BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL—A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Assessments and Definitions
2.3. Treatment
3. Results
3.1. Patients
3.2. Pola-BeEAM High-Dose Treatment
3.3. Hematologic Recovery
3.4. Infections during Hospitalization
3.5. Non-Hematologic Toxicities
3.6. Outcome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sehn, L.H.; Donaldson, J.; Chhanabhai, M.; Fitzgerald, C.; Gill, K.; Klasa, R.; MacPherson, N.; O’Reilly, S.; Spinelli, J.J.; Sutherland, J.; et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J. Clin. Oncol. 2005, 23, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.P. Treatment challenges in the management of relapsed or refractory non-Hodgkin’s lymphoma—Novel and emerging therapies. Cancer Manag. Res. 2013, 5, 251–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansell, S.M.; Armitage, J. Non-Hodgkin lymphoma: Diagnosis and treatment. Mayo Clin. Proc. 2005, 80, 1087–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seshadri, T.; Kuruvilla, J.; Crump, M.; Keating, A. Salvage therapy for relapsed/refractory diffuse large B cell lymphoma. Biol. Blood Marrow Transplant. 2008, 14, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Shankland, K.R.; Armitage, J.O.; Hancock, B.W. Non-Hodgkin lymphoma. Lancet 2012, 380, 848–857. [Google Scholar] [CrossRef]
- Smith, S.D.; Bolwell, B.J.; Rybicki, L.A.; Kang, T.; Dean, R.; Advani, A.; Thakkar, S.; Sobecks, R.; Kalaycio, M.; Pohlman, B.; et al. Comparison of outcomes after auto-SCT for patients with relapsed diffuse large B-cell lymphoma according to previous therapy with rituximab. Bone Marrow Transplant. 2011, 46, 262–266. [Google Scholar] [CrossRef]
- Mills, W.; Chopra, R.; McMillan, A.; Pearce, R.; Linch, D.C.; Goldstone, A.H. BEAM chemotherapy and autologous bone marrow transplantation for patients with relapsed or refractory non-Hodgkin’s lymphoma. J. Clin. Oncol. 1995, 13, 588–595. [Google Scholar] [CrossRef]
- Schouten, H.C.; Qian, W.; Kvaloy, S.; Porcellini, A.; Hagberg, H.; Johnsen, H.E.; Doorduijn, J.K.; Sydes, M.R.; Kvalheim, G. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin’s lymphoma: Results from the randomized European CUP trial. J. Clin. Oncol. 2003, 21, 3918–3927. [Google Scholar] [CrossRef]
- Philip, T.; Guglielmi, C.; Hagenbeek, A.; Somers, R.; Van der Lelie, H.; Bron, D.; Sonneveld, P.; Gisselbrecht, C.; Cahn, J.Y.; Harousseau, J.L.; et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1995, 333, 1540–1545. [Google Scholar] [CrossRef]
- Colita, A.; Colita, A.; Bumbea, H.; Croitoru, A.; Orban, C.; Lipan, L.E.; Craciun, O.G.; Soare, D.; Ghimici, C.; Manolache, R.; et al. LEAM vs. BEAM vs. CLV Conditioning Regimen for Autologous Stem Cell Transplantation in Malignant Lymphomas. Retrospective Comparison of Toxicity and Efficacy on 222 Patients in the First 100 Days after Transplant, On Behalf of the Romanian Society for Bone Marrow Transplantation. Front. Oncol. 2019, 9, 892. [Google Scholar] [CrossRef]
- Hahn, L.; Lim, H.; Dusyk, T.; Sabry, W.; Elemary, M.; Stakiw, J.; Danyluk, P.; Bosch, M. BeEAM conditioning regimen is a safe, efficacious and economical alternative to BEAM chemotherapy. Sci. Rep. 2021, 11, 14071. [Google Scholar] [CrossRef] [PubMed]
