.; Köke, A.J.; Paskins, Z.; Pitsillidou, I.; et al. EULAR recommendations for the health professional’s approach to pain management in inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018, 77, 797–807. [Google Scholar] [CrossRef] [Green Version]
- Collins, N.J.; Hart, H.F.; Mills, K.A.G. OARSI year in review 2018: Rehabilitation and outcomes. Osteoarthr. Cartil. 2019, 27, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef] [Green Version]
- Stausholm, M.B.; Msc, I.F.N.; Joensen, J.; Lopes-Martins, R.; Álvaro, B.; Sæbø, H.; Lund, H.; Fersum, K.V.; Bjordal, J.M. Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: Systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open 2019, 9, e031142. [Google Scholar] [CrossRef]
- WALT. Recommended Treatment Doses for Low Level Laser Therapy 780–860 nm Wavelength. 2010. Available online: http://waltza.co.za/wp-content/uploads/2012/08/Dose_table_780–860nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf (accessed on 6 May 2020).
- WALT. Recommended Treatment Doses for Low Level Laser Therapy 904 nm Wavelength. 2010. Available online: http://waltza.co.za/wp-content/uploads/2012/08/Dose_table_904nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf (accessed on 6 May 2020).
- Alfredo, P.P.; Bjordal, J.M.; Junior, W.S.; Lopes-Martins, R.; Álvaro, B.; Stausholm, M.B.; Casarotto, R.A.; Marques, A.P.; Joensen, J. Long-term results of a randomized, controlled, double-blind study of low-level laser therapy before exercises in knee osteoarthritis: Laser and exercises in knee osteoarthritis. Clin. Rehabil. 2018, 32, 173–178. [Google Scholar] [CrossRef]
- Al Rashoud, A.S.; Abboud, R.J.; Wang, W.; Wigderowitz, C. Efficacy of low-level laser therapy applied at acupuncture points in knee osteoarthritis: A randomised double-blind comparative trial. Physiotherapy 2014, 100, 242–248. [Google Scholar] [CrossRef]
- Hinman, R.S.; McCrory, P.R.; Pirotta, M.; Relf, I.; Forbes, A.; Crossley, K.M.; Williamson, E.; Kyriakides, M.; Novy, K.; Metcalf, B.R.; et al. Acupuncture for chronic knee pain: A randomized clinical trial. JAMA 2014, 312, 1313–1322. [Google Scholar] [CrossRef]
- Stausholm, M.; Bjordal, J.; Lopes-Martins, R.; Joensen, J. Methodological flaws in meta-analysis of low-level laser therapy in knee osteoarthritis: A letter to the editor. Osteoarthr. Cartil. 2017, 25, e9–e10. [Google Scholar] [CrossRef] [Green Version]
- Rayegani, S.M.; Raeissadat, S.A.; Heidari, S.; Moradi-Joo, M. Safety and effectiveness of low-level laser therapy in patients with knee osteoarthritis: A systematic review and meta-analysis. J. Lasers Med. Sci. 2017, 8, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Bartholdy, C.; Juhl, C.; Christensen, R.; Lund, H.; Zhang, W.; Henriksen, M. The role of muscle strengthening in exercise therapy for knee osteoarthritis: A systematic review and meta-regression analysis of randomized trials. Semin. Arthritis Rheum. 2017, 47, 9–21. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Nambi, S.G.; Kamal, W.; George, J.; Manssor, E. Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med. Sci. 2017, 32, 297–303. [Google Scholar] [CrossRef]
- Kheshie, A.R.; Alayat, M.S.; Ali, M.M. High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: A randomized controlled trial. Lasers Med. Sci. 2014, 29, 1371–1376. [Google Scholar] [CrossRef]
