Th17/Regulatory T-Cell Imbalance and Acute Kidney Injury in Patients with Sepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aim, Design and Setting
2.2. Participants
2.3. Data Collection
2.4. Blood Sampling and Measurements
2.5. Group Analysis and Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Enrollment of Patients
3.1.1. Clinical Characteristics of Patients
3.1.2. Th17/Treg Ratio Is Associated with the Occurrence of SAKI
3.1.3. General Outcomes of Patients
3.1.4. Increased Th17/Treg Ratio in Patients with SAKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Th17 | helper T cell 17 |
Treg | regulatory T cell |
ICU | intensive care unit |
AKI | acute kidney injury |
KDIGO | Kidney Disease: Improving Global Outcomes |
SAKI | sepsis-induced acute kidney injury |
BMI | body mass index |
CKD | chronic kidney disease |
COPD | chronic obstructive pulmonary disease |
NAGL | neutrophil gelatinase-associated lipocalin |
Cr | serum creatinine |
BUN | blood urea nitrogen |
WBC | white blood cell |
GR | neutrophil granulocyte |
LY | lymphocyte |
NLR | neutrophil/lymphocyte ratio |
PCT | procalcitonin |
Lac | lactic acid |
OI | oxygenation index |
APACHE II | Acute Physiology and Chronic Health Evaluation |
SOFA | Sepsis-Related Organ Failure Assessment |
LOS | length of hospital stay |
EDTA | ethylene diamine tetraacetic acid |
PBMCs | peripheral mononuclear cells |
IL-10 | Interleukin-10 |
IL-17 | Interleukin-17 |
TNF-α | Tumor necrosis factor alpha |
ELISA | enzyme-linked immunosorbent assay |
RRT | renal replacement therapy |
IQRs | interquartile ranges |
ROC | receiver operating characteristic curve |
AUC | area under the curve |
CI | confidence interval |
IGFBP-7 | Insulin-like growth factor-binding protein-7 |
TIMP-2 | Tissue inhibitor of metalloproteinase-2 |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Healthcare Cost and Utilization Project (HCUP). HCUP Facts and Figures, 2006: Statistics on Hospital-Based Care in the United States; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2008. [Google Scholar]
- Cohen, J.; Vincent, J.-L.; Adhikari, N.K.J.; Machado, F.R.; Angus, D.C.; Calandra, T.; Jaton, K.; Giulieri, S.; Delaloye, J.; Opal, S.; et al. Sepsis: A roadmap for future research. Lancet Infect. Dis. 2015, 15, 581–614. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.F.; Ji, X.J.; Yang, X.; Duan, M. Predictive value of inflammatory markers for acute kidney injury in sepsis patients: Analysis of 753 cases in 7 years. Zhong Hua Wei Zhong Bing Ji Jiu Yi Xue 2018, 30, 346–350. [Google Scholar] [CrossRef]
- Manrique-Caballero, C.L.; Del Rio-Pertuz, G.; Gomez, H. Sepsis-Associated Acute Kidney Injury. Crit. Care Clin. 2021, 37, 279–301. [Google Scholar] [CrossRef] [PubMed]
