Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study
Abstract
:1. Introduction
2. Patients and Methods
Patients
3. Targeted Panel and Whole-Exome Sequencing
3.1. Targeted Exome Sequencing
3.2. Whole-Exome Sequencing
4. Standard Protocol Approval, Registration, and Patient Consent
5. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clayton, P.E.; Cianfarani, S.; Czernichow, P.; Johnnsson, G.; Rapaport, R.; Rogol, A. Management of the child born small for gestational age through to adulthood: A consensus statement of the international societies of pedatric endocrinology and the growth hormone research society. J. Clin. Endocrinol. Metab. 2007, 92, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.A.; Chernausek, S.D.; Hokken-Koelega, A.C.; Czernichow, P. International small for gestational age advisory board consensus development conference statement: Management of short children born small for gestational age. Pediatrics 2003, 111, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Finken, M.J.J.; van der Steen, M.; Smeets, C.C.J.; Walenkamp, M.J.E.; de Bruin, C.; Hokken-Koelega, A.C.S.; Wit, J.M. Children born small for gestational age: Differential diagnosis, molecular genetic evaluation, and implications. Endocr. Rev. 2018, 39, 851–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalkunte, S.; Padbury, J.F.; Sharmav, S. Immunologi basis of placental function and disease: The placenta, fetal membranes, and umbilical cord. In Avery’s Disease of the Newborn, 9th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 37–50. [Google Scholar]
- McCowan, L.; Horgan, R.P. Risk factors for small for gestational age infants. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Lunde, A.; Melve, K.K.; Gjessing, H.K.; Skjaerven, R.; Irgens, L.M. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am. J. Epidemiol. 2007, 165, 734–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodsky, D.; Christou, H. Current concepts in intrauterine growth restriction. J. Intensive Care Med. 2004, 19, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Borrell, A.; Grande, M.; Pauta, M.; Rodriguez-Revenga, L.; Figueras, F. Chromosomal microarray analysis in fetuses with growth restriction and normal karyotype: A systematic review and meta-analysis. Fetal Diagn. Ther. 2018, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.E.; Ishida, M.; Demetriou, C.; Al-Olabi, L.; Leon, L.J.; Thomas, A.C.; Abu-Amero, S.; Frost, J.M.; Stafford, J.L.; Chaoqun, Y.; et al. The role and interaction of imprinted genes in human fetal growth. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2015, 370, 20140074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wit, J.M.; Oostdijk, W.; Losekoot, M.; van Duyvenvoorde, H.A.; Ruivenkamp, C.A.; Kant, S.G. Mechanisms in endocrinology: Novel genetic causes of short stature. Eur. J. Endocrinol. 2016, 174, R145–R173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struwe, E.; Berzl, G.M.; Schild, R.L. Simultaneously reduced gene expression of cortisol-activating and cortisol-inactivating enzymes in placentas of small for gestational age neonates. Am. J. Obstet. Gynecol. 