Levosimendan Administration May Provide More Benefit for Survival in Patients with Non-Ischemic Cardiomyopathy Experiencing Acute Decompensated Heart Failure
Abstract
:1. Background
2. Methods
2.1. Patient Population
2.2. Ethical Statement
2.3. Echocardiography
2.4. The Infusion Strategy of Levosimendan
2.5. Definition
2.6. Study Endpoint
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Patients
3.2. Post-Infusion Hemodynamic Condition and Follow-Up Echocardiographic Parameters
3.3. In-Hospital Mortality and 1 Year Outcomes
3.4. Kaplan–Meier Curves of HF Hospitalization, CV Mortality, and All-Cause Mortality between the Two Groups
3.5. Univariate and Multivariate Cox Regression Analyses of Predictors of 30 Day All-Cause Mortality
3.6. 30 Day All-Cause Mortality Rate in the Subgroups with Cardiogenic Shock, Chronic Kidney Disease, and Mechanical Support between Two Groups
4. Discussion
4.1. Levosimendan for ADHF
4.2. Levosimendan for the Combination of Cardiogenic Shock and ADHF
4.3. Levosimendan for the Combination of Cardiorenal Syndrome and ADHF
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joseph, S.M.; Cedars, A.M.; Ewald, G.A.; Geltman, E.M.; Mann, D.L. Acute decompensated heart failure: Contemporary medical management. Tex. Heart Inst. J. 2009, 36, 510–520. [Google Scholar] [PubMed]
- Teerlink, J.R.; Alburikan, K.; Metra, M.; Rodgers, J.E. Acute decompensated heart failure update. Curr. Cardiol. Rev. 2015, 11, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure. Card. Fail. Rev. 2017, 3, 7–11. [Google Scholar] [CrossRef]
- Parenica, J.; Spinar, J.; Vitovec, J.; Widimsky, P.; Linhart, A.; Fedorco, M.; Vaclavik, J.; Miklik, R.; Felsoci, M.; Horakova, K.; et al. Long-term survival following acute heart failure: The Acute Heart Failure Database Main registry (AHEAD Main). Eur. J. Intern. Med. 2013, 24, 151–160. [Google Scholar] [CrossRef]
- Dharmarajan, K.; Hsieh, A.F.; Kulkarni, V.T.; Lin, Z.; Ross, J.S.; Horwitz, L.I.; Kim, N.; Suter, L.G.; Lin, H.; Normand, S.L.; et al. Trajectories of risk after hospitalization for heart failure, acute myocardial infarction, or pneumonia: Retrospective cohort study. BMJ 2015, 350, h411. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.D.; Huang, S.T.; Wang, C.Y.; Lin, F.J.; Chen, H.M.; Hsiao, F.Y. Nationwide trends in incidence, healthcare utilization, and mortality in hospitalized heart failure patients in Taiwan. ESC Heart Fail. 2020, 7, 3653–3666. [Google Scholar] [CrossRef]
- Adams, K.F., Jr.; Fonarow, G.C.; Emerman, C.L.; LeJemtel, T.H.; Costanzo, M.R.; Abraham, W.T.; Berkowitz, R.L.; Galvao, M.; Horton, D.P.; ADHERE Scientific Advisory Committee and Investigators. Characteristics and outcomes of patients hospitalized for heart failure in the United States: Rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 2005, 149, 209–216. [Google Scholar] [CrossRef]
- Neuenschwander, J.F., 2nd; Baliga, R.R. Acute decompensated heart failure. Crit. Care Clin. 2007, 23, 737–758. [Google Scholar] [CrossRef]
- Khafaji, H.A.; Sulaiman, K.; Singh, R.; AlHabib, K.F.; Asaad, N.; Alsheikh-Ali, A.; Al-Jarallah, M.; Bulbanat, B.; AlMahmeed, W.; Ridha, M.; et al. Clinical characteristics, precipitating factors, management and outcome of patients with prior stroke hospitalised with heart failure: An observational report from the Middle East. BMJ Open 2015, 5, e007148. [Google Scholar] [CrossRef] [Green Version]