- Orieux, A.; Boyer, A.; Dewitte, A.; Combe, C.; Rubin, S. Insuffisance rénale aiguë en soins intensifs-réanimation et ses conséquences: Mise au point. Nephrol. Ther. 2021, 18, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Zhu, Y.; Zhang, J.; Xu, D.X.; Liu, Y.; Liu, F.; Peng, Z.y. Sepsis and acute kidney injury. Zhong Hua Yi Xue Za Zhi. 2021, 101, 1210–1213. [Google Scholar] [CrossRef]
- Kumar, V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur. J. Cell Biol. 2018, 97, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Wang, F.; Wang, M.; Wang, J.; Sun, S.; Chen, M.; Huang, S.; Chen, X.; Yao, S. Maresin1 ameliorates acute lung injury induced by sepsis through regulating Th17/Treg balance. Life Sci. 2020, 254, 117773. [Google Scholar] [CrossRef]
- Maravitsa, P.; Adamopoulou, M.; Pistiki, A.; Netea, M.G.; Louis, K.; Giamarellos-Bourboulis, E.J. Systemic over-release of interleukin-17 in acute kidney injury after septic shock: Clinical and experimental evidence. Immunol. Lett. 2016, 178, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-Y.; Song, J.; Hou, S.-K.; Fan, H.-J.; Lv, Q.; Liu, Z.-Q.; Ding, H.; Zhang, Y.-Z.; Liu, J.-Y.; Dong, W.-L.; et al. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells. Int. Immunopharmacol. 2020, 81, 106265. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, G.R.; Sharma, R.; Okusa, M.D. Regulatory T Cells in AKI. J. Am. Soc. Nephrol. 2013, 24, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kinsey, G.R. Regulatory T cells in acute and chronic kidney diseases. Am. J. Physiol. Physiol. 2018, 314, F679–F698. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Lee, Y.-S.; Choi, H.-M.; Ko, Y.-S.; Lee, H.-Y.; Jo, S.-K.; Cho, W.-Y.; Kim, H.-K. Distinct pathophysiologic mechanisms of septic acute kidney injury. Crit. Care Med. 2012, 40, 2997–3006. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Zhao, L.; Hu, L.; Qiu, Q.; Zhang, Z.; Li, M.; Hong, G.; Wu, B.; Zhao, G.; et al. Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of Tregs. Int. Immunopharmacol. 2018, 61, 1–7. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.-X.; Ji, M.-S.; Yan, J.; Cai, Y.; Liu, J.; Yang, H.-F.; Li, Y.; Jin, Z.-C.; Zheng, J.-X. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. Crit. Care 2015, 19, 82. [Google Scholar] [CrossRef] [Green Version]
- Imiela, A.M.; Mikołajczyk, T.P.; Siedliński, M.; Dobrowolski, P.; Konior-Rozlachowska, A.; Wróbel, A.; Biernat-Kałuża, E.; Januszewicz, M.; Guzik, B.; Guzik, T.J.; et al. The Th17/Treg imbalance in patients with primary hyperaldosteronism and resistant hypertension. Pol. Arch. Intern. Med. 2022, 132, 16171. [Google Scholar] [CrossRef]
- Zhang, S.; Gang, X.; Yang, S.; Cui, M.; Sun, L.; Li, Z.; Wang, G. The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Front. Immunol. 2021, 12, 678355. [Google Scholar] [CrossRef]
- Lourenço, J.D.; Ito, J.T.; Martins, M.D.A.; Tibério, I.D.F.L.C.; Lopes, F.D.T.Q.D.S. Th17/Treg Imbalance in Chronic Obstructive Pulmonary Disease: Clinical and Experimental Evidence. Front. Immunol. 2021, 12, 804919. [Google Scholar] [CrossRef] [PubMed]
