Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies
Abstract
:1. Introduction
2. Methods
3. Preclinical Studies
4. Clinical Studies
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, F.D.; Vercelli, D. Asthma. Lancet 2013, 382, 1360–1372. [Google Scholar] [CrossRef]
- Yang, J.M.; Koh, H.Y.; Moon, S.Y.; Yoo, I.K.; Ha, E.K.; You, S.; Kim, S.Y.; Yon, D.K.; Lee, S.W. Allergic disorders and susceptibility to and severity of COVID-19: A nationwide cohort study. J. Allergy Clin. Immunol. 2020, 146, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Hartmann-Boyce, J.; Gunnell, J.; Drake, J.; Otunla, A.; Suklan, J.; Schofield, E.; Kinton, J.; Inada-Kim, M.; Hobbs, F.D.R.; Dennison, P. Asthma and COVID-19: Review of evidence on risks and management considerations. BMJ Evid. Based Med. 2021, 26, 195. [Google Scholar] [CrossRef]
- Centers for Disease Control. Most Recent National Asthma Data. Available online: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm (accessed on 6 June 2022).
- Korea Disease Control and Prevention Agency. Korea National Health and Nutrition Examination Survey. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_11702_N112&conn_path=I2 (accessed on 6 June 2022).
- Kim, B.K.; Kim, J.Y.; Kang, M.K.; Yang, M.S.; Park, H.W.; Min, K.U.; Cho, S.H.; Kang, H.R. Allergies are still on the rise? A 6-year nationwide population-based study in Korea. Allergol. Int. 2016, 65, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salpeter, S.R.; Buckley, N.S.; Ormiston, T.M.; Salpeter, E.E. Meta-analysis: Effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann. Intern. Med. 2006, 144, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Available online: www.ginasthma.org (accessed on 6 June 2022).
- Slader, C.A.; Reddel, H.K.; Jenkins, C.R.; Armour, C.L.; Bosnic-Anticevich, S.Z. Complementary and alternative medicine use in asthma: Who is using what? Respirology 2006, 11, 373–387. [Google Scholar] [CrossRef]
- Land, M.H.; Wang, J. Complementary and Alternative Medicine Use among Allergy Practices: Results of a Nationwide Survey of Allergists. J. Allergy Clin. Immunol. Pract. 2018, 6, 95–98.e93. [Google Scholar] [CrossRef]
- Chan, H.H.L.; Ng, T. Traditional Chinese Medicine (TCM) and Allergic Diseases. Curr. Allergy Asthma. Rep. 2020, 20, 67. [Google Scholar] [CrossRef]
- Gong, T. Shoushibaoyuan; Renminweishengchubanshe: Beijing, China, 1994; pp. 169–170. [Google Scholar]
- Hwang, D.Y. Bangyak Happyeon; Uihakchulpansa: Seoul, Korea, 1964; p. 38. [Google Scholar]
- Roh, G.S.; Seo, S.W.; Yeo, S.; Lee, J.M.; Choi, J.W.; Kim, E.; Shin, Y.; Cho, C.; Bae, H.; Jung, S.K.; et al. Efficacy of a traditional Korean medicine, Chung-Sang-Bo-Ha-Tang, in a murine model of cssshronic asthma. Int. Immunopharmacol. 2005, 5, 427–436. [Google Scholar] [CrossRef]
- Jung, S.K.; Jung, H.J.; Lee, J.S.; Lee, K.Y.; Jeong, S.Y.; Rhee, H.K.; Choi, J.Y. The Clinical Effects of Gamichuongsangboha-tang(Jiaweiqingshangbuxia-tang) extract in Asthmatic Patients Based on Severity. J. Korean Med. 2004, 25, 110–118. [Google Scholar]
- Jeong, S.Y.; Lee, J.S.; Choi, J.Y.; Lee, K.Y.; Jung, H.J.; Rhee, H.K.; Bae, H.S.; Jung, S.K. Clinical Effect of AF-365 for maintenance therapy in chronic stages of asthmas. J. Int. Korean Med. 2005, 26, 1–11. [Google Scholar]
