Evaluation of Cardiovascular Risk Factors after Hepatitis C Virus Eradication with Direct-Acting Antivirals in a Cohort of Treatment-Naïve Patients without History of Cardiovascular Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Design and Selection Criteria
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Longitudinal Hepatic Changes
3.3. Longitudinal Extra-Hepatic Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Global Hepatitis Report; WHO, World Health Organization: Geneva, Switzerland, 2017; 83p. [Google Scholar]
- Chang, M.-L. Metabolic alterations and hepatitis C: From bench to bedside. World J. Gastroenterol. 2016, 22, 1461–1476. [Google Scholar] [CrossRef] [PubMed]
- Negro, F.; Craxì, A.; Sulkowski, M.S.; Feld, J.J.; Manns, M.P. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology 2015, 149, 1345–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggott, J.E.; Tamura, T. Homocysteine, Iron and Cardiovascular Disease: A Hypothesis. Nutrients 2015, 7, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petta, S.; Bellia, C.; Mazzola, A.; Cabibi, D.; Cammà, C.; Caruso, A.; Di Marco, V.; Craxì, A.; Ciaccio, M. Methylenetetrahydrofolate reductase homozygosis and low-density lipoproteins in patients with genotype 1 chronic hepatitis C. J. Viral Hepat. 2011, 19, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Lott, W.B.; Takyar, S.S.; Tuppen, J.; Crawford, D.H.G.; Harrison, M.; Sloots, T.P.; Gowans, E.J. Vitamin B12 and hepatitis C: Molecular biology and human pathology. Proc. Natl. Acad. Sci. USA 2001, 98, 4916–4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bisceglie, A.M.; Axiotis, C.A.; Hoofnagle, J.H.; Bacon, B.R. Measurements of iron status in patients with chronic hepatitis. Gastroenterology 1992, 102, 2108–2113. [Google Scholar] [CrossRef]
- González-Reimers, E.; Quintero-Platt, G.; Martín-González, C.; Pérez-Hernández, O.; Romero-Acevedo, L.; Santolaria-Fernández, F. Thrombin activation and liver inflammation in advanced hepatitis C virus infection. World J. Gastroenterol. 2016, 22, 4427–4437. [Google Scholar] [CrossRef]
- Borroni, G.; Andreoletti, M.; Casiraghi, M.A.; Ceriani, R.; Guerzoni, P.; Omazzi, B.; Terreni, N.; Salerno, F. Effectiveness of pegylated interferon/ribavirin combination in ‘real world’ patients with chronic hepatitis C virus infection. Aliment. Pharmacol. Ther. 2008, 27, 790–797. [Google Scholar] [CrossRef]
- Asselah, T.; Marcellin, P.; Schinazi, R.F. Treatment of hepatitis C virus infection with direct-acting antiviral agents: 100% cure? Liver Int. 2018, 38, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Carrat, F.; Fontaine, H.; Dorival, C.; Simony, M.; Diallo, A.; Hezode, C.; De Ledinghen, V.; Larrey, D.; Haour, G.; Bronowicki, J.-P.; et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: A prospective cohort study. Lancet 2019, 393, 1453–1464. [Google Scholar] [CrossRef]
