Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulator Design
2.2. Liver Model
2.3. Kinematic Data Analysis
2.4. Validation Study
2.5. Participants
2.6. Performance Assessment
2.7. Sample Size Determination
2.8. Statistical Analysis
3. Results
3.1. Participants
3.2. Simulation Exercise
3.3. Post-Simulation Questionnaire
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lefor, A.K.; Harada, K.; Kawahira, H.; Mitsuishi, M. The effect of simulator fidelity on procedure skill training: A literature review. Int. J. Med. Educ. 2020, 11, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, N.H.; Olavarria, O.A.; Bernardi, K.; Lyons, N.B.; Holihan, J.L.; Loor, M.; Haynes, A.B.; Liang, M.K. The Evidence Behind Robot-Assisted Abdominopelvic Surgery: A Systematic Review. Ann. Intern. Med. 2021, 174, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Vedula, S.S.; Reiley, C.E.; Ahmidi, N.; Varadarajan, B.; Lin, H.C.; Tao, L.; Zappella, L.; Béjar, B.; Yuh, D.D.; et al. Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling. In Proceedings of the Fifth Workshop on Modeling and Monitoring of Computer Assisted Interventions M2CAI, Boston, MA, USA, 14–18 September 2014; Volume 3. [Google Scholar]
- Gupta, A.; Lawendy, B.; Goldenberg, M.G.; Grober, E.; Lee, J.Y.; Perlis, N. Can video games enhance surgical skills acquisition for medical students? A systematic review. Surgery 2021, 169, 821–829. [Google Scholar] [CrossRef]
- Emmanuel, S.; Badiani, S.; Wong, J.; Willcock, H.; Cash, B.; Lord, R.V. Does playing video games provide a benefit for acquiring laparoscopic surgical skills? Br. J. Surg. 2021, 108, e101–e102. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.J.; Margaron, F.; Kaplan, B.J. Comparing video games and laparoscopic simulators in the development of laparoscopic skills in surgical residents. J. Surg. Educ. 2012, 69, 714–717. [Google Scholar] [CrossRef]
- Fong, Y.; Buell, J.F.; Collins, J.; Martinie, J.; Bruns, C.; Tsung, A.; Clavien, P.A.; Nachmany, I.; Edwin, B.; Pratschke, J.; et al. Applying the Delphi process for development of a hepatopancreaticobiliary robotic surgery training curriculum. Surg. Endosc. 2020, 34, 4233–4244. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Ferrari, V.; Morelli, L.; Ferrari, M.; Mosca, F.; Cuschieri, A. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery. Eur. Urol. 2016, 69, 1065–1080. [Google Scholar] [CrossRef]
- Bric, J.D.; Lumbard, D.C.; Frelich, M.J.; Gould, J.C. Current state of virtual reality simulation in robotic surgery training: A review. Surg. Endosc. 2016, 30, 2169–2178. [Google Scholar] [CrossRef]
- Julian, D.; Tanaka, A.; Mattingly, P.; Truong, M.; Perez, M.; Smith, R. A comparative analysis and guide to virtual reality robotic surgical simulators. Int. J. Med. Robot. 2018, 14, e1874. [Google Scholar] [CrossRef]
- Ricardez, E.; Noguez, J.; Neri, L.; Escobar-Castillejos, D.; Munoz, L. SutureHap: Use of a physics engine to enable force feedback generation on deformable surfaces simulations. Int. J. Adv. Robot. Syst. 2018, 15, 1–16. [Google Scholar] [CrossRef]
- Macklin, M.; Müller, M.; Chentanez, N.; Kim, T.Y. Unified particle physics for real-time applications. ACM Trans. Graph. 2014, 33, 153. [Google Scholar] [CrossRef]
- Lefor, A.K.; Harada, K.; Dosis, A.; Mitsuishi, M. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set using Robotics Video and Motion Assessment Software. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Witowski, J.S.; Pędziwiatr, M.; Major, P.; Budzyński, A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 2047–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delingette, H.; Ayache, N. Hepatic Surgery Simulation. Commun. ACM Assoc. Comput. Mach. 2005, 48, 31–36. [Google Scholar] [CrossRef]
- Lefor, A.K.; Harada, K.; Dosis, A.; Mitsuishi, M. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set II: Learning curve analysis. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 589–595. [Google Scholar] [CrossRef]
- Dosis, A.; Bello, F.; Rockall, T.; Munz, Y.; Moorthy, K.; Martin, S.; Darzi, A. ROVIMAS: A software package for assessing surgical skills using the da Vinci telemanipulator system. In Proceedings of the Fourth International Conference of Information Technology (ITAB 2003), Birmingham, UK, 24–27 April 2003. [Google Scholar]
- Power and Sample Size Calculators. Available online: http://powerandsamplesize.com/Calculators/ (accessed on 31 August 2021).