- Mohammed, N.; Allam, H.; Elghoroury, E.; Zikri, E.N.; Helmy, G.A.; Elgendy, A. Evaluation of serum beta-endorphin and substance P in knee osteoarthritis patients treated by laser acupuncture. J. Complement. Integr. Med. 2018, 15, 1–7. [Google Scholar] [CrossRef]
- Bellamy, N.; Kirwan, J.; Boers, M.; Brooks, P.; Strand, V.; Tugwell, P.; Altman, R.; Brandt, K.; Dougados, M.; LeQuesne, M. Recommendations for a core set of outcome measures for future phase III clinical trials in knee, hip, and hand osteoarthritis. Consensus development at OMERACT III. J. Rheumatol. 1997, 24, 799–802. [Google Scholar]
- Stausholm, M.B.; Naterstad, I.F.; Couppé, C.; Fersum, K.V.; Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Bjordal, J.M.; Joensen, J. Effectiveness of Low-Level Laser Therapy Associated with Strength Training in Knee Osteoarthritis: Protocol for a Randomized Placebo-Controlled Trial. Methods Protoc. 2021, 4, 19. [Google Scholar] [CrossRef]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M.; et al. Development of criteria for the classification and reporting of osteoarthritis—Classification of osteoarthritis of the knee. Arthritis Rheum. 1986, 29, 1039–1049. [Google Scholar] [CrossRef]
- Relf, I.; Chow, R.; Pirotta, M. Blinding techniques in randomized controlled trials of laser therapy: An overview and possible solution. Evidence-Based Complement. Altern. Med. 2008, 5, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Alghadir, A.H.; Anwer, S.; Iqbal, A.; Iqbal, Z.A. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Delgado, D.A.; Lambert, B.S.; Boutris, N.; McCulloch, P.C.; Robbins, A.B.; Moreno, M.R.; Harris, J.D. Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults. J. Am. Acad. OrthoSurg. Glob. Res. Rev. 2018, 2, e088. [Google Scholar] [CrossRef]
- Collins, N.J.; Prinsen, C.A.; Christensen, R.; Bartels, E.M.; Terwee, C.B.; Roos, E.M. Knee Injury and Osteoarthritis Outcome Score (KOOS): Systematic review and meta-analysis of measurement properties. Osteoarthr. Cartil. 2016, 24, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Hancock, G.E.; Hepworth, T.; Wembridge, K. Accuracy and reliability of knee goniometry methods. J. Exp. Orthop. 2018, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dobson, F.; Hinman, R.; Roos, E.; Abbott, J.; Stratford, P.; Davis, A.; Buchbinder, R.; Snyder-Mackler, L.; Henrotin, Y.; Thumboo, J.; et al. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Stausholm, M.B.; Bjordal, J.M.; Moe-Nilssen, R.; Naterstad, I.F. Pain pressure threshold algometry in knee osteoarthritis: Intra- and inter-rater reliability. Physiother. Theory Pract. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Torp-Pedersen, S.; Bartels, E.M.; Wilhjelm, J.; Bliddal, H. Articular cartilage thickness measured with US is not as easy as it appears: A systematic review of measurement techniques and image interpretation. Ultraschall Med. 2011, 2, 54–61. [Google Scholar] [CrossRef]
- Tubach, F.; Ravaud, P.; Baron, G.; Falissard, B.; Logeart, I.; Bellamy, N.; Bombardier, C.; Felson, D.; Hochberg, M.; Heijde, D.V.D.; et al. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: The minimal clinically important improvement. Ann. Rheum. Dis. 2005, 64, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.A.; Cook, C.E.; Baxter, G.D.; Duckerty, J.D.; Abbott, J.H. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J. Orthop. Sports Phys. Ther. 2011, 41, 319–327. [Google Scholar] [CrossRef]