- Rinaldi, L.; Perrella, A.; Guarino, M.; De Luca, M.; Piai, G.; Coppola, N.; Pafundi, P.C.; Ciardiello, F.; Fasano, M.; Martinelli, E.; et al. Incidence and risk factors of early HCC occurrence in HCV patients treated with direct acting antivirals: A prospective multicentre study. J. Transl. Med. 2019, 17, 292. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Feld, J.J. What are the benefits of a sustained virologic response to direct-acting antiviral therapy for hepatitis C virus infection? Gastroenterology 2019, 156, 446–460. [Google Scholar] [CrossRef]
- Meissner, E.G.; Lee, Y.-J.; Osinusi, A.; Sims, Z.; Qin, J.; Sturdevant, D.; McHutchison, J.; Subramanian, M.; Sampson, M.; Naggie, S.; et al. Effect of sofosbuvir and ribavirin treatment on peripheral and hepatic lipid metabolism in chronic hepatitis C virus, genotype 1–infected patients. Hepatology 2015, 61, 790–801. [Google Scholar] [CrossRef]
- Chida, T.; Kawata, K.; Ohta, K.; Matsunaga, E.; Ito, J.; Shimoyama, S.; Yamazaki, S.; Noritake, H.; Suzuki, T.; Suda, T.; et al. Rapid Changes in Serum Lipid Profiles during Combination Therapy with Daclatasvir and Asunaprevir in Patients Infected with Hepatitis C Virus Genotype 1b. Gut Liver 2018, 12, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Endo, D.; Satoh, K.; Shimada, N.; Hokari, A.; Aizawa, Y. Impact of interferon-free antivirus therapy on lipid profiles in patients with chronic hepatitis C genotype 1b. World J. Gastroenterol. 2017, 23, 2355–2364. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Goto, T.; Iio, E.; Matsunami, K.; Fujiwara, K.; Shinkai, N.; Matsuura, K.; Matsui, T.; Nojiri, S.; Tanaka, Y. Changes in serum lipid profiles caused by three regimens of interferon-free direct-acting antivirals for patients infected with hepatitis C virus. Hepatol. Res. 2018, 48, E203–E212. [Google Scholar] [CrossRef] [Green Version]
- Graf, C.; Welzel, T.; Bogdanou, D.; Vermehren, J.; Beckel, A.; Bojunga, J.; Friedrich-Rust, M.; Dietz, J.; Kubesch, A.; Mondorf, A.; et al. Hepatitis C Clearance by Direct-Acting Antivirals Impacts Glucose and Lipid Homeostasis. J. Clin. Med. 2020, 9, 2702. [Google Scholar] [CrossRef]
- Townsend, K.; Meissner, E.G.; Sidharthan, S.; Sampson, M.; Remaley, A.T.; Tang, L.; Kohli, A.; Osinusi, A.; Masur, H.; Kottilil, S. Interferon-Free Treatment of Hepatitis C Virus in HIV/Hepatitis C Virus-Coinfected Subjects Results in Increased Serum Low-Density Lipoprotein Concentration. AIDS Res. Hum. Retrovir. 2016, 32, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.-Y.; Cheng, P.-N.; Tseng, C.-Y.; Tsai, W.-J.; Chiu, Y.-C.; Young, K.-C. Favouring modulation of circulating lipoproteins and lipid loading capacity by direct antiviral agents grazoprevir/elbasvir or ledipasvir/sofosbuvir treatment against chronic HCV infection. Gut 2017, 67, 1342–1350. [Google Scholar] [CrossRef]