2007, 197, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Freire, B.L.; Homma, T.K.; Funari, M.F.A.; Lerario, A.M.; Vasques, G.A.; Malaquias, A.C.; Arnhold, I.J.P.; Jorge, A.A.L. Multigene sequencing analysis of children born small for gestational age with isolated short stature. J. Clin. Endocrinol. Metab. 2019, 104, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- Committee on Practice Bulletins—Gynecology, American College of Obstetricians and Gynecologists. Intrauterine growth restriction. Clinical management guidelines for obstetrician-gynecologists. Int. J. Gynaecol. Obstet. 2001, 72, 85–96. [Google Scholar] [CrossRef]
- Lee, C.; Iafrate, A.J.; Brothman, A.R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat. Genet. 2007, 39 (Suppl. 7), S48–S54. [Google Scholar] [CrossRef] [PubMed]
- Canton, A.P.; Costa, S.S.; Rodrigues, T.C.; Bertola, D.R.; Malaquias, A.C.; Correa, F.A.; Arnhold, I.J.; Rosenberg, C.; Jorge, A.A. Genome-wide screening of copy number variants in children born small for gestational age reveals several candidate genes involved in growth pathways. Eur. J. Endocrinol. 2014, 171, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Lin, S.; Huang, L.; He, Z.; Huang, X.; Zhou, Y.; Fang, Q.; Luo, Y. Application of chromosomal microarray analysis in prenatal diagnosis of fetal growth restriction. Prenat. Diagn. 2016, 36, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Stalman, S.E.; Solanky, N.; Ishida, M.; Alemán-Charlet, C.; Abu-Amero, S.; Alders, M.; Alvizi, L.; Baird, W.; Demetriou, C.; Henneman, P.; et al. Genetic analyses in Small-for-Gestational-Age Newborns. J. Clin. Endocrinol. Metab. 2018, 103, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Jullien, N.; Romanet, P.; Philippon, M.; Quentien, M.H.; Beck-Peccoz, P.; Bergada, I.; Odent, S.; Reynaud, R.; Barlier, A.; Saveanu, A.; et al. Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. Eur. J. Hum. Genet. 2018, 27, 216–225. [Google Scholar] [CrossRef]
- Bonfig, W.; Krude, H.; Schmidt, H. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-A case report and review of the literature. Eur. J. Pediatr. 2011, 170, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Smol, T.; Petit, F.; Piton, A.; Keren, B.; Sanlaville, D.; Afenjar, A.; Baker, S.; Bedoukian, E.C.; Bhoj, E.J.; Bonneau, D.; et al. MED13L-related intellectual disability: Involvement of missense variants and delineation of the phenotype. Neurogenetics 2018, 19, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Pei, Y.; Yin, C.; Jiang, Y.; Wang, J.; Li, X.; Li, L.; Kagan, K.O.; Wu, Q. Subchromosomal anomalies in small for gestational-age fetuses and newborns. Matern. Fetal Med. 2019, 300, 633–639. [Google Scholar] [CrossRef] [PubMed]
Sex | Delivery | GA | BW | Percentile of BW | Length | Percentile of Length | HC | Percentile of HC | Ponderal Index | Type of SGA | |
---|---|---|---|---|---|---|---|---|---|---|---|
SGA 1 | F | C/S | 34 + 4 | 1093 | 3 | 36.5 | 10 | 28 | 10 | 2.25 | Asymmetric |
SGA 2 | F | C/S | 35 + 6 | 1455 | 0 | 42 | 5 | 27.5 | 0 | 1.96 | Symmetric |
SGA 3 | F | C/S | 35 + 5 | 1795 | 3 | 41.5 | 4 | 30.5 | 15 | 2.5 | Asymmetric |
SGA 4 | F | C/S | 39 + 0 | 2600 | 5 | 47 | 8 | 32 | 4 | 2.5 | Symmetric |
SGA 5 | F | C/S | 37 + 1 | 2280 | 8 | 46 | 25 | 31.5 | 14 | 2.34 | Asymmetric |