- Drescher, H.K.; Bartsch, L.M.; Weiskirchen, S.; Weiskirchen, R. Intrahepatic TH17/TReg Cells in Homeostasis and Disease—It’s All About the Balance. Front. Pharmacol. 2020, 11, 588436. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Yang, M.; Jin, H.; Xu, Z.-Q.; Li, Y.-F.; Xia, P.; Yang, Y.-R.; Chen, B.-C.; Zhang, Y. The role of sildenafil in the development of transplant arteriosclerosis in rat aortic grafts. Am. J. Transl. Res. 2017, 9, 4914–4924. [Google Scholar] [PubMed]
- Hou, H.; Sun, Y.; Miao, J.; Gao, M.; Guo, L.; Song, X. Ponesimod modulates the Th1/Th17/Treg cell balance and ameliorates disease in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2021, 356, 577583. [Google Scholar] [CrossRef]
- Devarajan, P. Neutrophil gelatinase-associated lipocalin: A promising biomarker for human acute kidney injury. Biomarkers Med. 2010, 4, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Z.; Lin, J.; Li, T.; Guo, X.; Pang, R.; Dong, L.; Duan, M. Xuebijing injection in septic rats mitigates kidney injury, reduces cortical microcirculatory disorders, and suppresses activation of local inflammation. J. Ethnopharmacol. 2021, 276, 114199. [Google Scholar] [CrossRef]
- Carney, E. Targeting Treg cells to protect the kidney. Nat. Rev. Nephrol. 2017, 13, 444. [Google Scholar] [CrossRef]
- Jun, C.; Ke, W.; Qingshu, L.; Ping, L.; Jun, D.; Jie, L.; Bo, C.; Su, M. Protective effect of CD4+CD25highCD127low regulatory T cells in renal ischemia–reperfusion injury. Cell. Immunol. 2014, 289, 106–111. [Google Scholar] [CrossRef]
- Gandolfo, M.T.; Jang, H.R.; Bagnasco, S.M.; Ko, G.-J.; Agreda, P.; Satpute, S.R.; Crow, M.T.; King, L.S.; Rabb, H. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 2009, 76, 717–729. [Google Scholar] [CrossRef] [Green Version]
- Ramani, K.; Jawale, C.V.; Verma, A.; Coleman, B.M.; Kolls, J.K.; Biswas, P.S. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. JCI Insight 2018, 3, e98241. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, P.; Collett, J.A.; McKinney, S.D.; Stevens, J.; Ivancic, C.M.; Basile, D.P. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: Compensatory role of natural killer cells in athymic rats. Am. J. Physiol. Physiol. 2017, 312, F385–F397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolff, S.; Witzke, O.; Wilde, B. Th17 cells in renal inflammation and autoimmunity. Autoimmun. Rev. 2018, 18, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; DESIRE Trial Investigators; Miyamoto, K.; Shima, N.; Kato, S.; Kawazoe, Y.; Ohta, Y.; Morimoto, T.; Yamamura, H. Dexmedetomidine improved renal function in patients with severe sepsis: An exploratory analysis of a randomized controlled trial. J. Intensiv. Care 2020, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewayani, A.; Fauzia, K.; Alfaray, R.; Waskito, L.; Doohan, D.; Rezkitha, Y.; Abdurachman, A.; Kobayashi, T.; I’Tishom, R.; Yamaoka, Y.; et al. The Roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori Infection and Gastrointestinal Inflammation: A Review. Toxins 2021, 13, 315. [Google Scholar] [CrossRef]