- Wyszynska, J.; Bal-Bochenska, M. Efficacy of High-Intensity Laser Therapy in Treating Knee Osteoarthritis: A First Systematic Review. Photomed. Laser Surg. 2018, 36, 343–353. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Hamid, M.S.A.; Yusof, A. Effects of low-level and high-intensity laser therapy as adjunctive to rehabilitation exercise on pain, stiffness and function in knee osteoarthritis: A systematic review and meta-analysis. Physiotherapy 2021, 114, 85–95. [Google Scholar] [CrossRef]
- Liebert, A.; Waddington, G.; Bicknell, B.; Chow, R.; Adams, R. Quantification of the absorption of low-level 904 nm super pulsed laser light as a function of skin colour. In Proceedings of the 9th World Association for Laser Therapy Congress, QT Gold Coast, Surfers Paradise, Australia, 28–30 September 2012. [Google Scholar]
- Joensen, J.; Demmink, J.H.; Johnson, M.I.; Iversen, V.V.; Lopes-Martins, R.Á.B.; Bjordal, J.M. The Thermal Effects of Therapeutic Lasers with 810 and 904 nm Wavelengths on Human Skin. Photomed. Laser Surg. 2011, 29, 145–153. [Google Scholar] [CrossRef]
- Altman, D.G. Comparability of randomised groups. J. R. Stat. Soc. 1985, 34, 125–136. [Google Scholar] [CrossRef]
- Bjordal, J.M.; Ljunggren, A.E.; Klovning, A.; Slørdal, L. Non-steroidal anti-inflammatory drugs, including cyclo-oxygenase-2 inhibitors, in osteoarthritic knee pain: Meta-analysis of randomised placebo controlled trials. BMJ 2004, 329, 1317. [Google Scholar] [CrossRef] [Green Version]
Variables, Mean ± SD/N (%) | Laser Group | Placebo Group | p-Value |
---|---|---|---|
Age (years) | 64.04 ± 8.52 | 61.92 ± 6.39 | 0.3372 |
Weight (kg) | 83.25 ± 14.78 | 79.48 ± 14.30 | 0.3742 |
Height (m) | 1.72 ± 0.08 | 1.69 ± 0.12 | 0.3655 |
BMI | 28.11 ± 4.31 | 27.66 ± 3.58 | 0.6967 |
Gender (No.) | |||
Females | 18 (69.23%) | 19 (79.17%) | |
Males | 8 (30.77%) | 5 (20.83%) | 0.526 |
Duration of knee pain (months) | |||
Right osteoarthritic knee | 92.16 ± 103.56 | 83.52 ± 87.63 | 0.7657 |
Left osteoarthritic knee | 125.1 ± 135.83 | 89.18 ± 71.35 | 0.2899 |
Pain on movement (mm VAS) | 52.77 ± 11.68 | 63.88 ± 14.87 | 0.0193 * |
Pain at rest (mm VAS) | 17.15 ± 17.17 | 29.63 ± 24.00 | 0.1325 |
Pain at night (mm VAS) | 28.58 ± 20.61 | 39.29 ± 25.91 | 0.3233 |
Pain globally (KOOS) | 48.61 ± 12.23 | 42.94 ± 14.58 | 0.3928 |
Disability in ADL (KOOS) | 57.80 ± 15.18 | 49.25 ± 20.35 | 0.2923 |
Disability in sports/rec. (KOOS) | 19.42 ± 19.82 | 21.88± 19.46 | 0.9633 |
Quality of life (KOOS) | 25.71 ± 13.68 | 25.25 ± 14.26 | 0.9993 |
Users of any analgesic (N) | 11 (42.31%) | 9 (37.50%) | 0.779 |
Users of NSAIDs (N) | 6 (23.08%) | 5 (20.83%) | 1.000 |
Knee flexion AROM (degrees) | 121.1 ± 11.08 | 122.0 ± 9.80 | 0.9863 |
30 s chair stands (No.) | 10.23 ± 3.84 | 9.96 ± 3.88 | 0.9929 |
Joint line PPT (newton) | 49.85 ± 20.16 | 32.37 ± 12.70 | 0.0086 ** |
Tibial condyle PPT (newton) | 45.05 ± 21.85 | 34.53 ± 13.06 | 0.1451 |
Suprapatellar effusion (mm) | 5.77 ± 3.595 | 5.01 ± 1.949 | 0.7624 |
Meniscal Doppler (mm2) | 2.323 ± 2.28 | 2.713 ± 1.96 | 0.9520 |
Femur cartilage thickness (mm) | 1.59 ± 0.381 | 1.48 ± 0.380 | 0.7367 |
