Relationships between Body Weight Status and Serum Levels of Adipokine, Myokine and Bone Metabolism Parameters in Healthy Normal Weight and Thin Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Blood Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, bone, and fat crosstalk: The biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef]
- Karava, V.; Dotis, J.; Christoforidis, A.; Kondou, A.; Printza, N. Muscle-bone axis in children with chronic kidney disease: Current knowledge and future perspectives. Pediatr. Nephrol. 2020, 36, 3813–3827. [Google Scholar] [CrossRef] [PubMed]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-organ crosstalk: The emerging roles of myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef] [PubMed]
- Kaji, H. Interaction between muscle and bone. J. Bone Metab. 2014, 21, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jun, H.-S. Role of myokines in regulating skeletal muscle mass and function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
- Walsh, F.S.; Celeste, A.J. Myostatin: A modulator of skeletal-muscle stem cells. Biochem. Soc. Trans. 2005, 33, 1513–1517. [Google Scholar] [CrossRef] [Green Version]
- Long, K.K.; O’Shea, K.M.; Khairallah, R.J.; Howell, K.; Paushkin, S.; Chen, K.S.; Cote, S.M.; Webster, M.T.; Stains, J.P.; Treece, E.; et al. Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Hum. Mol. Genet. 2019, 28, 1076–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarlane, C.; Hui, G.Z.; Amanda, W.Z.W.; Lau, H.Y.; Lokireddy, S.; Ge, X.; Mouly, V.; Butler-Browne, G.; Gluckman, P.D.; Sharma, M.; et al. Human myostatin negatively regulates human myoblast growth and differentiation. Am. J. Physiol. Cell Physiol. 2011, 301, C195–C203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez Munoz, I.Y.; Camarillo Romero, E.D.S.; Garduno Garcia, J.J. Irisin a novel metabolic biomarker: Present knowledge and future directions. Int. J. Endocrinol. 2018, 2018, 7816806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.-S.; Kim, H.C.; Zhang, D.; Yeom, H.; Limo, S.-K. The novel myokine irisin: Clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine 2019, 64, 341–348. [Google Scholar] [CrossRef]
- Pereira, L.J.; Andrade, E.F.; Barroso, L.C.; Lima, R.R.d.; Macari, S.; Paiva, S.M.; Silva, T.A. Irisin effects on bone: Systematic review with meta-analysis of preclinical studies and prospects for oral health. Braz. Oral Res. 2022, 36, e055. [Google Scholar] [CrossRef] [PubMed]
- Karsenty, G. Convergence between bone and energy homeostases: Leptin regulation of bone mass. Cell Metab. 2006, 4, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lausten-Thomsen, U.; Christiansen, M.; Hedley, P.L.; Nielsen, T.R.H.; Fonvig, C.E.; Pedersen, O.; Hansen, T.; Holm, J.C. Reference values for fasting serum resistin in healthy children and adolescents. Clin. Chim. Acta 2017, 469, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Seidel, M.; King, J.A.; Ritschel, F.; Doepmann, J.; Buehren, K.; Seitz, J.; Roessner, V.; Westphal, S.; Egberts, K.; Burghardt, R.; et al. Serum visfatin concentration in acutely ill and weight-recovered patients with anorexia nervosa. Psychoneuroendocrinology 2015, 53, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Vehapoglu, A.; Ustabas, F.; Ozgen, T.I.; Terzioglu, S.; Cermik, B.B.; Ozen, O.F. Role of circulating adipocytokines vaspin, apelin, and visfatin in the loss of appetite in underweight children: A pilot trial. J. Pediatr. Endocrinol. Metab. 2015, 28, 1065–1071. [Google Scholar] [CrossRef]
- Revollo, J.R.; Grimm, A.A.; Imai, S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol. 2007, 23, 164–170. [Google Scholar] [CrossRef]
- Sayers, A.; Timpson, N.J.; Sattar, N.; Deanfield, J.; Hingorani, A.D.; Davey-Smith, G.; Tobias, J.H. Adiponectin and its association with bone mass accrual in childhood. J. Bone Miner. Res. 2010, 25, 2212–2220. [Google Scholar] [CrossRef]
- Martos-Moreno, G.A.; Barrios, V.; Martinez, G.; Hawkins, F.; Argente, J. Effect of weight loss on high-molecular weight adiponectin in obese children. Obesity 2010, 18, 2288–2294. [Google Scholar] [CrossRef]
- Rothermel, J.; Lass, N.; Barth, A.; Reinehr, T. Link between omentin-1, obesity and insulin resistance in children: Findings from a longitudinal intervention study. Pediatric Obes. 2020, 15. [Google Scholar] [CrossRef]
- Molina, P.; Carrero, J.J.; Bover, J.; Chauveau, P.; Mazzaferro, S.; Torres, P.U.; Era, E. Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J. Cachexia Sarcopenia Muscle 2017, 8, 686–701. [Google Scholar] [CrossRef]
- Kirk, B.; Lieu, N.; Vogrin, S.; Sales, M.; Pasco, J.A.; Duque, G. Serum levels of C-terminal telopeptide (CTX) are associated with muscle function in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2022, glac008. [Google Scholar] [CrossRef]
- Sarkkola, C.; Viljakainen, J.; de Oliveira Figueiredo, R.A.; Saari, A.; Lommi, S.; Engberg, E.; Viljakainen, H. Prevalence of thinness, overweight, obesity, and central obesity in Finnish school-aged children: A comparison of national and international reference values. Obes. Facts 2022, 15, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Fismen, A.S.; Galler, M.; Klepp, K.I.; Chatelan, A.; Residori, C.; Ojala, K.; Dzielska, A.; Kelly, C.; Melkumova, M.; Music Milanovic, S.; et al. Weight status and mental well-being among adolescents: The mediating role of self-perceived body weight. A Cross-National Survey. J. Adolesc. Health 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Growth Reference Data for 5–19 Years. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 27 May 2022).