- Jung, K.H.; Choi, H.L.; Park, S.J.; Lee, G.H.; Kim, M.R.; Min, J.K.; Min, B.I.; Bae, H. The effects of the standardized herbal formula PM014 on pulmonary inflammation and airway responsiveness in a murine model of cockroach allergen-induced asthma. J. Ethnopharmacol. 2014, 155, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K. An Experimental Studies on the Effects of Gamichungsangbohatang on Asthma. J. Korean Med. 1991, 12, 118–138. [Google Scholar]
- Kim, Y.T.; Ha, H.K.; Kim, C.S. Development of an animal model for chronic asthma using Chungsangboha-tang. Korea J. Orient. Med. 1999, 5, 1–15. [Google Scholar]
- Kwon, H.S.; Jung, H.J.; Jung, S.K.; Rhee, H.K. A Study on the Effects of Chungsangboha-tang on Allergic Asthma in Respiratory Pattern and Change of Eosinophil Infiltration in Tracheal Mucosa. Kyunghee Univ. Orient. Med. J. 1999, 22, 203–215. [Google Scholar]
- Kim, Y.W.; Jung, H.J.; Jung, S.K.; Rhee, H.K. The Effect of Jeongcheon-tang and Cheongsangboha-tang on IL-4, IL-5, IL-6 and IL-10 in Asthma Model. J. Int. Korean Med. 2001, 22, 367–378. [Google Scholar]
- Park, Y.S.; Bae, H.S.; Hong, M.C.; Shin, M.K. Effects of Chungsangboha-tang on Activity of Naive CD4+ T cell. J. Physiol. Pathol. Korean Med. 2002, 16, 801–809. [Google Scholar]
- Woo, Y.S.; Kim, J.I.; Kang, P.K.; Park, D.I. The Effects of Kamichungsangboha-tang on the Respiratory Patterns and Tracheal Tissues in Allergic Asthma. J. Physiol. Pathol. Korean Med. 2002, 16, 1217–1222. [Google Scholar]
- Heo, T.S.; Ko, E.J.; Jung, H.J.; Rhee, H.K.; Bae, H.S.; Jung, S.K. Studying of the Effects of Gamichungsangboha-tang water-extract and ethanol-extract on IFN-γ, IL-4, T-bet, GATA-3, c-maf in Asthma Model. J. Int. Korean Med. 2006, 27, 40–54. [Google Scholar]
- Jeong, S.Y.; Lee, S.H.; Hwang, J.H.; Lee, K.Y.; Kim, J.J.; Jung, H.J.; Rhee, H.K.; Bae, H.S.; Jung, S.K. The Inhibitory effects of hot water and ethanol extract of Gamichungsangboha-tang on cytokines related to asthma. J. Int. Korean Med. 2006, 27, 521–532. [Google Scholar]
- Jeong, S.Y.; Lee, S.H.; Roh, Y.L.; Kim, J.H.; Jung, H.J.; Jung, S.K. Inhibitory effects of Gamichungsangbohatang on chemokines related asthma in A549 human epithelial cells. Orient. Pharm. Exp. Med. 2008, 7, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Amlani, S.; Nadarajah, T.; McIvor, R.A. Montelukast for the treatment of asthma in the adult population. Expert Opin. Pharmacother. 2011, 12, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira, A.L.; Russo, M.; Steil, A.A.; Facincone, S.; Mariano, M.; Jancar, S. A new murine model of pulmonary eosinophilic hypersensitivity: Contribution to experimental asthma. J. Allergy Clin. Immunol. 1997, 100, 383–388. [Google Scholar] [CrossRef]
- De Monchy, J.G.; Kauffman, H.F.; Venge, P.; Koeter, G.H.; Jansen, H.M.; Sluiter, H.J.; De Vries, K. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am. Rev. Respir. Dis. 1985, 131, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Kucharewicz, I.; Bodzenta-Lukaszyk, A.; Buczko, W. Experimental asthma in rats. Pharmacol. Rep. 2008, 60, 783–788. [Google Scholar]
- Passante, E.; Frankish, N. The RBL-2H3 cell line: Its provenance and suitability as a model for the mast cell. Inflamm. Res. 2009, 58, 737–745. [Google Scholar] [CrossRef]
- Ngoc, P.L.; Gold, D.R.; Tzianabos, A.O.; Weiss, S.T.; Celedon, J.C. Cytokines, allergy, and asthma. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Ueda, T.; Eda, F.; Arima, M.; Yoshida, N.; Fukuda, T. A549 cells can express interleukin-16 and stimulate eosinophil chemotaxis. Am. J. Respir. Cell Mol. Biol. 2001, 25, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Erger, R.A.; Casale, T.B. Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am. J. Physiol. 1995, 268, L117–L122. [Google Scholar] [CrossRef]