- Mauss, S.; Berger, F.; Wehmeyer, M.H.; Ingiliz, P.; Hueppe, D.; Lutz, T.; Simon, K.G.; Schewe, K.; Rockstroh, J.K.; Baumgarten, A.; et al. Effect of Antiviral Therapy for HCV on Lipid Levels. Antivir. Ther. 2017, 22, 81–88. [Google Scholar] [CrossRef]
- González-Colominas, E.; Batlle, M.; Monge-Escartín, I.; Duran, X.; Viu, A.; de Antonio-Cuscó, M.; Grau, S.; Bessa, X.; Carrión, J.A. Impact of HCV cure with drug-acting antivirals in the use of concomitant medication and lipid profile: Follow-up data 2 years after the sustained virological response. Eur. J. Gastroenterol. Hepatol. 2020, 32, 214–222. [Google Scholar] [CrossRef]
- El Sagheer, G.; Soliman, E.; Ahmad, A.; Hamdy, L. Study of changes in lipid profile and insulin resistance in Egyptian patients with chronic hepatitis C genotype 4 in the era of DAAs. Libyan J. Med. 2018, 13, 1435124. [Google Scholar] [CrossRef] [Green Version]
- Drazilova, S.; Janicko, M.; Skladany, L.; Kristian, P.; Oltman, M.; Szantova, M.; Krkoska, D.; Mazuchova, E.; Piesecka, L.; Vahalova, V.; et al. Glucose Metabolism Changes in Patients with Chronic Hepatitis C Treated with Direct Acting Antivirals. Can. J. Gastroenterol. Hepatol. 2018, 2018, 6095097. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gordon, S.C.; Rupp, L.B.; Zhang, T.; Trudeau, S.; Holmberg, S.D.; Moorman, A.C.; Spradling, P.R.; Teshale, E.H.; Boscarino, J.A.; et al. Sustained virological response does not improve long-term glycaemic control in patients with type 2 diabetes and chronic hepatitis C. Liver Int. 2018, 39, 1027–1032. [Google Scholar] [CrossRef]
- Carvalho, J.R.; Velosa, J.; Serejo, F. Lipids, glucose and iron metabolic alterations in chronic hepatitis C after viral eradication–comparison of the new direct-acting antiviral agents with the old regimens. Scand. J. Gastroenterol. 2018, 53, 857–863. [Google Scholar] [CrossRef]
- Russo, F.P.; Zanetto, A.; Campello, E.; Bulato, C.; Shalaby, S.; Spiezia, L.; Gavasso, S.; Franceschet, E.; Radu, C.; Senzolo, M.; et al. Reversal of hypercoagulability in patients with HCV-related cirrhosis after treatment with direct-acting antivirals. Liver Int. 2018, 38, 2210–2218. [Google Scholar] [CrossRef]
- Tripodi, A.; D’Ambrosio, R.; Padovan, L.; Tosetti, G.; Aghemo, A.; Primignani, M.; Chantarangkul, V.; Peyvandi, F.; Colombo, M. Evaluation of coagulation during treatment with directly acting antivirals in patients with hepatitis C virus related cirrhosis. Liver Int. 2017, 37, 1295–1303. [Google Scholar] [CrossRef]
- Morales, A.L.; Junga, Z.; Singla, M.B.; Sjogren, M.; Torres, D. Hepatitis C eradication with sofosbuvir leads to significant metabolic changes. World J. Hepatol. 2016, 8, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Cicero, A.F.; Loggi, E.; Giovannini, M.; Conti, F.; Grandini, E.; Guarneri, V.; Scuteri, A.; Vitale, G.; Cursaro, C.; et al. Worsening of Serum Lipid Profile after Direct Acting Antiviral Treatment. Ann. Hepatol. 