- VanValkinburgh, D.; Kerndt, C.C.; Hashmi, M.F. Inotropes and Vasopressors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Haikala, H.; Kaivola, J.; Nissinen, E.; Wall, P.; Levijoki, J.; Lindén, I.B. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J. Mol. Cell. Cardiol. 1995, 27, 1859–1866. [Google Scholar] [CrossRef]
- Yokoshiki, H.; Katsube, Y.; Sunagawa, M.; Sperelakis, N. Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide-sensitive K+ channel in rat arterial myocytes. Eur. J. Pharmacol. 1997, 333, 249–259. [Google Scholar] [CrossRef]
- Slawsky, M.T.; Colucci, W.S.; Gottlieb, S.S.; Greenberg, B.H.; Haeusslein, E.; Hare, J.; Hutchins, S.; Leier, C.V.; LeJemtel, T.H.; Loh, E.; et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Study Investigators. Circulation 2000, 102, 2222–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmakis, D.; Agostoni, P.; Baholli, L.; Bautin, A.; Comin-Colet, J.; Crespo-Leiro, M.G.; Fedele, F.; García-Pinilla, J.M.; Giannakoulas, G.; Grigioni, F.; et al. A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: An expert panel consensus. Int. J. Cardiol. 2019, 297, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Follath, F.; Cleland, J.G.; Just, H.; Papp, J.G.; Scholz, H.; Peuhkurinen, K.; Harjola, V.P.; Mitrovic, V.; Abdalla, M.; Sandell, E.P.; et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): A randomised double-blind trial. Lancet 2002, 360, 196–202. [Google Scholar] [CrossRef]
- Huang, X.; Lei, S.; Zhu, M.F.; Jiang, R.L.; Huang, L.Q.; Xia, G.L.; Zhi, Y.H. Levosimendan versus dobutamine in critically ill patients: A meta-analysis of randomized controlled trials. J. Zhejiang Univ. Sci. B 2013, 14, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Mebazaa, A.; Parissis, J.; Porcher, R.; Gayat, E.; Nikolaou, M.; Boas, F.V.; Delgado, J.F.; Follath, F. Short-term survival by treatment among patients hospitalized with acute heart failure: The global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 2011, 37, 290–301. [Google Scholar] [CrossRef]
- Mehta, R.H.; Leimberger, J.D.; van Diepen, S.; Meza, J.; Wang, A.; Jankowich, R.; Harrison, R.W.; Hay, D.; Fremes, S.; Duncan, A.; et al. Levosimendan in Patients with Left Ventricular Dysfunction Undergoing Cardiac Surgery. N. Engl. J. Med. 2017, 376, 2032–2042. [Google Scholar] [CrossRef]
- Cholley, B.; Caruba, T.; Grosjean, S.; Amour, J.; Ouattara, A.; Villacorta, J.; Miguet, B.; Guinet, P.; Lévy, F.; Squara, P.; et al. Effect of Levosimendan on Low Cardiac Output Syndrome in Patients with Low Ejection Fraction Undergoing Coronary Artery Bypass Grafting With Cardiopulmonary Bypass: The LICORN Randomized Clinical Trial. JAMA 2017, 318, 548–556. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Hollenberg, S.M. Vasopressor and Inotrope Therapy in Cardiac Critical Care. J. Intensive Care Med. 2021, 36, 843–856. [Google Scholar] [CrossRef]
- Uhlig, K.; Efremov, L.; Tongers, J.; Frantz, S.; Mikolajczyk, R.; Sedding, D.; Schumann, J. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst. Rev. 2020, 11, CD009669. [Google Scholar]