- Monteseirin, J. Neutrophils and asthma. J. Investig. Allergol. Clin. Immunol. 2009, 19, 340–354. [Google Scholar]
- Jung, S.K.; Rhee, H.K. A Clinical Observation of Gamichungsangboha-tang on Asthma. J. Kyung. Hee Univ. Med. Canter 1986, 2, 97–140. [Google Scholar]
- Rhee, H.K.; Jung, S.K.; Kwon, H.; Oh, T.H.; Hwang, E.O. Clinical observation for Hyo-chun. J. Korean Orient. Med. 1989, 10, 78–85. [Google Scholar]
- Jung, S.K.; Hwang, W.S.; Ju, C.Y.; Lee, J.S.; Cho, I.H.; Jung, H.J. Clinical Effects of Chuongsangboha-tang in Asthmatic Patients. J. Korean Med. 2002, 23, 151–160. [Google Scholar]
- Hwang, W.S.; Lee, J.S.; Ju, C.Y.; Jung, H.J.; Rhee, H.K.; Jung, S.K. An Analysis of Therapeutic Effects of Chungsangboha-tang in 36 Cases of Asthma Based on Criteria for Differentiating Syndromes of Asthma. J. Orient. Chr. Dis. 2002, 8, 53–63. [Google Scholar]
- Choi, J.Y.; Hwang, W.S.; Lee, J.S.; Jung, H.J.; Rhee, H.K.; Jung, S.K. An analysis of therapeutic effects of chungsangboha-tang in 36 cases of asthma based on criteria for deficiency-excess differentiation syndromes of asthma. J. Int. Korean Med. 2003, aut, 91–99. [Google Scholar]
- Hwang, W.S.; Choi, J.Y.; Lee, J.S.; Ju, C.Y.; Jung, H.J.; Rhee, H.K.; Jung, S.K. The Steroid Sparing Effect of Cheongsangboha-tang in Asthmatic Patients. J. Int. Korean Med. 2003, 24, 1–10. [Google Scholar]
- Hwang, W.S.; Choi, J.Y.; Lee, J.S.; Jung, H.J.; Rhee, H.K.; Jung, S.K. The Clinical Effects Following Discontinuation of Chungsangboha-tang (Qingshangbuxia-tang) Treatment in Patients with Controlled Asthma. J. Korean Med. 2003, 24, 184–191. [Google Scholar]
- Choi, J.Y.; Lee, J.S.; Jeong, S.Y.; Lee, J.S.; Lee, K.Y.; Jeong, S.Y.; Lee, K.K.; Jung, H.J.; Rhee, H.K.; Jung, S.K. Gamichungsangboha-tang and Th2 hypothesis-a theory of incompleteness. J. Int. Korean Med. 2004, spr, 28–40. [Google Scholar]
- Choi, J.Y.; Lee, J.S.; Jeong, S.Y.; Lee, J.S.; Lee, K.Y.; Jeong, S.Y.; Lee, K.K.; Jung, H.J.; Rhee, H.K.; Jung, S.K. An Analysis of Therapeutic Effects of Gamichungsangboha-tang in 30 Asthmatics Based on Criteria for Defiency-Excess Differentiating Syndromes of Asthma. J. Int. Korean Med. 2004, 25, 379–387. [Google Scholar]
- Lee, K.Y.; Jeong, S.Y.; Lee, J.S.; Choi, J.Y.; Jung, H.J.; Rhee, H.K.; Jung, S.K. The Clinical Changes Following Cessation of Gamichungsangboha-tang (Jiaweiqingshangbuxia-tang) extract Treatment in Patients with Controlled Asthma. J. Int. Korean Med. 2004, aut, 56–64. [Google Scholar]
- Bang, J.H.; Jung, H.J.; Jung, S.K. A Clinical Observation of Chungsangboha-tang’s Effects on Asthmatic Patients. J. Int. Korean Med. 2011, 32, 10–25. [Google Scholar]
- Baek, H.J.; Bhang, Y.H.; Kim, J.H.; Kim, S.J.; Kim, K.I.; Lee, B.J.; Jung, H.J.; Jung, S.K. A Retrospective Study of Chronic Pulmonary Disease Patients Treated with Chungsangboha-tang: IgE, eosinophil, PFT. J. Int. Korean Med. 2016, 37, 484–494. [Google Scholar] [CrossRef]
- Smith, H.R.; Irvin, C.G.; Cherniack, R.M. The utility of spirometry in the diagnosis of reversible airways obstruction. Chest 1992, 101, 1577–1581. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Boonpiyathad, T.; Sözener, Z.C.; Satitsuksanoa, P.; Akdis, C.A. Immunologic mechanisms in asthma. Semin. Immunol. 2019, 46, 101333. [Google Scholar] [CrossRef]