2018, 17, 64–75. [Google Scholar] [CrossRef]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Sanidad. Límites de Consumo de Bajo Riesgo de Alcohol. Actualización del Riesgo Relacionado con los Niveles de Consumo de Alcohol, el Patrón de Consumo y el Tipo de Bebida; Ministerio de Sanidad: Madrid, Spain, 2020. [Google Scholar]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Wai, C.-T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S.-F. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thi, V.L.D.; Granier, C.; Zeisel, M.B.; Guérin, M.; Mancip, J.; Granio, O.; Penin, F.; Lavillette, D.; Bartenschlager, R.; Baumert, T.F.; et al. Characterization of Hepatitis C Virus Particle Subpopulations Reveals Multiple Usage of the Scavenger Receptor BI for Entry Steps. J. Biol. Chem. 2012, 287, 31242–31257. [Google Scholar] [CrossRef] [Green Version]
- Diamond, D.L.; Syder, A.J.; Jacobs, J.M.; Sorensen, C.M.; Walters, K.-A.; Proll, S.C.; McDermott, J.E.; Gritsenko, M.A.; Zhang, Q.; Zhao, R.; et al. Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics. PLoS Pathog. 2010, 6, e1000719. [Google Scholar] [CrossRef] [Green Version]
- Voulgaris, T.; Sevastianos, V.A. Atherosclerosis as Extrahepatic Manifestation of Chronic Infection with Hepatitis C Virus. Hepat. Res. Treat. 2016, 2016, 7629318. [Google Scholar] [CrossRef] [Green Version]
- Williams-Nguyen, J.; Hawes, S.E.; Nance, R.M.; Lindström, S.; Heckbert, S.R.; Kim, H.N.; Mathews, W.C.; Cachay, E.R.; Budoff, M.; Hurt, C.B.; et al. Association between chronic Hepatitis C virus infection and myocardial infarction among people living with HIV in the United States. Am. J. Epidemiol. 2020, 189, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Sasso, F.C.; Pafundi, P.C.; Caturano, A.; Galiero, R.; Vetrano, E.; Nevola, R.; Petta, S.; Fracanzani, A.L.; Coppola, C.; Di Marco, V.; et al. Impact of direct acting antivirals (DAAs) on cardiovascular events in HCV cohort with pre-diabetes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2345–2353. [Google Scholar] [CrossRef]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Coppola, C.; Narciso, V.; Nevola, R.; Rinaldi, L.; Calvaruso, V.; Staiano, L.; Di Marco, V.; et al. Impact of hepatitis C virus clearance by direct-acting antiviral treatment on the incidence of major cardiovascular events: A prospective multicentre study. Atherosclerosis 2020, 296, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Soroida, Y.; Sato, M.; Hikita, H.; Kobayashi, T.; Endo, M.; Sato, M.; Gotoh, H.; Iwai, T.; Tateishi, R.; et al. Eradication of hepatitis C virus is associated with the attenuation of steatosis as evaluated using a controlled attenuation parameter. Sci. Rep. 2018, 8, 7845. [Google Scholar] [CrossRef]
- Cheng, P.-N.; Chen, J.-Y.; Chiu, Y.-C.; Chiu, H.-C.; Tsai, L.-M. Augmenting central arterial stiffness following eradication of HCV by direct acting antivirals in advanced fibrosis patients. Sci. Rep. 2019, 9, 11584. [Google Scholar] [CrossRef]