Variables | Weeks 0–3 | Weeks 0–8 | Weeks 0–26 | Weeks 0–52 |
---|---|---|---|---|
Pain on movement (VAS) | ||||
Laser group | 20.12 (n = 25) | 24.44 (n = 25) | 21.76 (n = 25) | 35.43 (n = 24) |
Placebo group | 32.29 (n = 24) | 32.16 (n = 23) | 35.91 (n = 22) | 30.55 (n = 22) |
Between-group change | −12.17 (−27.86 to 3.52) | −7.72 (−23.53 to 8.08) | −14.15 (−29.99 to 1.69) | 4.88 (−11.07 to 20.85) |
Pain at rest (VAS) | ||||
Laser group | 1.56 (n = 25) | 7.88 (n = 25) | 3.08 (n = 25) | 8.73 (n = 24) |
Placebo group | 8.21 (n = 24) | 9.10 (n = 23) | 11.55 (n = 22) | 4.64 (n = 22) |
Between-group change | −6.65 (−21.69 to 8.40) | −1.22 (−16.37 to 13.93) | −8.47 (−24.24 to 7.31) | 4.09 (−11.80 to 20.00) |
Pain at night (VAS) | ||||
Laser group | 15.96 (n = 25) | 15.60 (n = 25) | 11.84 (n = 25) | 22.23 (n = 24) |
Placebo group | 18.67 (n = 24) | 21.02 (n = 23) | 16.77 (n = 22) | 14.18 (n = 22) |
Between-group change | −2.71 (−19.11 to 13.70) | −5.42 (−21.89 to 11.05) | −4.93 (−25.15 to 15.29) | 8.04 (−12.27 to 28.36) |
Pain globally (KOOS) | ||||
Laser group | 15.00 (n = 25) | 17.45 (n = 25) | 17.45 (n = 25) | 20.54 (n = 24) |
Placebo group | 14.70 (n = 24) | 20.15 (n = 23) | 16.67 (n = 22) | 16.92 (n = 22) |
Between-group change | 0.30 (−9.78 to 10.38) | −2.70 (−12.83 to 7.43) | 0.78 (−12.33 to 13.89) | 3.62 (−9.54 to 16.77) |
Disability in ADL (KOOS) | ||||
Laser group | 13.30 (n = 25) | 15.71 (n = 25) | 13.94 (n = 25) | 18.92 (n = 24) |
Placebo group | 13.86 (n = 24) | 19.41 (n = 23) | 14.30 (n = 22) | 12.64 (n = 22) |
Between-group change | −0.56 (−11.04 to 9.90) | −3.70 (−14.23 to 6.83) | −0.36 (−12.93 to 12.21) | 6.28 (−6.35 to 18.91) |
Disability in sports/rec. (KOOS) | ||||
Laser group | 20.80 (n = 25) | 21.60 (n = 25) | 16.20 (n = 25) | 20.85 (n = 24) |
Placebo group | 9.17 (n = 24) | 15.61 (n = 23) | 9.77 (n = 22) | 8.86 (n = 22) |
Between-group change | 11.63 (−4.09 to 27.36) | 5.99 (−9.83 to 21.81) | 6.43 (−9.33 to 22.18) | 11.99 (−3.84 to 27.82) |
Quality of life (KOOS) | ||||
Laser group | 16.52 (n = 25) | 21.52 (n = 25) | 18.76 (n = 25) | 23.36 (n = 24) |
Placebo group | 9.37 (n = 24) | 16.01 (n = 23) | 19.60 (n = 22) | 16.77 (n = 22) |
Between-group change | 7.15 (−3.10 to 17.40) | 5.51 (−4.81 to 15.83) | −0.84 (−12.33 to 10.64) | 6.59 (−4.96 to 18.14) |
Any analgesic | ||||
Laser group | 6 (24%) (n = 25) | 6 (24%) (n = 25) | 3 (12%) (n = 25) | 6 (27.3%) (n = 22) |
Placebo group | 3 (12.5%) (n = 24) | 4 (16.7%) (n = 24) | −1 (−4.8%) (n = 21) | −3 (−14.3%) (n = 21) |
Between-group change | 3 (p = 0.5947) | 2 (p = 0.7802) | 2 (p = 0.3424) | 9 (p = 0.0127) * |
NSAIDs | ||||
Laser group | 6 (25%) (n = 24) | 5 (20.8%) (n = 24) | 4 (16%) (n = 25) | 5 (22.7%) (n = 22) |
Placebo group | 3 (13.0%) (n = 23) | 3 (13.0%) (n = 23) | 2 (9.5%) (n = 21) | −2 (−9.5%) (n = 21) |
Between-group change | 3 (p = 0.3394) | 2 (p = 0.4514) | 2 (p = 0.5868) | 7 (p = 0.0234) * |
Variables | Weeks 0–3 | Weeks 0–8 | Weeks 0–26 | Weeks 0–52 |
---|---|---|---|---|
Knee flexion AROM (degrees) | ||||
Laser group | 1.76 (n = 25) | 2.72 (n = 25) | 3.48 (n = 25) | 2.15 (n = 22) |
Placebo group | 1.77 (n = 24) | 2.85 (n = 24) | 1.65 (n = 21) | 1.52 (n = 21) |
Between-group change | −0.01 (−3.80 to 3.78) | −0.13 (−3.93 to 3.66) | 1.83 (−2.39 to 6.05) | 0.63 (−3.67 to 4.92) |
30 s chair stands | ||||
