Deep Learning-Based Muscle Segmentation and Quantification of Full-Leg Plain Radiograph for Sarcopenia Screening in Patients Undergoing Total Knee Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Acquisition
2.3. Model
2.3.1. Data Preprocessing
2.3.2. Model Architecture
2.3.3. Network Training
2.3.4. Model Performance Evaluation
2.3.5. Muscle Volume Estimation
2.3.6. Machine Learning Model for Sarcopenia Prediction
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, M.J.; Kim, S.H.; Kang, Y.G.; Chang, C.B.; Kim, T.K. Activity levels and participation in physical activities by Korean patients following total knee arthroplasty. BMC Musculoskelet. Disord. 2014, 15, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canovas, F.; Dagneaux, L. Quality of life after total knee arthroplasty. Orthop. Traumatol. Surg. Res. 2018, 104, S41–S46. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Jo, C.; Chang, C.B.; Lee, Y.S.; Moon, Y.W.; Youm, J.W.; Han, H.S.; Lee, M.C.; Lee, H.; Ro, D.H. A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Ko, S.; Shin, W.C.; Han, H.S.; Lee, M.C.; Ko, T.; Ro, D.H. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Pannu, T.S.; Villa, J.M.; Cohen, E.M.; Hayda, R.A.; Higuera, C.A.; Deren, M.E. Periprosthetic Tibial Fractures After Total Knee Arthroplasty: Early and Long-Term Clinical Outcomes. J. Arthroplast. 2021, 36, 1429–1436. [Google Scholar] [CrossRef]
- Martinez-Pastor, J.C.; Macule-Beneyto, F.; Suso-Vergara, S. Acute infection in total knee arthroplasty: Diagnosis and treatment. Open Orthop. J. 2013, 7, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Blanco, J.F.; Diaz, A.; Melchor, F.R.; da Casa, C.; Pescador, D. Risk factors for periprosthetic joint infection after total knee arthroplasty. Arch. Orthop. Trauma Surg. 2020, 140, 239–245. [Google Scholar] [CrossRef]
- Poultsides, L.A.; Triantafyllopoulos, G.K.; Sakellariou, V.I.; Memtsoudis, S.G.; Sculco, T.P. Infection risk assessment in patients undergoing primary total knee arthroplasty. Int. Orthop. 2018, 42, 87–94. [Google Scholar] [CrossRef]
- Ebraheim, N.A.; Kelley, L.H.; Liu, X.; Thomas, I.S.; Steiner, R.B.; Liu, J. Periprosthetic Distal Femur Fracture after Total Knee Arthroplasty: A Systematic Review. Orthop. Surg. 2015, 7, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Delmonico, M.J.; Beck, D.T. The Current Understanding of Sarcopenia: Emerging Tools and Interventional Possibilities. Am. J. Lifestyle Med. 2017, 11, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.J.; Campiti, V.J.; Alwani, M.; Novinger, L.J.; Tucker, B.J.; Bonetto, A.; Yesensky, J.A.; Sim, M.W.; Moore, M.G.; Mantravadi, A.V. Sarcopenia is associated with blood transfusions in head and neck cancer free flap surgery. Laryngoscope Investig. Otolaryngol. 2021, 6, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Marasco, G.; Dajti, E.; Serenari, M.; Alemanni, L.V.; Ravaioli, F.; Ravaioli, M.; Vestito, A.; Vara, G.; Festi, D.; Golfieri, R.; et al. Sarcopenia Predicts Major Complications after Resection for Primary Hepatocellular Carcinoma in Compensated Cirrhosis. Cancers 2022, 14, 1935. [Google Scholar] [CrossRef] [PubMed]
- Bokshan, S.L.; Han, A.L.; DePasse, J.M.; Eltorai, A.E.; Marcaccio, S.E.; Palumbo, M.A.; Daniels, A.H. Effect of Sarcopenia on Postoperative Morbidity and Mortality After Thoracolumbar Spine Surgery. Orthopedics 2016, 39, e1159–e1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, J.M.; Kalagara, S.; Durand, W.; Antoci, V.; Deren, M.E.; Cohen, E. Sarcopenia as a Risk Factor for Prosthetic Infection After Total Hip or Knee Arthroplasty. J. Arthroplast. 2019, 34, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakomkin, N.; Zuckerman, S.L.; Stannard, B.; Montejo, J.; Sussman, E.S.; Virojanapa, J.; Kuzmik, G.; Goz, V.; Hadjipanayis, C.G.; Cheng, J.S. Preoperative Risk Stratification in Spine Tumor Surgery: A Comparison of the Modified Charlson Index, Frailty Index, and ASA Score. Spine 2019, 44, E782–E787. [Google Scholar] [CrossRef]