- Jain, A.; Kalra, B.S.; Srivastava, S.; Chawla, S. Effect of sofosbuvir and daclatasvir on lipid profile, glycemic control and quality of life index in chronic hepatitis C, genotype 3 patients. Indian J. Gastroenterol. 2019, 38, 39–43. [Google Scholar] [CrossRef]
- Ichikawa, T.; Miyaaki, H.; Miuma, S.; Taura, N.; Motoyoshi, Y.; Akahoshi, H.; Nakamura, J.; Takahashi, Y.; Honda, T.; Yajima, H.; et al. Changes in serum LDL, PCSK9 and microRNA 122 in patients with chronic HCV infection receiving Daclatasvir/Asunaprevir. Biomed. Rep. 2019, 10, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Doyle, M.-A.; Galanakis, C.; Mulvihill, E.; Crawley, A.; Cooper, C.L. Hepatitis C Direct Acting Antivirals and Ribavirin Modify Lipid but not Glucose Parameters. Cells 2019, 8, 252. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, C.S.; Sheehan, J.; Chairez, C.; Akoth, E.; Gross, C.; Silk, R.; Kattakuzhy, S.; Rosenthal, E.; Kottilil, S.; Masur, H.; et al. No Improvement in Hemoglobin A1c Following Hepatitis C Viral Clearance in Patients with and without HIV. J. Infect. Dis. 2017, 217, 47–50. [Google Scholar] [CrossRef]
- Beig, J.; Orr, D.; Harrison, B.; Gane, E. Hepatitis C Virus Eradication with New Interferon-Free Treatment Improves Metabolic Profile in Hepatitis C Virus-Related Liver Transplant Recipients. Liver Transplant. 2018, 24, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, A.; Ikeda, K.; Takai, A.; Takahashi, K.; Ueda, Y.; Marusawa, H.; Seno, H.; Inagaki, N.; Kokuryu, H. Hepatitis C Treatment with Sofosbuvir and Ledipasvir Accompanied by Immediate Improvement in Hemoglobin A1c. Digestion 2017, 96, 228–230. [Google Scholar] [CrossRef] [Green Version]
- Ciancio, A.; Bosio, R.; Bo, S.; Pellegrini, M.; Sacco, M.; Vogliotti, E.; Fassio, G.; Degerfeld, A.G.F.B.M.; Gallo, M.; Giordanino, C.; et al. Significant improvement of glycemic control in diabetic patients with HCV infection responding to direct-acting antiviral agents. J. Med. Virol. 2017, 90, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Nevola, R.; Coppola, C.; Narciso, V.; Rinaldi, L.; Calvaruso, V.; Pafundi, P.C.; Lombardi, R.; et al. Reduced incidence of type 2 diabetes in patients with chronic hepatitis C virus infection cleared by direct-acting antiviral therapy: A prospective study. Diabetes Obes. Metab. 2020, 22, 2408–2416. [Google Scholar] [CrossRef]
- Thompson, A.J.; Patel, K.; Chuang, W.-L.; Lawitz, E.J.; Rodriguez-Torres, M.; Rustgi, V.K.; Flisiak, R.; Pianko, S.; Diago, M.; Arora, S.; et al. Viral clearance is associated with improved insulin resistance in genotype 1 chronic hepatitis C but not genotype 2/3. Gut 2012, 61, 128–134. [Google Scholar] [CrossRef]
- Czul, F.; Bhamidimarri, K.R. Noninvasive markers to assess liver fibrosis. J. Clin. Gastroenterol. 2016, 50, 445–457. [Google Scholar] [CrossRef]
- Ermens, A.; Vlasveld, L.; Lindemans, J. Significance of elevated cobalamin (vitamin B12) levels in blood. Clin. Biochem. 2003, 36, 585–590. [Google Scholar] [CrossRef]