- Mann-Whitney U Test Calculator. Available online: https://www.socscistatistics.com/tests/mannwhitney/ (accessed on 31 August 2021).
- Goh, A.C.; Goldfarb, D.W.; Sander, J.C.; Miles, B.J.; Dunkin, B.J. Global evaluative assessment of robotic skills: Validation of a clinical assessment tool to measure robotic surgical skills. J. Urol. 2012, 187, 247–252. [Google Scholar] [CrossRef]
- Camara, M.; Mayer, E.; Darzi, A.; Pratt, P. Soft tissue deformation for surgical simulation: A position-based dynamics approach. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 919–928. [Google Scholar] [CrossRef] [Green Version]
- NVIDIA FLEX Manual. Available online: https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/flex/manual.html (accessed on 23 August 2021).
- Aggarwal, R.; Grantcharov, T.; Moorthy, K.; Milland, T.; Papasavas, P.; Dosis, A.; Bello, F.; Darzi, A. An evaluation of the feasibility, validity, and reliability of laparoscopic skills assessment in the operating room. Ann. Surg. 2007, 245, 992–999. [Google Scholar] [CrossRef]
- Mason, J.D.; Ansell, J.; Warren, N.; Torkington, J. Is motion analysis a valid tool for assessing laparoscopic skill? Surg. Endosc. 2013, 27, 1468–1477. [Google Scholar] [CrossRef]
- Rivard, J.D.; Vergis, A.S.; Unger, B.J.; Hardy, K.M.; Andrew, C.G.; Gillman, L.M.; Park, J. Construct validity of individual and summary performance metrics associated with a computer-based laparoscopic simulator. Surg. Endosc. 2014, 28, 1921–1928. [Google Scholar] [CrossRef]
- McDougall, E.M. Validation of surgical simulators. J. Endourol. 2007, 21, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, A.; Bahsoun, A.N.; Van Haute, W.; Ahmed, K.; Elhage, O.; Jaye, P.; Khan, M.S.; Dasgupta, P. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot). Ann. R. Coll. Surg. Engl. 2011, 93, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.T.; Hougen, H.Y.; Bitner, D.; Krupski, T.L.; Schenkman, N.S. Does Robotic Surgical Simulator Performance Correlate with Surgical Skill? J. Surg. Educ. 2017, 74, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
Participant | Time (s) | Movements | Path Length (m) | GEARS Score | Instrument Activations | Percent Close Instrument Activations (<2 cm) |
---|---|---|---|---|---|---|
Novice N = 9 | 174 ± 44 | 138 ± 45 | 0.76 ± 0.20 | 19.2 | 107.4 | 24.8 |
Expert N = 9 | 102 ± 42 | 84 ± 32 | 0.46 ± 0.16 | 26.7 | 108.7 | 22.9 |
p-Value | p = 0.004 | p = 0.043 | p = 0.008 | p = 0.001 | p > 0.05 | p > 0.05 |
1. The VR liver simulator is sufficiently realistic. | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Disagree | No opinion | Strongly Agree | ||||
2. The Virtual Reality liver simulator is an appropriate modality for surgical training. | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Disagree | No opinion | Strongly Agree | ||||
3. The VR liver simulator has an effective interface for training junior residents and students. | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Disagree | No opinion | Strongly Agree | ||||
4. The instruments move consistently during the procedure. | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Disagree | No opinion | Strongly Agree | ||||
5. The soft tissue behaves in a realistic manner when using the simulator. | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Disagree | No opinion | Strongly Agree |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefor, A.K.; Heredia Pérez, S.A.; Shimizu, A.; Lin, H.-C.; Witowski, J.; Mitsuishi, M. Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training. J. Clin. Med. 2022, 11, 4145. https://doi.org/10.3390/jcm11144145
Lefor AK, Heredia Pérez SA, Shimizu A, Lin H-C, Witowski J, Mitsuishi M. Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training. Journal of Clinical Medicine. 2022; 11(14):4145. https://doi.org/10.3390/jcm11144145
Chicago/Turabian StyleLefor, Alan Kawarai, Saúl Alexis Heredia Pérez, Atsushi Shimizu, Hung-Ching Lin, Jan Witowski, and Mamoru Mitsuishi. 2022. "Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training" Journal of Clinical Medicine 11, no. 14: 4145. https://doi.org/10.3390/jcm11144145
APA StyleLefor, A. K., Heredia Pérez, S. A., Shimizu, A., Lin, H. -C., Witowski, J., & Mitsuishi, M. (2022). Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training. Journal of Clinical Medicine, 11(14), 4145. https://doi.org/10.3390/jcm11144145