- Ardeljan, A.D.; Polisetty, T.S.; Palmer, J.; Vakharia, R.M.; Roche, M.W. Comparative Analysis on the Effects of Sarcopenia following Primary Total Knee Arthroplasty: A Retrospective Matched-Control Analysis. J. Knee Surg. 2022, 35, 128–134. [Google Scholar] [CrossRef]
- Ho, K.K.; Lau, L.C.; Chau, W.W.; Poon, Q.; Chung, K.Y.; Wong, R.M. End-stage knee osteoarthritis with and without sarcopenia and the effect of knee arthroplasty—A prospective cohort study. BMC Geriatr. 2021, 21, 2. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, X.; Xie, L.; Han, Z.; Zuo, Y.; Yang, M. The Prevalence of Sarcopenia in Chinese Elderly Nursing Home Residents: A Comparison of 4 Diagnostic Criteria. J. Am. Med. Dir. Assoc. 2018, 19, 690–695. [Google Scholar] [CrossRef]
- Nishioka, S.; Yamanouchi, A.; Matsushita, T.; Nishioka, E.; Mori, N.; Taguchi, S. Validity of calf circumference for estimating skeletal muscle mass for Asian patients after stroke. Nutrition 2021, 82, 111028. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tseng, W.C.; Yang, Y.H.; Chen, C.L.; Lin, L.L.; Chen, F.P.; Wong, A.M.K. Calf Circumference as an Optimal Choice of Four Screening Tools for Sarcopenia Among Ethnic Chinese Older Adults in Assisted Living. Clin. Interv. Aging 2020, 15, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Zhang, Y.; Wang, Y.Y.; Ren, C.X.; Xu, J.; Zhang, X.Y. Low calf circumference is associated with frailty in diabetic adults aged over 80 years. BMC Geriatr. 2020, 20, 414. [Google Scholar] [CrossRef] [PubMed]
- Endo, K.; Sato, T.; Kakisaka, K.; Takikawa, Y. Calf and arm circumference as simple markers for screening sarcopenia in patients with chronic liver disease. Hepatol. Res. 2021, 51, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Bahat, G.; Erdogan, T.; Ilhan, B. SARC-F and other screening tests for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 37–42. [Google Scholar] [CrossRef]
- Voelker, S.N.; Michalopoulos, N.; Maier, A.B.; Reijnierse, E.M. Reliability and Concurrent Validity of the SARC-F and Its Modified Versions: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2021, 22, 1864–1876.e16. [Google Scholar] [CrossRef]
- Gomez-Perez, S.L.; Haus, J.M.; Sheean, P.; Patel, B.; Mar, W.; Chaudhry, V.; McKeever, L.; Braunschweig, C. Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ. J. Parenter. Enteral. Nutr. 2016, 40, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Beaudart, C.; McCloskey, E.; Bruyere, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertiere, M.C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef]
- Rossi, A.P.; Fantin, F.; Micciolo, R.; Bertocchi, M.; Bertassello, P.; Zanandrea, V.; Zivelonghi, A.; Bissoli, L.; Zamboni, M. Identifying sarcopenia in acute care setting patients. J. Am. Med. Dir. Assoc. 2014, 15, 303.e7–303.e12. [Google Scholar] [CrossRef]
- Albano, D.; Messina, C.; Vitale, J.; Sconfienza, L.M. Imaging of sarcopenia: Old evidence and new insights. Eur. Radiol. 2020, 30, 2199–2208. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Heymsfield, S.B. Bioelectrical impedance analysis in the assessment of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Aleixo, G.F.P.; Shachar, S.S.; Nyrop, K.A.; Muss, H.B.; Battaglini, C.L.; Williams, G.R. Bioelectrical Impedance Analysis for the Assessment of Sarcopenia in Patients with Cancer: A Systematic Review. Oncologist 2020, 25, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Gopal Krishna Patro, S.; Sahu, K.K. Normalization: A Preprocessing Stage. arXiv 2015, arXiv:1503.06462. Available online: https://ui.adsabs.harvard.edu/abs/2015arXiv150306462G (accessed on 15 February 2022).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507. Available online: https://ui.adsabs.harvard.edu/abs/2017arXiv170901507H (accessed on 11 January 2022).