- Asomaning, K.; Bertone-Johnson, E.R.; Nasca, P.C.; Hooven, F.; Pekow, P.S. The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J. Womens Health 2006, 15, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, J.; Yan, Y.; Hou, D.; Zhao, X.; Cheng, H.; Li, S.; Chen, W.; Mi, J. Long-term childhood body mass index and adult bone mass are linked through concurrent body mass index and body composition. Bone 2019, 121, 259–266. [Google Scholar] [CrossRef]
- Milyani, A.A.; Kabli, Y.O.; Al-Agha, A.E. The association of extreme body weight with bone mineral density in Saudi children. Ann. Afr. Med. 2022, 21, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, J.; Ambroszkiewicz, J.; Klemarczyk, W.; Chelchowska, M.; Weker, H.; Szamotulska, K. The effect of weight loss on body composition, serum bone markers and adipokines in prepubertal obese children after 1-year intervention. Endocr. Res. 2018, 43, 80–89. [Google Scholar] [CrossRef]
- Sanchez Ferrer, F.; Cortes Castell, E.; Carratala Marco, F.; Juste Ruiz, M.; Quesada Rico, J.A.; Nso Roca, A.P. Influence of weight status on bone mineral content measured by DXA in children. BMC Pediatr. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Galusca, B.; Zouch, M.; Germain, N.; Bossu, C.; Frere, D.; Lang, F.; Lafage-Proust, M.-H.; Thomas, T.; Vico, L.; Estour, B. Constitutional thinness: Unusual human phenotype of low bone quality. J. Clin. Endocrinol. Metab. 2008, 93, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Misra, M.; Katzman, D.K.; Cord, J.; Manning, S.J.; Mendes, N.; Herzog, D.B.; Miller, K.K.; Klibanski, A. Bone metabolism in adolescent boys with anorexia nervosa. J. Clin. Endocrinol. Metab. 2008, 93, 3029–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tubic, B.; Magnusson, P.; Marild, S.; Leu, M.; Schwetz, V.; Sioen, I.; Herrmann, D.; Obermayer-Pietsch, B.; Lissner, L.; Swolin-Eide, D.; et al. Different osteocalcin forms, markers of metabolic syndrome and anthropometric measures in children within the IDEFICS cohort. Bone 2016, 84, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Ambroszkiewicz, J.; Gajewska, J.; Rowicka, G.; Klemarczyk, W.; Chelchowska, M. Assessment of biochemical bone turnover markers and bone mineral density in thin and normal-weight children. Cartilage 2018, 9, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Prats-Puig, A.; Mas-Parareda, M.; Riera-Perez, E.; Gonzalez-Forcadell, D.; Mier, C.; Mallol-Guisset, M.; Diaz, M.; Bassols, J.; de Zegher, F.; Ibanez, L.; et al. Carboxylation of osteocalcin affects its association with metabolic parameters in healthy children. Diabetes Care 2010, 33, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Suhaimi, E.A.; Al-Jafary, M.A. Endocrine roles of vitamin K-dependent- osteocalcin in the relation between bone metabolism and metabolic disorders. Rev. Endocr. Metab. Disord. 2020, 21, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Mera, P.; Laue, K.; Ferron, M.; Confavreux, C.; Wei, J.; Galan-Diez, M.; Lacampagne, A.; Mitchell, S.J.; Mattison, J.A.; Chen, Y.; et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 2016, 23, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Mao, M.; Ping, L.; Yu, D. Prevalence of vitamin D deficiency and insufficiency among 460,537 children in 825 hospitals from 18 provinces in mainland China. Medicine 2020, 99, e22463. [Google Scholar] [CrossRef]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.-Y.; Bruyere, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [Green Version]