- Nalesso, F.; Cattarin, L.; Gobbi, L.; Fragasso, A.; Garzotto, F.; Calò, L.A. Evaluating Nephrocheck® as a Predictive Tool for Acute Kidney Injury. Int. J. Nephrol. Renov. Dis. 2020, 13, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Hahn, R.G.; Yanase, F.; Zdolsek, J.H.; Tosif, S.H.; Bellomo, R.; Weinberg, L. Serum Creatinine Levels and Nephrocheck® Values with and Without Correction for Urine Dilution-A Multicenter Observational Study. Front. Med. 2022, 9, 847129. [Google Scholar] [CrossRef]
- Jia, J.; Gong, X.; Zhao, Y.; Yang, Z.; Ji, K.; Luan, T.; Zang, B.; Li, G. Autophagy Enhancing Contributes to the Organ Protective Effect of Alpha-Lipoic Acid in Septic Rats. Front. Immunol. 2019, 10, 1491. [Google Scholar] [CrossRef]
Total (n = 124) | SAKI Group (n = 60) | Sepsis-without-AKI Group (n = 64) | Test Value | p Value | |
---|---|---|---|---|---|
Male [n (%)] | 70 (56.5) | 38 (63.3) | 32 (50.0) | 2.239 | 0.135 |
Age—year (median [Q1, Q2]) | 67.50 (55.00, 75.00) | 67.50 (54.00, 76.00) | 67.50 (56.25, 74.50) | −0.130 | 0.896 |
BMI—kg/m2 (mean ± SD) | 23.70 ± 4.79 | 23.33 ± 4.76 | 23.95 ± 4.84 | 0.586 | 0.559 |
Comorbidities | |||||
Hypertension [n (%)] | 74 (59.7) | 40 (66.7) | 34 (53.1) | 2.360 | 0.124 |
Diabetes [n (%)] | 36 (29.0) | 22 (36.7) | 14 (21.9) | 3.289 | 0.070 |
CKD [n (%)] | 20 (16.1) | 10 (16.7) | 10 (15.6) | 0.025 | 0.875 |
Chronic cardiovascular disease [n (%)] | 50 (40.3) | 26 (43.3) | 24 (37.5) | 0.438 | 0.508 |
Chronic lung disease [n (%)] | 16 (12.9) | 10 (16.7) | 6 (9.4) | 1.465 | 0.226 |
Chronic liver disease [n (%)] | 8 (6.5) | 2 (3.3) | 6 (9.4) | 1.873 | 0.171 |
Nervous system disease [n (%)] | 36 (29.0) | 14 (23.3) | 22 (34.4) | 1.832 | 0.176 |
Rheumatic system disease [n (%)] | 4 (3.2) | 2 (3.3) | 2 (3.1) | 0.004 | 0.948 |
Malignant tumor [n (%)] | 38 (30.6) | 16 (26.7) | 22 (34.4) | 0.866 | 0.352 |
Physiological parameters | |||||
SOFA score (median [Q1, Q2]) | 7.00 (4.00, 8.00) | 8.00 (6.00, 11.00) | 4.50 (3.00, 7.00) | −5.554 | 0.000 *** |
APACHEII score (median [Q1, Q2]) | 20.00 (15.00, 25.00) | 20.50 (15.00, 25.00) | 20.00 (15.00, 25.00) | −0.271 | 0.787 |
Septic shock [n (%)] | 84 (67.7) | 46 (76.7) | 38 (59.4) | 4.237 | 0.040 * |
Numbers of organs with injuries caused by infection (median [Q1, Q2]) | 3 (2, 5) | 4 (3, 5) | 2 (1, 3) | −6.138 | 0.000 *** |
Site of infection | |||||
respiratory system [n (%)] | 58 (46.8) | 22 (36.7) | 36 (56.3) | 4.770 | 0.029 * |
urinary system [n (%)] | 20 (16.1) | 18 (30.0) | 2 (3.1) | 16.534 | 0.000 *** |
gastrointestinal [n (%)] | 4 (3.2) | 4 (6.7) | 0 (0) | 4.409 | 0.036 * |
biliary tract [n (%)] | 6 (4.8) | 4 (6.7) | 2 (3.1) | 0.844 | 0.358 |
Thoracic and abdominal cavity [n (%)] | 84 (67.7) | 32 (53.5) | 52 (81.3) | 11.044 | 0.001 ** |