- Palmqvist, C.; Wardlaw, A.J.; Bradding, P. Chemokines and their receptors as potential targets for the treatment of asthma. Br. J. Pharmacol. 2007, 151, 725–736. [Google Scholar] [CrossRef]
- Feng, X.; Yang, Y.; Zheng, Y.; Song, J.; Hu, Y.; Xu, F. Effects of catalpol on asthma by airway remodeling via inhibiting TGF-β1 and EGF in ovalbumin-induced asthmatic mice. Am. J. Transl. Res. 2020, 12, 4084–4093. [Google Scholar]
- Chen, Y.; Zhang, Y.; Xu, M.; Luan, J.; Piao, S.; Chi, S.; Wang, H. Catalpol alleviates ovalbumin-induced asthma in mice: Reduced eosinophil infiltration in the lung. Int. Immunopharmacol. 2017, 43, 140–146. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Yang, X. Effects of catalpol on bronchial asthma and its relationship with cytokines. J. Cell. Biochem. 2019, 120, 8992–8998. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, B.-K.; Lee, Y.-C. Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma. J. Inflamm. 2012, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Suh, S.-J.; Yang, J.H.; Lu, Y.; Kim, S.J.; Kwon, S.; Jo, T.H.; Kim, J.W.; Park, Y.I.; Ahn, G.W.; et al. Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-κB and ERK1/2 inactivation. Food Chem. Toxicol. 2010, 48, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Athari, S.S. Targeting cell signaling in allergic asthma. Signal Transduct. Target. Ther. 2019, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Latin Name | Academic Name | Parts Used | Dose (g) |
---|---|---|---|
Rehmanniae Radix Preparata | Rehmannia glutinosa Liboschitz ex Steudel | Root | 4 |
Dioscoreae Rhizoma | Dioscorea batatas Decaisne | Rhizome | 4 |
Corni Fructus | Cornus officinalis Siebold et Zuccarini | Fruit | 4 |
Poria Sclerotium | Poria cocos Wolf | Sclerotium | 4 |
Moutan Radicis Cortex | Paeonia suffruticosa Andrews | Root bark | 4 |
Alismatis Rhizoma | Alisma orientale Juzepzuk | Rhizome | 4 |
Schisandrae Fructus | Schisandra chinensis (Turcz.) Baillon | Fruit | 3 |
Ponciri Fructus Immaturus | Poncirus trifoliata Rafinesque | Immature Fruit | 3 |
Liriopis seu Ophiopogonis Tuber | Liriope platyphylla Wang et Tang | Tuber | 3 |
Asparagi Tuber | Asparagus cochinchinensis Merrill | Tuber | 3 |
Fritillariae Thunbergii Bulbus | Fritillaria thunbergii Miquel | Bulb | 3 |
Platycodonis Radix | Platycodon grandiflorum A. De Candolle | Root | 3 |
Coptidis Rhizoma | Coptis japonica Makino | Rhizome | 3 |
Armeniacae Semen | Prunus armeniaca Linné var. ansu Maximowicz | Kernel | 3 |
Pinelliae Tuber | Pinellia ternate Breitenbach | Tuber | 3 |
Trichosanthis Semen | Trichosanthes kirilowii Maximowicz | Seed | 3 |
Scutellariae Radix | Scutellaria baicalensis Georgi | Root | 3 |
Glycyrrhizae Radix et Rhizoma | Glycyrrhiza uralensis Fischer | Root, Rhizome | 2 |
Total amount | 59 |
Latin Name | Academic Name | Parts Used | Dose (g) |
---|---|---|---|
Rehmanniae Radix Preparata | Rehmannia glutinosa Liboschitz ex Steudel | Root | 8 |
Dioscoreae Rhizoma | Dioscorea batatas Decaisne | Rhizome | 6 |
Corni Fructus | Cornus officinalis Siebold et Zuccarini | Fruit | 6 |
Poria Sclerotium | Poria cocos Wolf | Sclerotium | 4 |
Moutan Radicis Cortex | Paeonia suffruticosa Andrews | Root bark | 4 |
Alismatis Rhizoma | Alisma orientale Juzepzuk | Rhizome | 4 |
Schisandrae Fructus | Schisandra chinensis (Turcz.) Baillon | Fruit | 3 |
Ponciri Fructus Immaturus | Poncirus trifoliata Rafinesque | Immature Fruit | 3 |
Liriopis seu Ophiopogonis Tuber | Liriope platyphylla Wang et Tang | Tuber | 3 |