- Mahamid, M.; Mahroum, N.; Bragazzi, N.L.; Shalaata, K.; Yavne, Y.; Adawi, M.; Amital, H.; Watad, A. Folate and B12 Levels Correlate with Histological Severity in NASH Patients. Nutrients 2018, 10, 440. [Google Scholar] [CrossRef] [Green Version]
- Frémont, S.; Champigneulle, B.; Gérard, P.; Felden, F.; Lambert, D.; Guéant, J.; Nicolas, J. Blood Transcobalamin Levels in Malignant Hepatoma. Tumor Biol. 1991, 12, 353–359. [Google Scholar] [CrossRef]
- Kane, S.P.; Murray-Lyon, I.M.; Paradinas, F.J.; Johnson, P.J.; Williams, R.; Orr, A.H.; Kohn, J. Vitamin B12 binding protein as a tumour marker for hepatocellular carcinoma. Gut 1978, 19, 1105–1109. [Google Scholar] [CrossRef] [Green Version]
- Przekop, D.; Klapaczynski, J.; Grytczuk, A.; Gruszewska, E.; Gietka, A.; Panasiuk, A.; Golaszewski, S.; Cylwik, B.; Chrostek, L. Non-Invasive Indirect Markers of Liver Fibrosis after Interferon-Free Treatment for Hepatitis C. J. Clin. Med. 2021, 10, 3951. [Google Scholar] [CrossRef]
- Bartolomei, G.; Cevik, R.E.; Marcello, A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes. J. Gen. Virol. 2011, 92, 2072–2081. [Google Scholar] [CrossRef]
- Nishina, S.; Hino, K.; Korenaga, M.; Vecchi, C.; Pietrangelo, A.; Mizukami, Y.; Furutani, T.; Sakai, A.; Okuda, M.; Hidaka, I.; et al. Hepatitis C Virus–Induced Reactive Oxygen Species Raise Hepatic Iron Level in Mice by Reducing Hepcidin Transcription. Gastroenterology 2008, 134, 226–238. [Google Scholar] [CrossRef]
- Metwally, M.A.; Zein, C.O.; Zein, N.N. Clinical Significance of Hepatic Iron Deposition and Serum Iron Values in Patients with Chronic Hepatitis C Infection. Am. J. Gastroenterol. 2004, 99, 286–291. [Google Scholar] [CrossRef]
- Guallar-Castillón, P.; Gil-Montero, M.; León-Muñoz, L.M.; Graciani, A.; Bayán-Bravo, A.; Taboada, J.M.; Banegas, J.R.; Rodríguez-Artalejo, F. Magnitude and Management of Hypercholesterolemia in the Adult Population of Spain, 2008–2010: The ENRICA Study. Rev. Esp. Cardiol. 2012, 65, 551–558. [Google Scholar] [CrossRef]
Variable | All n = 167 | Men n = 88 | Women n = 79 | p-Value |
---|---|---|---|---|
Age | 55.2 (12.4) | 53.3 (10.8) | 57.3 (13.6) | 0.039 |
Personal history of CVD | 3 (1.80%) | 2 (2.28%) | 1 (1.27%) | 1.000 |
Stroke | 2 (1.20%) | 1 (1.14%) | 1 (1.27%) | 1.000 |
Ischemic cardiopathy | 0 (0%) | 0 (0%) | 0 (0%) | 1.000 |
Peripheral vasculopathy | 1 (0.60%) | 1 (1.14%) | 0 (0.00%) | 1.000 |
Family history of CVD | 0.091 | |||
None | 122 (73.1%) | 69 (78.4%) | 53 (67.1%) | |
Stroke | 2 (1.20%) | 1 (1.14%) | 1 (1.27%) | |
Ischemic cardiopathy | 30 (18.0%) | 10 (11.4%) | 20 (25.3%) | |
Peripheral vasculopathy | 13 (7.78%) | 8 (9.09%) | 5 (6.33%) | |
CV risk factors | 51 (30.5%) | 26 (29.5%) | 25 (31.6%) | 0.900 |
Hypertension | 37 (22.2%) | 19 (21.6%) | 18 (22.8%) | 1.000 |
Diabetes Mellitus | 7 (4.19%) | 5 (5.68%) | 2 (2.53%) | 0.448 |
Smoking | 0.077 | |||