bloodstream [n (%)] | 4 (3.2) | 2 (3.3) | 2 (3.1) | 0.004 | 0.948 |
skin and soft tissue [n (%)] | 2 (1.6) | 0 (0) | 2 (3.1) | 1.906 | 0.167 |
central nervous system [n (%)] | 4 (3.2) | 0 (0) | 4 (6.3) | 3.875 | 0.049 * |
NAGL—ng/ mL(median [Q1, Q2]) | 60.021 (53.190, 75.104) | 74.101 (60.013, 80.943) | 54.676 (51.057, 61.933) | −5.161 | 0.000 *** |
Urine output—L/24 h (median [Q1, Q2]) | 1.81 (1.15, 2.47) | 1.21 (0.38, 2.21) | 2.02 (1.37, 2.67) | −3.120 | 0.002 ** |
Cr—umol/L (median [Q1, Q2]) | 80.55 (59.80, 128.10) | 130.55 (100.40, 229.65) | 63.70 (50.28, 74.13) | −8.081 | 0.000 *** |
BUN—mmol/L (median [Q1, Q2]) | 9.92 (5.89, 15.12) | 12.90 (10.22, 21.89) | 6.34 (4.38, 8.42) | −5.821 | 0.000 *** |
PCT—ng/ mL(median [Q1, Q2]) | 2.91 (0.70, 19.40) | 19.07 (3.31, 33.84) | 1.31 (0.55, 4.44) | −5.594 | 0.000 *** |
Lac—mmol/L (median [Q1, Q2]) | 1.50 (1.10, 2.00) | 1.80 (1.15, 3.08) | 1.40 (1.00, 1.83) | −3.054 | 0.002 ** |
OI (median [Q1, Q2]) | 248.00 (180.00, 342.00) | 245.00 (184.50, 368.75) | 257.00 (178.25, 325.75) | −0.760 | 0.447 |
WBC—x109/L (median [Q1, Q2]) | 11.57 (8.17, 16.77) | 12.49 (7.99, 22.18) | 12.02 (8.28, 14.59) | −1.180 | 0.238 |
GR—x109/L (median [Q1, Q2]) | 10.29 (6.84, 15.09) | 11.45 (7.08, 20.03) | 10.41 (6.78, 12.92) | −1.600 | 0.110 |
LY—x109/L (median [Q1, Q2]) | 0.72 (0.50, 1.08) | 0.72 (0.47, 1.28) | 0.87 (0.54, 1.13) | −0.720 | 0.471 |
NLR (median [Q1, Q2]) | 13.31 (8.72, 20.56) | 16.65 (0.24, 32.78) | 11.80 (7.71, 18.40) | −2.680 | 0.007 ** |
Immune indexes | |||||
T-lymphocyte ratio—% (median [Q1, Q2]) | 69.01 (62.58, 78.81) | 68.81 (55.49, 75.65) | 70.59 (62.91, 83.97) | −1.301 | 0.193 |
CD4+ T-lymphocyte ratio—% (median [Q1, Q2]) | 40.50 (27.72, 50.74) | 39.72 (27.88, 49.54) | 42.79 (26.69, 51.18) | −0.410 | 0.682 |
Treg cell ratio—% (median [Q1, Q2]) | 1.40 (0.77, 2.25) | 1.34 (0.59, 2.32) | 1.49 (0.86, 2.23) | −0.510 | 0.610 |
Th17 cell ratio—% (median [Q1, Q2]) | 0.13 (0.08, 0.23) | 0.15 (0.11, 0.24) | 0.09 (0.06, 0.19) | −3.511 | 0.000 *** |
Th17/Treg ratio (median [Q1, Q2]) | 0.10 (0.05, 0.21) | 0.11 (0.07, 0.28) | 0.06 (0.05, 0.16) | −3.240 | 0.001 ** |
IL10—pg/ mL(median [Q1, Q2]) | 25.55 (10.70, 63.84) | 35.55 (25.46, 109.01) | 14.48 (7.41, 37.94) | −4.541 | 0.000 *** |
IL17—pg/ mL(median [Q1, Q2]) | 2.70 (1.03, 6.48) | 4.87 (2.03, 12.02) | 1.71 (0.70, 3.32) | −4.399 | 0.000 *** |
TNF-α—pg/ mL(median [Q1, Q2]) | 6.48 (4.03, 11.16) | 8.51 (4.05, 12.98) | 5.59 (3.95, 10.55) | −0.403 | 0.687 |
General outcomes | |||||
28-day mortality [n (%)] | 20 (16.1) | 10 (16.7) | 10 (15.6) | 0.025 | 0.875 |
Hospital length of stay in days (median [Q1, Q2]) | 15.00 (10.00, 35.00) | 15.50 (8.00, 32.00) | 14.50 (10.00, 39.50) | −0.671 | 0.502 |
ICU length of stay in days (median [Q1, Q2]) | 10.00 (6.00, 17.00) | 9.50 (7.00, 17.00) | 10.00 (5.00, 17.50) | −0.802 | 0.423 |