- Mokhtar, R.R.; Holick, M.F.; Sempertegui, F.; Griffiths, J.K.; Estrella, B.; Moore, L.L.; Fox, M.P.; Hamer, D.H. Vitamin D status is associated with underweight and stunting in children aged 6-36 months residing in the Ecuadorian Andes. Public Health Nutr. 2018, 21, 1974–1985. [Google Scholar] [CrossRef]
- Torun, E.; Gonullu, E.; Ozgen, I.T.; Cindemir, E.; Oktem, F. Vitamin D deficiency and insufficiency in obese children and adolescents and its relationship wit insulin resistance. Int. J. Endocrinol. 2013, 2013, 631845. [Google Scholar] [CrossRef] [Green Version]
- Gilbert-Dianond, D.; Baylin, A.; Mora-Plazas, M.; Marin, C.; Arsenault, J.E.; Hughes, M.D.; Willett, W.C.; Villamor, E. Vitamin D deficiency and anthropometric indicators of adiposity in school-age children: A prospective study. Am. J. Clin. Nutr. 2010, 92, 1446–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, K.; Maeda, T.; Kawie, T.; Matsunuma, A.; Horiuchi, N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1 alpha, 25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J. Bone Miner. Res. 2010, 25, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Leal, L.G.; Lopes, M.A.; Batista, M.L. Physical exercise-induced myokines and muscle-adipose tissue crosstalk: A review of current knowledge and the implications for health and metabolic diseases. Front. Physiol. 2018, 9, 1307. [Google Scholar] [CrossRef] [PubMed]
- Raschke, S.; Eckel, J. Adipo-Myokines: Two sides of the same coin-mediators of inflammation and mediators of exercise. Mediators Inflamm. 2013, 2013, 320724. [Google Scholar] [CrossRef]
- Elizondo-Montemayor, L.; Silva-Platas, C.; Torres-Quintanilla, A.; Rodriguez-Lopez, C.; Ruiz-Esparza, G.U.; Reyes-Mendoza, E.; Garcia-Rivas, G. Association of irisin plasma levels with anthropometric parameters in children with underweight, normal weight, overweight, and obesity. Biomed Res. Int. 2017, 2017, 2628968. [Google Scholar] [CrossRef] [Green Version]
- Roca-Rivada, A.; Castelao, C.; Senin, L.L.; Landrove, M.O.; Baltar, J.; Belen Crujeiras, A.; Maria Seoane, L.; Casanueva, F.F.; Pardo, M. FNDC5/Irisin is not only a myokine but also an adipokine. PLoS ONE 2013, 8, e60563. [Google Scholar] [CrossRef] [Green Version]
- Redondo, M.J.; Rodriguez, L.M.; Haymond, M.W.; Hampe, C.S.; Smith, E.O.; Balasubramanyam, A.; Devaraj, S. Serum adiposity-induced biomarkers in obese and lean children with recently diagnosed autoimmune type 1 diabetes. Pediatr. Diabetes 2014, 15, 543–549. [Google Scholar] [CrossRef]
- Naot, D.; Musson, D.S.; Cornish, J. The activity of adiponectin in bone. Calcif. Tissue Int. 2017, 100, 486–499. [Google Scholar] [CrossRef]