- Gilli, S.; Novak, U.; Taleghani, B.M.; Baerlocher, G.M.; Leibundgut, K.; Banz, Y.; Zander, T.; Betticher, D.; Egger, T.; Rauch, D.; et al. BeEAM conditioning with bendamustine-replacing BCNU before autologous transplantation is safe and effective in lymphoma patients. Ann. Hematol. 2017, 96, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Chantepie, S.P.; Garciaz, S.; Tchernonog, E.; Peyrade, F.; Larcher, M.V.; Diouf, M.; Fornecker, L.M.; Houot, R.; Gastinne, T.; Soussain, C.; et al. Bendamustine-based conditioning prior to autologous stem cell transplantation (ASCT): Results of a French multicenter study of 474 patients from LYmphoma Study Association (LYSA) centers. Am. J. Hematol. 2018, 93, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Roschewski, M.; Longo, D.L.; Wilson, W.H. CAR T-Cell Therapy for Large B-Cell Lymphoma—Who, When, and How? N. Engl. J. Med. 2021, 386, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 386, 640–654. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2021, 386, 629–639. [Google Scholar] [CrossRef]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef]
- Nydegger, A.; Novak, U.; Kronig, M.N.; Legros, M.; Zeerleder, S.; Banz, Y.; Bacher, U.; Pabst, T. Transformed Lymphoma Is Associated with a Favorable Response to CAR-T-Cell Treatment in DLBCL Patients. Cancers 2021, 13, 6073. [Google Scholar] [CrossRef]
- Choi, Y.; Diefenbach, C.S. Polatuzumab Vedotin: A New Target for B Cell Malignancies. Curr. Hematol. Malig. Rep. 2020, 15, 125–129. [Google Scholar] [CrossRef]
- Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2020, 38, 155–165. [Google Scholar] [CrossRef]
- Dimou, M.; Papageorgiou, S.G.; Stavroyianni, N.; Katodritou, E.; Tsirogianni, M.; Kalpadakis, C.; Banti, A.; Arapaki, M.; Iliakis, T.; Bouzani, M.; et al. Real-life experience with the combination of polatuzumab vedotin, rituximab, and bendamustine in aggressive B-cell lymphomas. Hematol. Oncol. 2021, 39, 336–348. [Google Scholar] [CrossRef] [PubMed]
- International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Latif, M.F.; Farooq, A.; Tirmazy, S.H.; AlShahrani, S.; Bashir, S.; Bukhari, N. Performance Status Assessment by Using ECOG (Eastern Cooperative Oncology Group) Score for Cancer Patients by Oncology Healthcare Professionals. Case Rep. Oncol. 2019, 12, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Mor, V.; Laliberte, L.; Morris, J.N.; Wiemann, M. The Karnofsky Performance Status Scale. An examination of its reliability and validity in a research setting. Cancer 1984, 53, 2002–2007. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE) v.5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50 (accessed on 18 February 2021).
- Betticher, C.; Bacher, U.; Legros, M.; Zimmerli, S.; Banz, Y.; Mansouri Taleghani, B.; Pabst, T. Prophylactic corticosteroid use prevents engraftment syndrome in patients after autologous stem cell transplantation. Hematol. Oncol. 2021, 39, 97–104. [Google Scholar] [CrossRef]
- Eicher, F.; Mansouri Taleghani, B.; Schild, C.; Bacher, U.; Pabst, T. Reduced survival after autologous stem cell transplantation in myeloma and lymphoma patients with low vitamin D serum levels. Hematol. Oncol. 2020, 38, 523–530. [Google Scholar] [CrossRef]
- Visani, G.; Malerba, L.; Stefani, P.M.; Capria, S.; Galieni, P.; Gaudio, F.; Specchia, G.; Meloni, G.; Gherlinzoni, F.; Giardini, C.; et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood 2011, 118, 3419–3425. [Google Scholar] [CrossRef]