- Bouchez, S.; Fedele, F.; Giannakoulas, G.; Gustafsson, F.; Harjola, V.P.; Karason, K.; Kivikko, M.; von Lewinski, D.; Oliva, F.; Papp, Z.; et al. Levosimendan in Acute and Advanced Heart Failure: An Expert Perspective on Posology and Therapeutic Application. Cardiovasc. Drugs Ther. 2018, 32, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, A.Y.; Bjerre, J.; Parzynski, C.S.; Minges, K.E.; Ahmad, T.; Desai, N.R.; Enriquez, A.; Spatz, E.S.; Friedman, D.J.; Curtis, J.P.; et al. Comparison of Mortality and Readmission in Non-Ischemic Versus Ischemic Cardiomyopathy After Implantable Cardioverter-Defibrillator Implantation. Am. J. Cardiol. 2020, 133, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Køber, L.; Thune, J.J.; Nielsen, J.C.; Haarbo, J.; Videbæk, L.; Korup, E.; Jensen, G.; Hildebrandt, P.; Steffensen, F.H.; Bruun, N.E.; et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N. Engl. J. Med. 2016, 375, 1221–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.X.; Cui, D.Y.; Kuang, X.; Hu, S.; Hu, Y.; Liu, Z.Z. Effect of Levosimendan on Ventricular Systolic and Diastolic Functions in Heart Failure Patients: A Meta-Analysis of Randomized Controlled Trials. J. Cardiovasc. Pharmacol. 2021, 77, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Conti, N.; Gatti, M.; Raschi, E.; Diemberger, I.; Potena, L. Evidence and Current Use of Levosimendan in the Treatment of Heart Failure: Filling the Gap. Drug Des. Develop. Ther. 2021, 15, 3391–3409. [Google Scholar] [CrossRef] [PubMed]
- Pirracchio, R.; Parenica, J.; Resche Rigon, M.; Chevret, S.; Spinar, J.; Jarkovsky, J.; Zannad, F.; Alla, F.; Mebazaa, A.; GREAT network. The effectiveness of inodilators in reducing short term mortality among patient with severe cardiogenic shock: A propensity-based analysis. PLoS ONE 2013, 8, e71659. [Google Scholar] [CrossRef]
- Sugano, A.; Seo, Y.; Yamamoto, M.; Harimura, Y.; Machino-Ohtsuka, T.; Ishizu, T.; Aonuma, K. Optimal cut-off value of reverse remodeling to predict long-term outcome after cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J. Cardiol. 2017, 69, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Chiou, W.R.; Hsu, C.Y.; Lin, P.L.; Liang, H.W.; Chung, F.P.; Liao, C.T.; Lin, W.Y.; Chang, H.Y. Different left ventricular remodelling patterns and clinical outcomes between non-ischaemic and ischaemic aetiologies in heart failure patients receiving sacubitril/valsartan treatment. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 118–129. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, C.; Liu, F.; Shen, S.; Chen, P.; Bin, J. Impact of etiology on the outcomes in heart failure patients treated with cardiac resynchronization therapy: A meta-analysis. PLoS ONE 2014, 9, e94614. [Google Scholar] [CrossRef]
- Chen, J.S.; Niu, X.W.; Chen, F.M.; Yao, Y.L. Etiologic impact on difference on clinical outcomes of patients with heart failure after cardiac resynchronization therapy: A systematic review and meta-analysis. Medicine 2018, 97, e13725. [Google Scholar] [CrossRef]
- Schumann, J.; Henrich, E.C.; Strobl, H.; Prondzinsky, R.; Weiche, S.; Thiele, H.; Werdan, K.; Frantz, S.; Unverzagt, S. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst. Rev. 2018, 1, CD009669. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D. Cardiorenal syndrome in acute decompensated heart failure. Expert Rev. Cardiovasc. Ther. 2012, 10, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Ong, L.T. Evidence based review of management of cardiorenal syndrome type 1. World J. Methodol. 2021, 11, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Tholén, M.; Ricksten, S.E.; Lannemyr, L. Effects of levosimendan on renal blood flow and glomerular filtration in patients with acute kidney injury after cardiac surgery: A double blind, randomized placebo-controlled study. Crit. Care 2021, 25, 207. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C.; Lee, K.T.; Ho, W.J.; Chan, Y.H.; Chu, P.H. Levosimendan use in patients with acute heart failure and reduced ejection fraction with or without severe renal dysfunction in critical cardiac care units: A multi-institution database study. Ann. Intensive Care 2021, 11, 27. [Google Scholar] [CrossRef]