Never | 84 (50.3%) | 37 (42.0%) | 47 (59.5%) | |
Previously | 30 (18.0%) | 19 (21.6%) | 11 (13.9%) | |
Current | 53 (31.7%) | 32 (36.4%) | 21 (26.6%) | |
Alcohol use | 23 (13.8%) | 16 (18.2%) | 7 (8.86%) | 0.128 |
Body mass index (kg/m2) | 25.0 [22.6;27.1] | 25.0 [23.4;27.1] | 24.9 [22.0;27.3] | 0.748 |
Abdominal perimeter (cm) | 92.3 (11.2) | 93.3 (10.1) | 91.3 (12.3) | 0.446 |
Liver fibrosis (kPa) | 6.60 [5.40;10.2] | 7.00 [5.50;11.3] | 6.35 [5.15;8.80] | 0.141 |
Liver fibrosis (Metavir) | 0.384 | |||
1 | 87 (53.4%) | 41 (48.2%) | 46 (59.0%) | |
2 | 26 (16.0%) | 13 (15.3%) | 13 (16.7%) | |
3 | 27 (16.6%) | 16 (18.8%) | 11 (14.1%) | |
4 | 23 (14.1%) | 15 (17.6%) | 8 (10.3%) | |
Liver cirrhosis | 0.670 | |||
No | 151 (90.4%) | 79 (89.8%) | 72 (91.1%) | |
Yes, without PHT | 9 (5.39%) | 6 (6.82%) | 3 (3.80%) | |
Yes, with PHT | 7 (4.19%) | 3 (3.41%) | 4 (5.06%) | |
Esophageal varices | 7 (4.19%) | 4 (3.41%) | 3 (3.80%) | 1.000 |
Ascites | 1 (0.60%) | 1 (1.14%) | 0 (0.00%) | 1.000 |
Variable | All n = 167 | Men n = 88 | Women n = 79 | p-Value |
---|---|---|---|---|
Treatment | 0.909 | |||
Sofosbuvir/Velpatasvir | 66 (39.5%) | 36 (40.9%) | 30 (38.0%) | |
Ledipasvir/Sofosbuvir | 6 (3.59%) | 3 (3.41%) | 3 (3.80%) | |
Glecaprevir/Pibrentasvir | 65 (38.9%) | 35 (39.8%) | 30 (38.0%) | |
Elbasvir/Grazoprevir | 30 (18.0%) | 14 (15.9%) | 16 (20.3%) | |
Treatment length | 0.848 | |||
12 weeks | 96 (57.8%) | 52 (59.1%) | 44 (56.4%) | |
8 weeks | 70 (42.2%) | 36 (40.9%) | 34 (43.6%) | |
Viral genotype | 0.352 | |||
1 | 5 (3.03%) | 4 (4.65%) | 1 (1.27%) | |
1a | 50 (30.3%) | 29 (33.7%) | 21 (26.6%) | |
1b | 62 (37.6%) | 31 (36.0%) | 31 (39.2%) | |
2 | 4 (2.42%) | 1 (1.16%) | 3 (3.80%) | |
2a/c | 2 (1.21%) | 0 (0.00%) | 2 (2.53%) | |
3 | 16 (9.70%) | 8 (9.30%) | 8 (10.1%) | |
3a | 2 (1.21%) | 0 (0.00%) | 2 (2.53%) | |
4 | 21 (12.7%) | 10 (11.6%) | 11 (13.9%) | |
4c/d | 2 (1.21%) | 2 (2.33%) | 0 (0.00%) | |
5 | 1 (0.61%) | 1 (1.16%) | 0 (0.00%) | |
Viral load (log) | 6.05 [5.36;6.54] | 6.11 [5.62;6.53] | 5.89 [5.16;6.55] | 0.199 |
Men | Women | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Basal n = 87 | post-T n = 81 | SVR12 n = 80 | SVR48 n = 51 | Basal n = 79 | post-T n = 78 | SVR12 n = 75 | SVR48 n = 56 | plong | psex | plong*sex |
Bilirubin (mg/dL) | 0.74 [0.68;0.79] | 0.65 [0.59;0.70] | 0.63 [0.58;0.69] | 0.60 [0.53;0.67] | 0.65 [0.58;0.73] | 0.59 [0.54;0.65] | 0.58 [0.52;0.65] | 0.62 [0.54;0.71] | <0.001 | 0.006 | 0.032 |
Albumin (g/dL) | 4.25 [4.17;4.32] | 4.28 [4.21;4.35] | 4.34 [4.28;4.41] | 4.34 [4.22;4.46] | 4.11 [4.04;4.18] | 4.12 [4.06;4.18] | 4.17 [4.10;4.23] | 4.26 [4.19;4.34] | <0.001 | 0.002 | 0.611 |
Pre-albumin (mg/dL) | 22.3 [21.0;23.7] | 26.2 [24.7;27.6] | 27.1 [25.7;28.5] | 28.1 [26.0;30.1] | 18.4 [17.2;19.7] | 20.4 [19.3;21.5] | 21.7 [20.6;22.9] | 22.0 [20.5;23.5] | <0.001 | <0.001 | 0.002 |