- Wu, Y.; He, K. Group Normalization. arXiv 2018, arXiv:1803.08494. Available online: https://ui.adsabs.harvard.edu/abs/2018arXiv180308494W (accessed on 12 January 2022).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K (accessed on 19 June 2022).
- Yu, J.; Blaschko, M. The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses. arXiv 2015, arXiv:1512.07797. Available online: https://ui.adsabs.harvard.edu/abs/2015arXiv151207797Y (accessed on 18 February 2022). [CrossRef] [Green Version]
- Csurka, G.; Larlus, D.; Perronnin, F. What is a good evaluation measure for semantic segmentation? In Proceedings of the British Machine Vision Conference 2013, Bristol, UK, 9–13 September 2013. [Google Scholar]
- Berman, M.; Rannen Triki, A.; Blaschko, M.B. The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. arXiv 2017, arXiv:1705.08790. Available online: https://ui.adsabs.harvard.edu/abs/2017arXiv170508790B (accessed on 19 February 2022).
- Wang, C.; Jin, C.; Yin, X.; Liu, J.; Liu, J. Relationship between serum bilirubin concentration and sarcopenia in patients with type 2 diabetes: A cross-sectional study. J. Int. Med. Res. 2021, 49, 1–9. [Google Scholar] [CrossRef]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marin-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Gray, S.R.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Biomarkers Profile of People With Sarcopenia: A Cross-sectional Analysis From UK Biobank. J. Am. Med. Dir. Assoc. 2020, 21, 2017.e1–2017.e9. [Google Scholar] [CrossRef] [PubMed]
- Fralick, M.; Colak, E.; Mamdani, M. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 2588–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Wang, J.; Ao, W.; He, Y. SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine. Comput. Intell. Neurosci. 2018, 2018, 4058403. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dai, Y.; Shen, J.; Xuan, J. Research on expansion and classification of imbalanced data based on SMOTE algorithm. Sci. Rep. 2021, 11, 24039. [Google Scholar] [CrossRef]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Low Hemoglobin Levels are Associated with Sarcopenia, Dysphagia, and Adverse Rehabilitation Outcomes After Stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 105405. [Google Scholar] [CrossRef]
- Zhou, J.; Li, T.; Chen, X.; Wang, M.; Jiang, W.; Jia, H. Comparison of the Diagnostic Value of SARC-F and Its Three Modified Versions for Screening Sarcopenia in Chinese Community-Dwelling Older Adults. J. Nutr. Health Aging 2022, 26, 77–83. [Google Scholar] [CrossRef]
- Hanada, M.; Sakamoto, N.; Ishimoto, H.; Kido, T.; Miyamura, T.; Oikawa, M.; Nagura, H.; Takeuchi, R.; Kawazoe, Y.; Sato, S.; et al. A comparative study of the sarcopenia screening in older patients with interstitial lung disease. BMC Pulm. Med. 2022, 22, 45. [Google Scholar] [CrossRef]