- Saleh, K.; Danu, A.; Koscielny, S.; Legoupil, C.; Pilorge, S.; Castilla-Llorente, C.; Ghez, D.; Lazarovici, J.; Michot, J.; Khalife-Saleh, N.; et al. A retrospective, matched paired analysis comparing bendamustine containing BeEAM versus BEAM conditioning regimen: Results from a single center experience. Leuk. Lymphoma 2017, 59, 2580–2587. [Google Scholar] [CrossRef]
- Prediletto, I.; Farag, S.A.; Bacher, U.; Jeker, B.; Mansouri Taleghani, B.; Brégy, R.; Zander, T.; Betticher, D.; Egger, T.; Novak, U.; et al. High incidence of reversible renal toxicity of dose-intensified bendamustine-based high-dose chemotherapy in lymphoma and myeloma patients. Bone Marrow Transplant. 2019, 54, 1923–1925. [Google Scholar] [CrossRef]
Parameter | Results |
---|---|
Age at first diagnosis, median, year (range) | 61 (37–73) |
Gender, female/male, n (%) | 3/9 (25/75%) |
Histology, n (%) | |
De novo DLBCL | 7/12 (58%) |
Transformed DLBCL | 5/12 (42%) |
from follicular lymphoma | 4/12 (34%) |
from marginal zone lymphoma | 1/12 (8%) |
GCB type | 4/12 (33%) |
ABC type | 8/12 (67%) |
IPI, n (%) | |
2 | 1/12 (8%) |
3 | 4/12 (34%) |
4–5 | 7/12 (58%) |
Bone marrow infiltration, n (%) | 1/12 (8%) |
CNS infiltration, n (%) | 1/12 (8%) |
Bulky disease, n (%) | 4/12 (34%) |
B-symptoms, n (%) | 2/12 (17%) |
Time from first diagnosis to HDCT, median, months (range) | 6 (4–63) |
Previous lines of therapy before HDCT, median, n (range) | 2 (1–5) |
Primary refractory DLBCL | 2/12 (17%) |
PR after first line of therapy | 2/12 (17%) |
CR after first line of therapy | 8/12 (67%) |
Relapsed DLBCL | 2/12 (17%) |
CR duration shorter than one year | 2/12 (17%) |
Previous therapies (n) | |
First line therapy | |
R-CHOP | 9 |
R-DA-EPOCH | 1 |
R-DHAO | 1 |
Ibrutinib | 1 |
Additional radiotherapy, n (%) | 2/12 (17%) |
Second line therapy | |
R-DHAP | 3 |
R-DHAO | 2 |
R-CHOP | 1 |
R-CODOX-M/R-IVAC | 1 |
Additional radiotherapy, n (%) | 1/12 (8%) |
Third line therapy | |
R-GDP | 1 |
Additional radiotherapy, n (%) | 0 |
Remission status prior to HDCT, n (%) | |
CR | 10/12 (83%) |
PR | 2/12 (17%) |
Patient Number | Sex | Age at First Diagnosis | 1st Line of Therapy | RT | Response | 2nd Line of Therapy | RT | Response | 3rd Line of Therapy | Response | Reason for 1st-Line ASCT | Relapse after ASCT | Death after ASCT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4296680 | m | 37 | 6 cycles of R-DA-EPOCH | 1 | PR | 3 × R-DHAP, 3 × MTX | 1 | CR | n.a. | No | No | ||
16007387 | m | 67 | 6 × R-CHOP | CR | Stage IV disease at diagnosis | No | No | ||||||
12784362 | m | 47 | 6 × R-CHOP + 3 × MTX | PR | 2 × R-DHAP, 1 cycle of R-DHAO | PR | n.a. | No | No | ||||
3032167 | m | 73 | 6 × R-CHOP | CR | Stage IV disease at diagnosis | No | No | ||||||
9981667 | m | 63 | 3 × R-CHOP | 1 | CR, followed by relapse | 3 × R-DHAO | CR | n.a. | No | No | |||
16050304 | f | 63 | 6 × R-CHOP | CR | Stage IV disease at diagnosis | No | No | ||||||
3333019 | f | 59 | 6 × R-CHOP | CR, followed by relapse | 3 × R-DHAP | CR | n.a. | No | No | ||||
15919544 | m | 59 | ibrutinib + rituximab | Refractory | 6 × R-CHOP | CR | n.a. | No | No | ||||
9997814 | f | 67 | 6 × R-CHOP | CR | Stage IV disease at diagnosis | Yes | Yes (at day +26) | ||||||
16261933 | m | 62 | 6 × R-CHOP | CR | Stage IV disease at diagnosis | No | No | ||||||