Variables | ICM (N = 143) | NICM (N = 41) | p-Value |
---|---|---|---|
Demographic | |||
Age (years) | 68 ± 12.4 | 55 ± 20.1 | <0.001 |
Male gender (%) | 104 (72.7) | 23 (56.1) | 0.055 |
Hemodynamic condition | |||
SBP (mmHg) | 116.9 ± 20.2 | 108.6 ± 23.8 | 0.026 |
HR (beats/min) | 88.1 ± 18.4 | 96.1 ± 20.3 | 0.017 |
Urine output (L/day) | 1.4 ± 0.9 | 1.1 ± 0.7 | 0.064 |
Medical history | |||
Diabetes mellitus (%) | 77 (53.8) | 7 (17.1) | <0.001 |
Hypertension (%) | 81 (56.6) | 16 (39.0) | 0.052 |
Prior history of stroke (%) | 10 (7.0) | 2 (4.9) | 1.000 |
Prior history of heart failure (%) | 37 (25.9) | 14 (34.1) | 0.325 |
Chronic kidney disease, stage > 3 (%) | 34 (23.8) | 9 (22.0) | 1.000 |
Lab data | |||
BUN (mg/dL) | 42.2 ± 34.3 | 34.9 ± 26.9 | 0.229 |
Creatinine (mg/dL) | 2.20 ± 1.47 | 1.75 ± 1.22 | 0.261 |
BNP (pg/mL) | 2353.3 ± 1626.2 | 2353.8 ± 1804.4 | 0.999 |
Troponin-I (ng/mL) | 20.0 ± 14.4 | 80.1 ± 40.3 | 0.140 |
Lactic acid (mmol/L) | 38.7 ± 24.1 | 31.5 ± 27.7 | 0.761 |
Echocardiographic parameters | |||
LVEF (%) | 31.3 ± 9.7 | 28.4 ± 7.9 | 0.082 |
LVEDV (mL) | 170.4 ± 65.3 | 193.6 ± 84.9 | 0.069 |
LVESV (mL) | 116.7 ± 49.9 | 138.3 ± 65.9 | 0.028 |
LAD (mm) | 39.3 ± 8.1 | 40.5 ± 10.1 | 0.437 |
The grade of AR ≥ 3 | 13 (9.4) | 4 (10.3) | 1.000 |
The grade of MR ≥ 3 | 53 (38.1) | 15 (38.5) | 1.000 |
The grade of TR ≥ 3 | 33 (24.1) | 14 (35.9) | 0.155 |
TRPG (mmHg) | 27.4 ± 15.1 | 26.9 ± 15.5 | 0.872 |
Mechanical support | |||
IABP (%) | 79 (55.2) | 18 (43.9) | 0.218 |
Ventilator (%) | 88 (68.5) | 24 (58.5) | 0.263 |
ECMO (%) | 39 (27.3) | 11 (26.8) | 1.000 |
Inotropic or vasopressor agents | |||
Norepinephrine (%) | 12 (8.4) | 3 (7.3) | 1.000 |
Dopamine (%) | 50 (35.0) | 13 (31.7) | 0.852 |
Dobutamine (%) | 10 (7.0) | 4 (9.8) | 0.518 |
Milrinone (%) | 3 (2.1) | 3 (7.3) | 0.125 |
Variables | ICM (N = 143) | NICM (N = 41) | p-Value |
---|---|---|---|
Hemodynamic condition (post-infusion) | |||
SBP (mmHg) | 112.0 ± 17.9 | 113.4 ± 19.9 | 0.680 |
HR (beats/min) | 87.8 ± 19.5 | 85.7 ± 15.2 | 0.517 |
Urine output (L/day) | 2.1 ± 1.6 | 1.7 ± 0.8 | 0.197 |
Lab data (post-infusion) | |||
BUN (mg/dL) | 41.2 ± 24.5 | 36.7 ± 24.3 | 0.355 |
Creatinine (mg/dL) | 2.20 ± 1.12 | 1.53 ± 1.21 | 0.013 |
BNP (pg/mL) | 1434.3 ± 323.3 | 1476.6 ± 552.2 | 0.905 |
Troponin-I (ng/mL) | 11.4 ± 7.6 | 4.3 ± 2.9 | 0.292 |
Lactic acid (mmol/L) | 17.3 ± 8.8 | 14.8 ± 4.0 | 0.514 |
Echocardiographic parameters (30 days later) | |||
LVEF (%) | 45.1 ± 14.8 | 50.3 ± 20.0 | 0.150 |
LVEDV (mL) | 161.8 ± 62.4 | 163.6 ± 85.1 | 0.906 |
LVESV (mL) | 96.5 ± 52.9 | 93.5 ± 79.2 | 0.826 |
LAD (mm) | 39.9 ± 11.7 | 37.2 ± 10.6 | 0.304 |
The grade of AR ≥ 3 | 9 (11.1) | 1 (3.7) | 0.446 |
The grade of MR ≥ 3 | 23 (28.4) | 7 (25.9) | 1.000 |
The grade of TR ≥ 3 | 16 (19.8) | 3 (10.7) | 0.390 |
TRPG (mmHg) | 23.7 ± 17.2 | 21.4 ± 13.2 | 0.552 |
Variables | ICM (N = 143) | Non-ICM (N = 41) | p-Value |
---|---|---|---|