Laser group | 2.16 (n = 25) | 4.08 (n = 25) | 4.92 (n = 25) | 5.67 (n = 21) |
Placebo group | 1.71 (n = 24) | 3.29 (n = 24) | 2.90 (n = 21) | 3.15 (n = 21) |
Between-group change | 0.45 (−1.14 to 2.04) | 0.79 (−0.80 to 2.38) | 2.02 (−0.41 to 4.45) | 2.52 (0.04 to 5.02) * |
Joint line PPT (newton) | ||||
Laser group | −4.01 (n = 25) | −3.66 (n = 25) | 3.44 (n = 25) | 2.82 (n = 22) |
Placebo group | 0.56 (n = 24) | 9.60 (n = 24) | 11.25 (n = 21) | 10.56 (n = 21) |
Between-group change | −4.57 (6.49 to −15.61) | −13.26 (−24.31 to −2.20) * | −7.81 (−20.88 to 5.26) | −7.74 (−21.11 to 5.62) |
Tibial condyle PPT (newton) | ||||
Laser group | −2.80 (n = 25) | −0.19 (n = 25) | 4.30 (n = 25) | 3.27 (n = 22) |
Placebo group | −3.41 (n = 24) | 5.06 (n = 24) | 2.93 (n = 21) | 3.70 (n = 21) |
Between-group change | 0.61 (−8.91 to 10.12) | −5.25 (−14.76 to 4.27) | 1.37 (−9.86 to 12.62) | −0.43 (−11.92 to 11.05) |
Variables | Weeks 0–3 | Weeks 0–8 | Weeks 0–26 | Weeks 0–52 |
---|---|---|---|---|
Suprapatellar effusion (mm) | ||||
Laser group | −0.526 (n = 23) | −0.029 (n = 23) | 0.658 (n = 23) | −0.119 (n = 21) |
Placebo group | 0.196 (n = 24) | 0.331 (n = 23) | 0.675 (n = 21) | 0.563 (n = 21) |
Between-group change | −0.722 (−3.106 to 1.662) | −0.360 (−2.756 to 2.036) | −0.017 (−2.204 to 2.169) | −0.682 (−2.897 to 1.531) |
Meniscal Doppler (mm2) | ||||
Laser group | 0.145 (n = 17) | 0.140 (n = 20) | 0.010 (n = 13) | 0.391 (n = 9) |
Placebo group | 0.565 (n = 15) | −0.783 (n = 18) | −0.496 (n = 16) | 1.327 (n = 11) |
Between-group change | −0.42 (−3.321 to 2.480) | 0.923 (−1.786 to 3.632) | 0.506 (−2.490 to 3.502) | −0.936 (−4.542 to 2.670) |
Cartilage thickness (mm) | ||||
Laser group | −0.099 (n = 23) | −0.095 (n = 23) | −0.093 (n = 22) | 0.037 (n = 18) |
Placebo group | −0.040 (n = 23) | 0.041 (n = 22) | 0.023 (n = 21) | −0.015 (n = 21) |
Between-group change | −0.059 (−0.297 to 0.178) | −0.136 (−0.375 to 0.104) | −0.116 (−0.425 to 0.193) | 0.052 (−0.269 to 0.374) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stausholm, M.B.; Naterstad, I.F.; Alfredo, P.P.; Couppé, C.; Fersum, K.V.; Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Joensen, J.; Bjordal, J.M. Short- and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial. J. Clin. Med. 2022, 11, 3446. https://doi.org/10.3390/jcm11123446
Stausholm MB, Naterstad IF, Alfredo PP, Couppé C, Fersum KV, Leal-Junior ECP, Lopes-Martins RÁB, Joensen J, Bjordal JM. Short- and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial. Journal of Clinical Medicine. 2022; 11(12):3446. https://doi.org/10.3390/jcm11123446
Chicago/Turabian StyleStausholm, Martin Bjørn, Ingvill Fjell Naterstad, Patricia Pereira Alfredo, Christian Couppé, Kjartan Vibe Fersum, Ernesto Cesar Pinto Leal-Junior, Rodrigo Álvaro Brandão Lopes-Martins, Jon Joensen, and Jan Magnus Bjordal. 2022. "Short- and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial" Journal of Clinical Medicine 11, no. 12: 3446. https://doi.org/10.3390/jcm11123446
APA StyleStausholm, M. B., Naterstad, I. F., Alfredo, P. P., Couppé, C., Fersum, K. V., Leal-Junior, E. C. P., Lopes-Martins, R. Á. B., Joensen, J., & Bjordal, J. M. (2022). Short- and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial. Journal of Clinical Medicine, 11(12), 3446. https://doi.org/10.3390/jcm11123446