Asparagi Tuber | Asparagus cochinchinensis Merrill | Tuber | 3 |
Fritillariae Thunbergii Bulbus | Fritillaria thunbergii Miquel | Bulb | 3 |
Platycodonis Radix | Platycodon grandiflorum A. De Candolle | Root | 3 |
Coptidis Rhizoma | Coptis japonica Makino | Rhizome | 3 |
Armeniacae Semen | Prunus armeniaca Linné var. ansu Maximowicz | Kernel | 3 |
Pinelliae Tuber | Pinellia ternate Breitenbach | Tuber | 3 |
Trichosanthis Semen | Trichosanthes kirilowii Maximowicz | Seed | 3 |
Scutellariae Radix | Scutellaria baicalensis Georgi | Root | 3 |
Glycyrrhizae Radix et Rhizoma | Glycyrrhiza uralensis Fischer | Root, Rhizome | 2 |
Total amount | 67 |
First Author (Year) | Model | Species or Cell | Inducer | Dose/Route/Regimen | Results |
---|---|---|---|---|---|
Jung (1991) [18] | Vascular permeability response | SD rats (180–220 g) | Intradermal injection of histamine and serotonin | GMCSBHT * water extract 250.7 mg/100 g, p.o., 30 min prior to testing | GMCSBHT inhibited vascular permeability responses to intradermal histamine and serotonin |
Homologous PCA | SD rats (180–220 g) | Subcutaneous injection of IgE-like antibody against egg albumin | GMCSBHT * water extract 250.7 mg/100 g, p.o., 60 min prior to testing | GMCSBHT inhibited homologous PCA | |
Contact dermatitis | ICR mice (18–22 g) | Picryl chloride | GMCSBHT * water extract 250.7 mg/100 g, p.o., immediately before and 16 h after testing | GMCSBHT inhibited delayed-type hypersensitivity responses to picryl chloride | |
Delayed-type hypersensitivity | ICR mice (18–22 g) | Subcutaneous injection of SRBC | GMCSBHT * water extract 250.7 mg/100 g, p.o., immediately before and 6 h after testing | GMCSBHT inhibited delayed-type hypersensitivity responses to SRBC | |
Kim (1999) [19] | Allergic asthma | Male SD rats (200–300 g) | OVA aerosol (6 times every 3 days) | CSBHT * concentrate 5 g/kg/d, p.o. for 15 days | CSBHT
|
Kwon (1999) [20] | Allergic asthma | Male SD rats (250 g) | OVA aerosol | CSBHT water extract 196.3 mg/100 g, p.o. for 14 d, 3 h before challenge | CSBHT
|
Kim (2001) [21] | Asthma | RBL–2H3 cell lines | Calcium ionophore | CSBHT water extract 0.1%, 3 times every 24 h | CSBHT inhibited the transcription of IL-4, IL-5, and IL-6 mRNA expression |
Park (2002) [22] | - | Spleen lymphocytes from female BALB/c mice | Concanavalin A | CSBHT ethanol extract 0, 1, 10, 20, 50, and 200 μg/mL for 48 h | CSBHT
|
Anti-CD3e/anti-CD28 antibody | CSBHT ethanol extract 0, 10, and 100 μg/mL for 48 h | ||||
CD4+ T cells of spleen cells from female BALB/c mice | Anti-CD3e/anti-CD28 antibody | CSBHT ethanol extract 0, 1, 2, 5, 10, and 20 μg/mL for 48 h CSBHT ethanol extract 0, 1, and 5 μg/mL for 48 h CSBHT ethanol extract 0, 1, 5, and 20 μg/mL for 72 h | |||
Woo (2002) [23] | Allergic asthma | Male SD rats (250 g) | OVA aerosol | GMCSBHT * water extract 196.3 mg/100 g, p.o. for 14 d, 3 h before challenge | GMCSBHT
|
Roh (2005) [14] | Chronic asthma | Female BALB/c mice (5 weeks old) | OVA aerosol (30 min/day, 3 days/week for 6 weeks) | CSBHT ethanol extract 1000 mg/kg, p.o. for 14 days before challenge | CSBHT
|
Heo (2006) [24] | - | CD4+ T cells of spleen cells from female BALB/c mice | rIL-2, anti-IL-4, and rIL-12 | GMCSBHT water and ethanol extract 1, 10 μg/mL | GMCSBHT water extract increased IFN-γ levels and inhibited mRNA expression levels of IL-4 and GATA-3 under Th1-polarizing conditions |