Alkaline phosphatase (U/L) | 84.7 [79.7;89.6] | 85.0 [79.7;90.4] | 82.3 [77.3;87.3] | 79.2 [74.2;84.2] | 93.0 [85.9;100] | 91.5 [84.8;98.2] | 88.8 [81.8;95.8] | 89.8 [82.2;97.4] | <0.001 | 0.175 | 0.523 |
GGT (U/L) | 91.9 [66.6;117] | 29.1 [24.1;34.2] | 30.5 [24.9;36.2] | 36.4 [27.0;45.7] | 60.3 [46.5;74.1] | 26.3 [20.0;32.6] | 25.8 [20.9;30.7] | 23.9 [19.7;28.2] | <0.001 | 0.023 | 0.255 |
AST (U/L) | 63.0 [51.7;74.3] | 26.9 [24.3;29.4] | 26.1 [23.7;28.4] | 27.2 [23.1;31.2] | 62.6 [43.1;82.2] | 25.1 [22.1;28.1] | 24.5 [19.7;29.4] | 22.7 [20.8;24.7] | <0.001 | 0.379 | 0.786 |
ALT (U/L) | 81.7 [65.8;97.5] | 23.9 [20.3;27.5] | 21.5 [18.7;24.4] | 24.5 [17.7;31.4] | 62.7 [45.7;79.7] | 20.9 [16.3;25.6] | 19.3 [12.4;26.2] | 15.8 [14.0;17.5] | <0.001 | 0.036 | 0.447 |
APRI | 1.08 [0.73;1.42] | 0.44 [0.36;0.51] | 0.41 [0.33;0.49] | 0.39 [0.30;0.47] | 1.07 [0.59;1.55] | 0.41 [0.31;0.50] | 0.37 [0.27;0.47] | 0.33 [0.27;0.38] | <0.001 | 0.465 | 0.772 |
FIB-4 | 2.54 [2.03;3.06] | 1.92 [1.67;2.17] | 1.92 [1.66;2.17] | 1.76 [1.52;2.01] | 2.99 [2.23;3.76] | 2.13 [1.73;2.54] | 2.07 [1.72;2.43] | 2.06 [1.66;2.46] | <0.001 | 0.922 | 0.636 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Deza, D.; Martínez-Sapiña, A.; Espina, S.; Garcia-Rodriguez, B.; Fernandez-Bonilla, E.M.; Sanz-Paris, A.; Gonzalez-Irazabal, Y.; Bernal-Monterde, V.; Arbones-Mainar, J.M. Evaluation of Cardiovascular Risk Factors after Hepatitis C Virus Eradication with Direct-Acting Antivirals in a Cohort of Treatment-Naïve Patients without History of Cardiovascular Disease. J. Clin. Med. 2022, 11, 4049. https://doi.org/10.3390/jcm11144049
Casas-Deza D, Martínez-Sapiña A, Espina S, Garcia-Rodriguez B, Fernandez-Bonilla EM, Sanz-Paris A, Gonzalez-Irazabal Y, Bernal-Monterde V, Arbones-Mainar JM. Evaluation of Cardiovascular Risk Factors after Hepatitis C Virus Eradication with Direct-Acting Antivirals in a Cohort of Treatment-Naïve Patients without History of Cardiovascular Disease. Journal of Clinical Medicine. 2022; 11(14):4049. https://doi.org/10.3390/jcm11144049
Chicago/Turabian StyleCasas-Deza, Diego, Ana Martínez-Sapiña, Silvia Espina, Beatriz Garcia-Rodriguez, Eva M. Fernandez-Bonilla, Alejandro Sanz-Paris, Yolanda Gonzalez-Irazabal, Vanesa Bernal-Monterde, and Jose M. Arbones-Mainar. 2022. "Evaluation of Cardiovascular Risk Factors after Hepatitis C Virus Eradication with Direct-Acting Antivirals in a Cohort of Treatment-Naïve Patients without History of Cardiovascular Disease" Journal of Clinical Medicine 11, no. 14: 4049. https://doi.org/10.3390/jcm11144049
APA StyleCasas-Deza, D., Martínez-Sapiña, A., Espina, S., Garcia-Rodriguez, B., Fernandez-Bonilla, E. M., Sanz-Paris, A., Gonzalez-Irazabal, Y., Bernal-Monterde, V., & Arbones-Mainar, J. M. (2022). Evaluation of Cardiovascular Risk Factors after Hepatitis C Virus Eradication with Direct-Acting Antivirals in a Cohort of Treatment-Naïve Patients without History of Cardiovascular Disease. Journal of Clinical Medicine, 11(14), 4049. https://doi.org/10.3390/jcm11144049