In-hospital mortality (%) | 49 (34.3) | 7 (17.1) | 0.036 |
Heart failure hospitalization | |||
30 day (%) | 4 (2.8) | 1 (2.4) | 1.000 |
180 day (%) | 23 (16.1) | 3 (7.3) | 0.206 |
One year (%) | 24 (16.8) | 4 (9.8) | 0.332 |
Cardiovascular mortality | |||
30 day (%) | 27 (20.9) | 2 (5.1) | 0.028 |
180 day (%) | 37 (29.8) | 5 (13.5) | 0.055 |
One year (%) | 38 (31.1) | 6 (16.2) | 0.094 |
All-cause mortality | |||
30 day (%) | 41 (28.7) | 4 (9.8) | 0.013 |
180 day (%) | 56 (39.2) | 9 (22.0) | 0.044 |
One year (%) | 59 (41.3) | 10 (24.4) | 0.067 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
NICM | 0.312 | 0.112–0.871 | 0.026 | 0.303 | 0.108–0.845 | 0.023 |
Age (years) | 1.019 | 0.997–1.040 | 0.085 | |||
Female | 0.803 | 0.415–1.555 | 0.515 | |||
SBP (mmHg) | 1.011 | 0.997–1.025 | 0.109 | |||
HR (beat/min) | 0.995 | 0.979–1.011 | 0.526 | |||
Diabetes mellitus | 0.839 | 0.464–1.516 | 0.562 | |||
Hypertension | 1.585 | 0.867–2.895 | 0.134 | |||
Prior history of stroke | 1.072 | 0.332–3.458 | 0.908 | |||
Prior history of heart failure | 0.935 | 0.483–1.811 | 0.843 | |||
Chronic kidney disease, stage > 3 | 1.645 | 0.875–3.094 | 0.122 | |||
Valvular heart disease | 1.423 | 0.792–2.556 | 0.238 | |||
BUN (mg/dL) | 1.003 | 0.996–1.011 | 0.382 | |||
Creatinine (mg/dL) | 1.061 | 0.969–1.162 | 0.198 | |||
Troponin-I (ng/mL) | 1.001 | 1.000–1.002 | 0.111 | |||
Lactic acid (mmol/L) | 1.000 | 0.996–1.003 | 0.844 | |||
LVEF (%) | 0.984 | 0.954–1.016 | 0.326 | |||
LVEDV (mL) | 0.998 | 0.994–1.002 | 0.356 | |||
LAD (mm) | 1.001 | 0.965–1.038 | 0.973 | |||
TRPG (mmHg) | 0.999 | 0.979–1.019 | 0.918 | |||
The change of EF | 0.907 | 0.860–0.957 | <0.001 | 0.992 | 0.961–1.023 | 0.597 |
IABP (%) | 1.754 | 0.952–3.229 | 0.071 | |||
Ventilator (%) | 1.850 | 0.916–3.737 | 0.086 | |||
ECMO (%) | 2.622 | 1.458–4.716 | 0.001 | 2.550 | 1.385–4.693 | 0.003 |
≥two vasoactive agents | 0.337 | 0.046–2.447 | 0.282 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Wu, P.-J.; Fang, H.-Y.; Fang, Y.-N.; Chen, H.-C.; Tong, M.-S.; Sung, P.-H.; Lee, C.-H.; Chung, W.-J. Levosimendan Administration May Provide More Benefit for Survival in Patients with Non-Ischemic Cardiomyopathy Experiencing Acute Decompensated Heart Failure. J. Clin. Med. 2022, 11, 3997. https://doi.org/10.3390/jcm11143997
Lee W-C, Wu P-J, Fang H-Y, Fang Y-N, Chen H-C, Tong M-S, Sung P-H, Lee C-H, Chung W-J. Levosimendan Administration May Provide More Benefit for Survival in Patients with Non-Ischemic Cardiomyopathy Experiencing Acute Decompensated Heart Failure. Journal of Clinical Medicine. 2022; 11(14):3997. https://doi.org/10.3390/jcm11143997
Chicago/Turabian StyleLee, Wei-Chieh, Po-Jui Wu, Hsiu-Yu Fang, Yen-Nan Fang, Huang-Chung Chen, Meng-Shen Tong, Pei-Hsun Sung, Chieh-Ho Lee, and Wen-Jung Chung. 2022. "Levosimendan Administration May Provide More Benefit for Survival in Patients with Non-Ischemic Cardiomyopathy Experiencing Acute Decompensated Heart Failure" Journal of Clinical Medicine 11, no. 14: 3997. https://doi.org/10.3390/jcm11143997
APA StyleLee, W. -C., Wu, P. -J., Fang, H. -Y., Fang, Y. -N., Chen, H. -C., Tong, M. -S., Sung, P. -H., Lee, C. -H., & Chung, W. -J. (2022). Levosimendan Administration May Provide More Benefit for Survival in Patients with Non-Ischemic Cardiomyopathy Experiencing Acute Decompensated Heart Failure. Journal of Clinical Medicine, 11(14), 3997. https://doi.org/10.3390/jcm11143997