rIL-2, anti-IL-12, and rIL-4 | GMCSBHT water and ethanol extract 1 and 10 μg/mL | GMCSBHT ethanol extract decreased IL-4 levels and inhibited mRNA expression levels of IFN-γ, IL-4, GATA-3, and c-Maf under Th2-polarizing conditions | |||
Jeong (2006) [25] | - | A549 cells | TNF-α and IL-4 | GMCSBHT hot water and ethanol extract 0.1, 1, 10, 100, and 1000 μg/mL | GMCSBHT hot water and ethanol extracts inhibited the chemokines CCL11 and IL-8. GMCSBHT ethanol extract showed a stronger secretion inhibition effect for CCL11 and IL-8 than the hot water extract. |
Jeong (2008) [26] | - | A549 cells | TNF-α, IL-4, and IL-1β | GMCSBHT ethanol extract 0, 0.1, 1, 10, 100, and 1000 μg/mL | GMCSBHT inhibited secretion of CCL5, CCL11, and IL-8, without inhibition of IL-16 |
Jung (2014) [17] | Asthma | BALB/c mice (6–7 weeks old, 20–25 g) | Intraperitoneal injections with cockroach allergen | PM014 50, 100, and 200 mg/kg, p.o. 2 h before challenge | PM014
|
First Author (Year) | Study Type | Sample (Follow-Up) | Treatment | Duration of Administration | Evaluation | Result |
---|---|---|---|---|---|---|
Jung (1986) [36] | CS | 62 (27) | CSBHT * | Mostly 1~9 days | Total effective rate of general symptom | 85.2% (23/27) of patients showed improvement |
Rhee (1989) [37] | CS | 554 (358) | CSBHT * (n = 194) Gamijinhae-tang (n = 100) Gamimaekdong-tang (n = 89) Jeongcheonhwadamganggi-tang (n = 41) Others (n = 29) | Mostly 1~9 days | Total effective rate of general symptom | 79.9% (286/358) of patients showed improvement |
Jung (2002), [38] Hwang (2002), [39] Choi (2003) [40] | BAS | 36 | CSBHT decoction (Patients were divided into two groups according to the TCM pattern in the main analysis—ESG and DSG. There were groups according to the TCM pattern in subgroup analysis—phlegm-dampness, phlegm-heat, cold-phlegm, external contraction to wind-cold, heart and kidney deficiency, upper excess and lower deficiency, and lung deficiency | 4 weeks | PFT, QLQAKA, blood eosinophil count, and serum IgE, IL-4, IL-5, and IFN-γ levels | Overall patients: FEV1, PEFR, and QLQAKA total score increased, and IFN-γ decreased DSG: QLQAKA total score increased ESG: QLQAKA total score (2 weeks) increased Heart and kidney deficiency group: PEFR and QLQAKA total scores increased IFN-γ decreased Phlegm-dampness group and phlegm-heat group: QLQAKA total score increased |
Hwang (2003) [41] | BAS | 36 | CSBHT decoction (patients were divided into two groups according to the use of steroids: ICSG and NICSG | 4 weeks | PFT, QLQAKA, blood eosinophil count, serum IgE, IL-4, IL-5, and IFN-γ levels, changes in inhaled corticosteroid dose, and number of users | Overall patients: FEV1, PEFR, and QLQAKA total scores increased IFN-γ decreased NICSG: FVC, FEV1, PEFR, and QLQAKA total score (2 weeks) increased, and IFN-γ decreased ICSG: QLQAKA increased Steroid-sparing effect (8/13 discontinued, 5/13 reduced dose more than half) |
Hwang (2003) [42] | BAS | 36 (24) | CSBHT decoction | 4 weeks | PFT, QLQAKA, blood eosinophil count, serum IgE, IL-4, IL-5, and IFN-γ levels (3 months after discontinuing CSBHT) | No significant change in FEV1 and PEFR from baseline QLQAKA total score decreased |
Choi (2004) [43] | BAS | 32 (30) | GMCSBHT extract (patients were divided into two groups according to eosinophil counts (NEG andAEG), and according to IgE levels (NIG and AIG) | 4 weeks | PFT, QLQAKA, blood eosinophil count, and serum IgE, IL-4, IL-5, and IFN-γ levels | Overall patients: FEV1, PEFR, IL-4, and QLQAKA total scores increased NEG: FEV1, PEFR, blood eosinophil, IL-4, and QLQAKA total score (2 weeks) increased AEG: PEFR and QLQAKA total score increased NIG: FEV1 and IL-4 increased AIG: PEFR, IL-4, and QLQAKA total score increased |