Expenses in ICU—CNY ten thousand (median [Q1, Q2]) | 7.06 (3.47, 14.08) | 7.90 (4.04, 17.84) | 5.69 (3.46, 13.64) | −1.430 | 0.153 |
Treatments during hospitalization | |||||
ventilator [n (%)] | 72 (58.1) | 36 (60.0) | 36 (56.3) | 0.179 | 0.672 |
vasoactive drugs [n (%)] | 78 (62.9) | 44 (73.3) | 34 (53.1) | 5.420 | 0.020 |
blood transfusion [n (%)] | 38 (30.6) | 28 (46.7) | 10 (15.6) | 14.040 | 0.000 *** |
Univariable Logistic Regression | Multivariable Logistic Regression | |||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
SOFA | 1.49 (1.27–1.75) | 0.000 *** | 1.41 (1.13–1.75) | 0.002 ** |
Septic shock | 0.45 (0.20–0.97) | 0.042 * | ||
Infection of respiratory system | 2.22 (1.08–4.57) | 0.030 * | ||
Infection of urinary system | 0.08 (0.02–0.34) | 0.001 ** | ||
Infection of gastrointestinal | - | 0.999 | ||
Infection of thoracic and abdominal cavity | 3.79 (1.69–8.50) | 0.001 ** | ||
Infection of central nervous system | - | 0.999 | ||
Number of organ dysfunctions caused by infection | 2.44 (1.78–3.36) | 0.000 *** | ||
Use of vasoactive drugs | 0.41 (0.19–0.88) | 0.021 * | ||
Use of blood transfusion | 0.21 (0.09–0.49) | 0.000 *** | ||
NAGL | 1.06 (1.03–1.09) | 0.000 *** | 1.08 (1.03–1.31) | 0.000 *** |
Urine output | 0.58 (0.41–0.82) | 0.002 ** | ||
Cr | 1.04 (1.02–1.060) | 0.000 *** | ||
BUN | 1.26 (1.15–1.39) | 0.000 *** | ||
PCT | 1.09 (1.05–1.14) | 0.000 *** | 1.07 (1.02–1.13) | 0.002 ** |
Lac | 1.33 (1.04–1.72) | 0.022 * | ||
NLR | 1.01 (0.99–1.02) | 0.249 | ||
Th17 | 95.39 (3.45–2600.43) | 0.007 ** | ||
IL-10 | 1.01 (1.00–1.01) | 0.021 * | 0.99 (0.98–1.00) | 0.266 |
IL-17 | 1.15 (1.06–1.24) | 0.006 ** | 1.12 (1.00–1.25) | 0.054 |
Th17/Treg ratio | 46.63 (2.93–741.578) | 0.001 ** | 144.99 (1.20–17,383.77) | 0.034 * |
Odds Ratio (95% CI) | p Value | |
---|---|---|
High Th17/Treg ratio | 8.16 (1.89–35.14) | 0.005 ** |
SOFA | 1.36 (1.10–1.70) | 0.005 ** |
PCT | 1.10 (1.04–1.15) | 0.000 *** |
NAGL | 1.06 (1.02–1.11) | 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yao, J.; Lin, J.; Liu, J.; Dong, L.; Duan, M. Th17/Regulatory T-Cell Imbalance and Acute Kidney Injury in Patients with Sepsis. J. Clin. Med. 2022, 11, 4027. https://doi.org/10.3390/jcm11144027
Zhou X, Yao J, Lin J, Liu J, Dong L, Duan M. Th17/Regulatory T-Cell Imbalance and Acute Kidney Injury in Patients with Sepsis. Journal of Clinical Medicine. 2022; 11(14):4027. https://doi.org/10.3390/jcm11144027
Chicago/Turabian StyleZhou, Xiao, Jingyi Yao, Jin Lin, Jingfeng Liu, Lei Dong, and Meili Duan. 2022. "Th17/Regulatory T-Cell Imbalance and Acute Kidney Injury in Patients with Sepsis" Journal of Clinical Medicine 11, no. 14: 4027. https://doi.org/10.3390/jcm11144027
APA StyleZhou, X., Yao, J., Lin, J., Liu, J., Dong, L., & Duan, M. (2022). Th17/Regulatory T-Cell Imbalance and Acute Kidney Injury in Patients with Sepsis. Journal of Clinical Medicine, 11(14), 4027. https://doi.org/10.3390/jcm11144027