- Ciaffi, J.; Gigliotti, P.E.; Festuccia, G.; Borlandelli, E.; Facchini, G.; Chiaravalloti, A.; Miceli, M.; Meliconi, R.; Ursini, F. Can chest imaging be used to draw information about body mass index and obesity status? Obes. Res. Clin. Pract. 2021, 15, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Williams, A.G.; He, L.; Stebbings, G.K.; Onambele-Pearson, G.L.; Thomis, M.; Degens, H.; Morse, C.I. Sarcopenia, Obesity, and Sarcopenic Obesity: Relationship with Skeletal Muscle Phenotypes and Single Nucleotide Polymorphisms. J. Clin. Med. 2021, 10, 4933. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Sarcopenia: Diagnosis and treatment. J. Nutr. Health Aging 2008, 12, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Argiles, J.M.; Evans, W.J.; Bhasin, S.; Cella, D.; Deutz, N.E.; Doehner, W.; Fearon, K.C.; Ferrucci, L.; Hellerstein, M.K.; et al. Nutritional recommendations for the management of sarcopenia. J. Am. Med. Dir. Assoc. 2010, 11, 391–396. [Google Scholar] [CrossRef] [Green Version]
Total Population (n = 403) | |||
---|---|---|---|
Sarcopenia | |||
Characteristics | Yes (n = 34) | No (n = 369) | p-Value |
Sex (%) | |||
Female | 32 (94.1) | 319 (86.4) | 0.266 |
Male | 2 (5.9) | 50 (13.6) | |
Age (SD) | 74.6 (6.5) | 70.5 (6.5) | <0.001 |
BMI, kg/m2 (SD) | 23.9 (3.4) | 26.7 (3.2) | <0.001 |
Total Protein, mg/dL (SD) | 6.7 (0.4) | 7.1 (0.4) | <0.001 |
Albumin, g/dL (SD) | 4.1 (0.3) | 4.2 (0.4) | 0.194 |
Hemoglobin, g/dL (SD) | 12.3 (1.2) | 13.1 (1.8) | 0.004 |
Total Bilirubin, mg/dL (SD) | 0.6 (0.3) | 0.6 (0.2) | 0.946 |
SMI, kg/m2 (SD) | 5.5 (0.6) | 7.4 (1.1) | <0.001 |
PMV, cm3 (SD) | 6972.4 (1354.6) | 8418.4 (1634.8) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, D.; Ahn, S.; Park, Y.-B.; Kim, S.H.; Han, H.-S.; Lee, M.C.; Ro, D.H. Deep Learning-Based Muscle Segmentation and Quantification of Full-Leg Plain Radiograph for Sarcopenia Screening in Patients Undergoing Total Knee Arthroplasty. J. Clin. Med. 2022, 11, 3612. https://doi.org/10.3390/jcm11133612
Hwang D, Ahn S, Park Y-B, Kim SH, Han H-S, Lee MC, Ro DH. Deep Learning-Based Muscle Segmentation and Quantification of Full-Leg Plain Radiograph for Sarcopenia Screening in Patients Undergoing Total Knee Arthroplasty. Journal of Clinical Medicine. 2022; 11(13):3612. https://doi.org/10.3390/jcm11133612
Chicago/Turabian StyleHwang, Doohyun, Sungho Ahn, Yong-Beom Park, Seong Hwan Kim, Hyuk-Soo Han, Myung Chul Lee, and Du Hyun Ro. 2022. "Deep Learning-Based Muscle Segmentation and Quantification of Full-Leg Plain Radiograph for Sarcopenia Screening in Patients Undergoing Total Knee Arthroplasty" Journal of Clinical Medicine 11, no. 13: 3612. https://doi.org/10.3390/jcm11133612
APA StyleHwang, D., Ahn, S., Park, Y.-B., Kim, S. H., Han, H.-S., Lee, M. C., & Ro, D. H. (2022). Deep Learning-Based Muscle Segmentation and Quantification of Full-Leg Plain Radiograph for Sarcopenia Screening in Patients Undergoing Total Knee Arthroplasty. Journal of Clinical Medicine, 11(13), 3612. https://doi.org/10.3390/jcm11133612