Jung (2004) [15] | BAS | 32 (30) | GMCSBHT extract (patients were divided into four groups according to the GINA classification: step 1, step 2, step 3, and step 4 | 4 weeks | PFT and QLQAKA | Overall patients: FEV1, PEFR, and QLQAKA total scores increased Step 3: QLQAKA total score increased Step 4: FEV1 and PEFR increased |
Choi (2004) [44] | BAS | 32 (30) | GMCSBHT extract (Patients were divided into three groups according to the TCM pattern—ESG, DSG, and CSG | 4 weeks | PFT and QLQAKA | Overall patients: FEV1, PEFR, and QLQAKA total scores increased DSG: QLQAKA total score (2 weeks), FEV1, and PEFR increased ESG: QLQAKA total score (4 weeks), FEV1, and PEFR increased CSG: no significant change in QLQAKA total score and PFT |
Lee (2004) [45] | BAS | 30 (27) | GMCSBHT extract | 4 weeks | PFT and QLQAKA (4 weeks after discontinuing GMCSBHT) | FEV1, PEFR, and QLQAKA total score increased from baseline, but there was no significant change from before discontinuation |
Jeong (2005) [16] | BAS | 30 (27) | AF-365 extract (patients were divided into four groups according to the GINA classification: step 1, step 2, step 3, and step 4 | 4 weeks | PFT and QLQAKA | Overall patients: PEFR and QLQAKA total score (2 weeks) increased Step 3: PEFR increased, QLQAKA total score (4 weeks) decreased Step 4: QLQAKA total score (2 weeks) increased |
Bang (2011) [46] | CS | 107(66) | CSBHT decoction (patients were divided into three groups according to treatment periods (<4 weeks, 4–8 weeks, and ≥8 weeks), and two groups according to the use of steroids (ICSG and NICSG) | Various(min-max, 1–216 weeks; mean ± SD, 27.02 ± 36.09 weeks) | PFT, blood eosinophil count, and serum IgE, AST, and ALT levels | Overall patients: FVC and FEV1 increased IgE decreased AST and ALT decreased within the normal range <4 weeks: FVC and FEV1 increased 4–8 weeks: FEV1 increased ICSG: no significant change NICSG: FVC and FEV1 increased IgE decreased ≥8 weeks: IgE decreased |
Baek (2016) [47] | CS | 51 | CSBHT decoction or extract (patients were divided into four groups according to treatment periods (<4 weeks, 4–8 weeks, 8–12 weeks, and ≥12 weeks) | Various | Blood eosinophil count, serum IgE level (51 patients), AST and ALT levels (44 patients) level, and PFT (11 patients) | Overall patients: IgE decreased FEV1, FVC, FEV1/FVC increased ≥12 weeks: IgE decreased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-W.; Kim, K.-I.; Bu, Y.; Lee, B.-J.; Jung, H.-J. Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies. J. Clin. Med. 2022, 11, 4035. https://doi.org/10.3390/jcm11144035
Kang S-W, Kim K-I, Bu Y, Lee B-J, Jung H-J. Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies. Journal of Clinical Medicine. 2022; 11(14):4035. https://doi.org/10.3390/jcm11144035
Chicago/Turabian StyleKang, Sung-Woo, Kwan-Il Kim, Youngmin Bu, Beom-Joon Lee, and Hee-Jae Jung. 2022. "Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies" Journal of Clinical Medicine 11, no. 14: 4035. https://doi.org/10.3390/jcm11144035
APA StyleKang, S. -W., Kim, K. -I., Bu, Y., Lee, B. -J., & Jung, H. -J. (2022). Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies. Journal of Clinical Medicine, 11(14), 4035. https://doi.org/10.3390/jcm11144035