- Tamme, R.; Jurimae, J.; Maestu, E.; Remmel, L.; Purge, P.; Mengel, E.; Tillmann, V. Leptin to adiponectin ratio in puberty is associated with bone mineral density in 18-year-old males. Bone Rep. 2022, 16, 101158. [Google Scholar] [CrossRef]
Group A n = 35 | Group B n = 36 | Group C n = 10 | p-Value | |
---|---|---|---|---|
Age (years) a | 6.3 (5.0–8.0) | 6.5 (5.6–7.5) | 7.0 (5.4–8.7) | 0.465 |
Weight (kg) | 22.6 ± 5.8 | 19.5 ± 4.1 | 17.9 ± 4.2 | 0.004 |
Weight z-score | −0.05 ± 0.10 | −1.09 ± 0.73 | −1.94 ± 0.97 | 0.000 |
Height (cm) | 119.9 ± 11.9 | 118.7 ± 10.6 | 118.9 ± 10.4 | 0.960 |
Height z-score | 0.08 ± 0.23 | −0.29 ± 0.28 | −0.47 ± 0.44 | 0.401 |
BMI (kg/m2) | 15.3 ± 1.0 | 13.6 ± 0.5 | 12.8 ± 0.7 | 0.000 |
BMI z-score | −0.14 ± 0.54 | −1.40 ± 0.29 | −2.61 ± 0.60 | 0.000 |
Fat mass (%) | 22.2 ± 5.9 | 18.1 ± 5.6 | 16.1 ± 6.9 | 0.007 |
Fat mass (g) | 4990 ± 1879 | 3150 ± 1180 | 2473 ± 726 | 0.000 |
Lean mass (g) | 16,706 ± 5187 | 14,355 ± 3669 | 14,165 ± 4876 | 0.091 |
Fat/lean mass ratio | 0.304 ± 0.097 | 0.229 ± 0.085 | 0.199 ± 0.101 | 0.003 |
tBMD (g/cm2) | 0.819 ± 0.073 | 0.799 ± 0.106 | 0.694 ± 0.102 | 0.000 |
tBMD z-score | −0.010 ± 0.761 | −0.278 ± 0.940 | −0.780 ± 0.602 | 0.009 |
BMD L2-L4 (g/cm2) | 0.698 ± 0.093 | 0.607 ± 0.099 | 0.558 ± 0.065 | 0.000 |
BMD L2-L4 z-score | −0.243 ± 0.684 | −0.878 ± 0.982 | −1.570 ± 0.695 | 0.001 |
tBMC (g) | 732.5 ± 262.3 | 603.8 ± 187.8 | 550.6 ± 167,4 | 0.125 |
Group A | Group B | Group C | p-Value | |
---|---|---|---|---|
Resistin (ng/mL) | 4.76 (3.28–5.67) | 4.59 (3.71–5.41) | 3.50 (2.34–4.49) | 0.012 |
Visfatin (ng/mL) | 1.41 (0.97–2.76) | 1.07 (0.59–2.77) | 0.91 (0.51–1.50) | 0.228 |
Leptin (ng/mL) | 1.77 (1.02–2.70) | 1.24 (0.68–1.65) | 1.03 (0.52–1.91) | 0.128 |
Adiponectin (µg/mL) | 8.78 (7.64–9.63) | 7.95(5.77–10.52) | 6.46(5.36–11.04) | 0.287 |
HMW adiponectin (µg/mL) | 5.46 (5.16–6.32) | 4.93 (3.64–5.82) | 3.43 (2.99–6.25) | 0.020 |
HMW/adiponectin ratio | 0.66 (0.53–0.71) | 0.59 (0.49–0.65) | 0.50 (0.41–0.62) | 0.000 |
Omentin (ng/mL) | 700 (298–1045) | 976 (279–1269) | 617 (279–976) | 0.592 |
Myostatin (ng/mL) | 0.72 (0.43–1.25) | 0.83 (0.53- 1.25) | 0.94 (0.52–1.44) | 0.042 |
Irisin (µg/mL) | 2.85 (2,30–4.15) | 2.75 (2.27–4.80) | 3.01 (2,13–4.58) | 0.951 |
OC (ng/mL) a | 83.6 ± 0.5 | 77.4 ± 22.4 | 87.1 ± 23.9 | 0.355 |
CTX (ng/mL) a | 1.952 ± 0.430 | 1.935 ± 0.495 | 1.998 ± 0.504 | 0.913 |
OC/CTX ratio | 0.45 (0.34–0.53) | 0.42 (0.32–0.50) | 0.44 (0.38–0.54) | 0.647 |
25-hydroxyvitamin D (ng/mL) a | 29.1 ± 6.8 | 24.4 ± 7.5 | 24.1 ± 6.9 | 0.023 |
Group A (n = 35) | Group B (n = 36) | p-Value | |
---|---|---|---|
Adiponectin/leptin | 6.94 (3.83–12.03) | 5.90 (3.16–8.63) | 0.168 |
Adiponectin/resistin | 1.63 (1.19–2.31) | 2.04 (1.60–2.70) | 0.040 |
Omentin/leptin | 5.73 (4.13–9.94) | 4.11 (1.74–7.60) | 0.045 |
Omentin/resistin | 1.09 (0.54–2.75) | 1.33 (0.66–2.58) | 0.671 |
Fat Mass | Lean Mass | tBMC | tBMD | BMD L2-L4 | |
---|---|---|---|---|---|
BMI | 0.660 *** | 0.445 *** | 0.425 *** | 0.527 *** | 0.452 *** |