SGA 6 | M | C/S | 34 + 1 | 890 | 0 | 34.5 | 0 | 27.5 | 1 | 2.17 | Symmetric |
SGA 7 | M | C/S | 33 + 4 | 1314 | 1 | 38 | 1 | 28 | 1 | 2.36 | Symmetric |
SGA 8 | F | NSVD | 37 + 0 | 1960 | 2 | 44 | 8 | 31.5 | 16 | 2.3 | Asymmetric |
SGA 9 | M | C/S | 34 + 5 | 1764 | 6 | 41 | 3 | 30.5 | 21 | 2.56 | Asymmetric |
SGA 10 | M | C/S | 35 + 0 | 1643 | 2 | 41.5 | 4 | 30.3 | 14 | 2.3 | Asymmetric |
SGA 11 | F | C/S | 37 + 0 | 2110 | 4 | 41 | 0 | 31.5 | 16 | 3.06 | Asymmetric |
SGA 12 | F | C/S | 35 + 4 | 1160 | 0 | 35 | 0 | 26.5 | 0 | 2.7 | Symmetric |
SGA 13 | F | C/S | 35 + 5 | 1950 | 8 | 45 | 33 | 30 | 8 | 2.14 | Symmetric |
SGA 14 | M | C/S | 32 + 2 | 1093 | 3 | 36 | 1 | 27 | 4 | 2.34 | Symmetric |
SGA 15 | F | C/S | 32 + 4 | 1249 | 0 | 35.5 | 0 | 26.5 | 0 | 2.79 | Symmetric |
SGA 16 | F | C/S | 30 + 4 | 790 | 3 | 34 | 2 | 23.5 | 0 | 2.0 | Symmetric |
SGA 17 | M | NVSD | 37 + 1 | 2360 | 8 | 44 | 3 | 32.5 | 29 | 2.77 | Asymmetric |
SGA 18 | M | NSVD | 41 + 2 | 2700 | 1 | 48 | 3 | 33 | 3 | 2.44 | Symmetric |
SGA 19 | F | C/S | 34 + 1 | 1510 | 5 | 40 | 6 | 27.5 | 1 | 2.36 | Symmetric |
SGA 20 | F | C/S | 37 + 6 | 2290 | 4 | 44 | 3 | 31 | 4 | 2.7 | Symmetric |
SGA 21 | F | C/S | 37 + 0 | 2110 | 4 | 41 | 0 | 31.5 | 16 | 3.06 | Asymmetric |
Method of Detection | Gene | cDNA Change | Protein Change | Classification | Related Disease or Gene/OMIM Disease | |
---|---|---|---|---|---|---|
SGA 5 | TES | CDT1 | c.366G > T | p.Glu1224Asp | VUS | Meier-Gorlin syndrome |
SGA 6 | TES | LHX3 | c.935G > A | p.Arg312Gln | LPV | Combined pituitary hormone deficiency (CPHD) |
SGA 8 | TES | PCNT PCNT | c.3167G > A c.5543A > G | p.Gly1056Asp p.Glu1848Gly | VUS VUS | Microcephalic osteodysplastic primordial dwarfism Microcephalic osteodysplastic primordial dwarfism |
SGA 12 | TES | KMT2D PCNT | c.6548A > G c.5647C > T | p.Tyr2183Cys p.Arg1883Trp | VUS VUS | Kabuki syndrome Microcephalic osteodysplastic primordal dwarfism |
SGA 13 | WES | FLNB | c.5959A > C | p.Asn1987His | VUS | Atelosteogenesis, boomerang dsyplasia, Larsen syndrome |
SGA 16 | WES | TLK2 | c.31C > T | p.Arg11Ter | LPV | Mental retardation, autosomal dominant 57 |
SGA 18 | WES | MED13L | c.5698C > T | p.Arg1900Ter | PV | MED13L syndrome |
SGA 20 | WES | OBLS1 | c.2810_2812del | p.Glu937del | VUS | 3-M syndrome |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-J.; Lee, N.; Jeong, S.-H.; Jeong, M.-H.; Byun, S.-Y.; Park, K.-H. Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study. J. Clin. Med. 2022, 11, 3710. https://doi.org/10.3390/jcm11133710
Park S-J, Lee N, Jeong S-H, Jeong M-H, Byun S-Y, Park K-H. Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study. Journal of Clinical Medicine. 2022; 11(13):3710. https://doi.org/10.3390/jcm11133710
Chicago/Turabian StylePark, Su-Jung, Narae Lee, Seong-Hee Jeong, Mun-Hui Jeong, Shin-Yun Byun, and Kyung-Hee Park. 2022. "Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study" Journal of Clinical Medicine 11, no. 13: 3710. https://doi.org/10.3390/jcm11133710
APA StylePark, S.-J., Lee, N., Jeong, S.-H., Jeong, M.-H., Byun, S.-Y., & Park, K.-H. (2022). Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study. Journal of Clinical Medicine, 11(13), 3710. https://doi.org/10.3390/jcm11133710