16415060 | m | 60 | 3 × R-DHAO | CR | Stage IV disease at diagnosis | No | No | ||||||
16278372 | m | 59 | 1 × R-CHOP | Refractory | 2 × R-CODOX-M and R-IVAC each | PR | 3 × R-GDP | PR | n.a. | No | No |
Parameter | Results | |
---|---|---|
Apheresis from peripheral blood, n (%) | 12/12 (100%) | |
Pola-BeEAM administered at full dose, n (%) | 12/12 (100%) | |
PV-associated transfusion reactions, n (%) | 0/12 (100%) | |
Transplanted CD34+ cells, median, ×106/kg b.w. (range) | 4.1 (2.6–7.5) | |
Median time to engraftment, days (range) | ||
Tc > 20 G/L | 13 (10–25) | |
Tc > 50 G/L | 19 (13–51) | |
Tc > 100 G/L | 31 (14–51) | |
Neutrophils > 0.5 G/L | 11 (10–13) | |
Neutrophils > 1.0 G/L | 11 (9–12) | |
Lymphocytes > 1.0 G/L | 25 (16–51) | |
Hospitalization, median, days (range) | 23 (20–34) | |
TPN given, n (%) | 11 (92%) | |
Units of erythrocyte transfusions, median, n (range) | 3 (0–10) | |
Units of platelet transfusions, median, n (range) | 6 (2–15) | |
Weight changes, median, kg (range) | −2 (−8; +3) | |
Infections | ||
At least one febrile episode, n (%) | 12/12 (100%) | |
Median number of febrile episodes, n (range) | 2 (1–3) | |
Median days with fever, n (range) | 5 (2–24) | |
Patients with at least one causative identified pathogen, n (%) | 11/12 (92%) | |
Bacterial, n (%) | 10/12 (83%) | |
Patients with gram+ bacteria identified | 9/12 (75%) | |
Patients with gram- bacteria identified | 5/12 (42%) | |
Viral, n (%) | 2/12 (17%) | |
Fungal, n (%) | 1/12 (8%) | |
Antibiotics given, n (%) | 12/12 (100%) | |
Non-hematological toxicities | ||
Patients with toxicities, all grades, n (%) | 12/12 (100%) | |
Patients with >1 toxicity, all grades, n (%) | 12/12 (100%) | |
Patients with grade 3–4 toxicities, n (%) | 10/12 (83%) | |
Grades of toxicities, n | Grade 1–2 | Grade 3–4 |
Mucositis | 8 | 4 |
Diarrhea | 7 | 4 |
Dysphagia | 8 | 1 |
Neutropenic colitis | 7 | 0 |
Acute kidney injury | 0 | 2 |
Gastrointestinal bleeding | 0 | 1 |
Thromboembolic events | 0 | 1 |
Atrial fibrillation | 1 | 0 |
ICU admission, n | 1 | 0 |
Due to septic shock | 1 | 0 |
Parameter, n (%) | Results |
---|---|
CR 100 days after ASCT | 11/12 (92%) |
Progression before 100 days after ASCT | 1/12 (8%) |
Relapse during follow-up | 1/12 (8%) |
Death during follow-up * | 1/12 (8%) |
Secondary malignancies after ASCT | 0/12 (0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoffel, T.; Bacher, U.; Banz, Y.; Daskalakis, M.; Novak, U.; Pabst, T. BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL—A Pilot Study. J. Clin. Med. 2022, 11, 3748. https://doi.org/10.3390/jcm11133748
Stoffel T, Bacher U, Banz Y, Daskalakis M, Novak U, Pabst T. BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL—A Pilot Study. Journal of Clinical Medicine. 2022; 11(13):3748. https://doi.org/10.3390/jcm11133748
Chicago/Turabian StyleStoffel, Tanja, Ulrike Bacher, Yara Banz, Michael Daskalakis, Urban Novak, and Thomas Pabst. 2022. "BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL—A Pilot Study" Journal of Clinical Medicine 11, no. 13: 3748. https://doi.org/10.3390/jcm11133748
APA StyleStoffel, T., Bacher, U., Banz, Y., Daskalakis, M., Novak, U., & Pabst, T. (2022). BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL—A Pilot Study. Journal of Clinical Medicine, 11(13), 3748. https://doi.org/10.3390/jcm11133748