Fat mass | - | 0.320 ** | 0.327 ** | 0.322 ** | 0.399 *** |
Lean mass | - | - | 0.878 *** | 0.608 *** | 0.518 *** |
Leptin | 0.262 * | 0.398 *** | 0.362 ** | 0.441 *** | 0.317 ** |
Resistin | 0.087 | −0.251 * | 0.166 | −0.126 | −0.078 |
Visfatin | 0.050 | −0.011 | 0.016 | 0.110 | 0.116 |
Adiponectin | −0.075 | 0.009 | −0.061 | 0.034 | 0.005 |
HMW adiponectin | −0.205 | 0.006 | −0.041 | 0.073 | 0.070 |
Omentin | −0.196 | −0.101 | 0.009 | 0.061 | 0.073 |
Myostatin | 0.028 | −0.074 | 0.056 | −0.160 | −0.105 |
Irisin | −0.087 | 0.178 | 0.057 | 0.031 | 0.006 |
OC | 0.219 * | 0.185 | 0.188 | 0.135 | 0.133 |
CTX | −0.080 | 0.044 | 0.039 | 0.016 | 0.080 |
25-hydroxyvitamin D | 0.305 ** | 0.036 | 0.080 | 0.081 | 0.152 |
A/L Ratio | A/R Ratio | O/L Ratio | O/R Ratio | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
BMI | −0.218 | 0.046 | 0.121 | 0.284 | −0.265 | 0.055 | 0.037 | 0.794 |
Fat mass | −0.059 | 0.599 | −0.014 | 0.901 | −0.268 | 0.054 | −0.306 | 0.049 |
Lean mass | −0.370 | 0.001 | 0.147 | 0.191 | −0.272 | 0.051 | 0.068 | 0.630 |
Fat/lean | 0.198 | 0.077 | −0.161 | 0.150 | −0.082 | 0.566 | −0.317 | 0.022 |
BMC | −0.371 | 0.001 | 0.068 | 0.551 | −0.194 | 0.171 | 0.120 | 0.405 |
tBMD | −0.407 | 0.001 | 0.124 | 0.272 | −0.366 | 0.008 | 0.133 | 0.349 |
BMD L2-L4 | −0.318 | 0.004 | 0.064 | 0.570 | −0.270 | 0.053 | 0.091 | 0.523 |
OC | −0.140 | 0.211 | 0.160 | 0.153 | −0.034 | 0.811 | 0.097 | 0.494 |
CTX | 0.048 | 0.668 | 0.052 | 0.645 | −0.046 | 0.745 | 0.032 | 0.819 |
25-hydroxyvitamin D | 0.068 | 0.548 | 0.039 | 0.728 | −0.233 | 0.097 | −0.304 | 0.048 |
Myostatin | −0.088 | 0.437 | 0.128 | 0.256 | 0.216 | 0.123 | 0.326 | 0.019 |
Irisin | −0.020 | 0.860 | 0.161 | 0.151 | 0.214 | 0.128 | 0.292 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambroszkiewicz, J.; Chełchowska, M.; Mazur, J.; Rowicka, G.; Gajewska, J. Relationships between Body Weight Status and Serum Levels of Adipokine, Myokine and Bone Metabolism Parameters in Healthy Normal Weight and Thin Children. J. Clin. Med. 2022, 11, 4013. https://doi.org/10.3390/jcm11144013
Ambroszkiewicz J, Chełchowska M, Mazur J, Rowicka G, Gajewska J. Relationships between Body Weight Status and Serum Levels of Adipokine, Myokine and Bone Metabolism Parameters in Healthy Normal Weight and Thin Children. Journal of Clinical Medicine. 2022; 11(14):4013. https://doi.org/10.3390/jcm11144013
Chicago/Turabian StyleAmbroszkiewicz, Jadwiga, Magdalena Chełchowska, Joanna Mazur, Grażyna Rowicka, and Joanna Gajewska. 2022. "Relationships between Body Weight Status and Serum Levels of Adipokine, Myokine and Bone Metabolism Parameters in Healthy Normal Weight and Thin Children" Journal of Clinical Medicine 11, no. 14: 4013. https://doi.org/10.3390/jcm11144013
APA StyleAmbroszkiewicz, J., Chełchowska, M., Mazur, J., Rowicka, G., & Gajewska, J. (2022). Relationships between Body Weight Status and Serum Levels of Adipokine, Myokine and Bone Metabolism Parameters in Healthy Normal Weight and Thin Children. Journal of Clinical Medicine, 11(14), 4013. https://doi.org/10.3390/jcm11144013