The Influence of Periodontal Diseases and the Stimulation of Saliva Secretion on the Course of the Acute Phase of Ischemic Stroke
Abstract
:1. Background
2. Material and Methods
2.1. Materials
- -
- aphasia, disturbances of consciousness, mental disorders—making it impossible to express informed consent,
- -
- surgery of the salivary glands—disrupting the secretion of saliva,
- -
- diseases that disrupt salivary secretion (diabetes mellitus, Sjögren’s syndrome, condition after radiotherapy in the area of the salivary glands).
2.2. Methods
2.2.1. Periodontal Condition Assessment
2.2.2. Assessment of IL-1β, MMP-8, RANKL and OPG Expression in the Saliva of Patients with Ischemic Stroke
2.2.3. Assessment of the Leukocyte Count and CRP Level in the Peripheral Blood of Patients with Ischemic Stroke
2.2.4. Speech Therapy Massage
2.2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Study Limitations
4.2. Conclusions for the Future
- (1)
- The test and control groups should be properly selected, at least in terms of age and sex, and possibly also in terms of comorbidities.
- (2)
- There is a need for the research on a larger group of patients.
- (3)
- The panel of biochemical tests should be expanded to include CRP in saliva, and the concentration of IL-1β, OPG, RANKL and MMP-8 in the blood, which would allow for a discussion of the results in saliva in the context of the analyzed role of periodontal disease in the course of stroke.
- (4)
- The collection method should be developed and the collection time most favorable for the evaluation of saliva parameters should be determined.
5. Conclusions
- The occurrence of periodontal disease in a patient with stroke affects the severity of stroke.
- Ttimulation of the mouth and salivary glands in these patients may have a positive effect on the course of stroke, taking into account the dynamics of neurological symptoms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Członkowska, A.; Ryglewicz, D. Epidemiology of cerebral stroke in Poland. Neurol. Neurochir. Pol. 1999, 32, 99–103. [Google Scholar] [PubMed]
- Bekelis, K.; Missios, S.; Coy, S.; MacKenzie, T.A. Comparison of outcomes of patients with inpatient or outpatient onset ischemic stroke. J. Neurointerv. Surg. 2016, 8, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Del Brutto, O.H. Infections and stroke. Handb. Clin. Neurol. 2009, 93, 851–872. [Google Scholar] [PubMed]
- Samoilova, E.M.; Yusubalieva, G.M.; Belopasov, V.V.; Ekusheva, E.V.; Baklaushev, V.P. Infections and inflammation in the development of stroke. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova 2021, 121, 11–21. [Google Scholar] [CrossRef]
- Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflamm. 2019, 16, 142. [Google Scholar] [CrossRef] [Green Version]
- Dugue, R.; Nath, M.; Dugue, A.; Barone, F.C. Roles of pro-and anti-inflammatory cytokines in traumatic brain injury and acute ischemic stroke. Mech. Neuroinflamm. 2017, 211, 4901. [Google Scholar]
- Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010, 87, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Almallouhi, E.; Feng, W. Urinary tract infection after stroke: A narrative review. J. Neurol. Sci. 2019, 15, 146–152. [Google Scholar] [CrossRef]
- Iadecola, C.; Anrather, J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011, 17, 796. [Google Scholar] [CrossRef]
- Yan, T.; Liu, C.; Li, Y.; Xiao, W.; Li, Y.; Wang, S. Prevalence and predictive factors of urinary tract infection among patients with stroke: A meta-analysis. Am. J. Infect. Control 2018, 46, 402–409. [Google Scholar] [CrossRef]
- Sanz, M.; Del Castillo, M.A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef] [PubMed]
- de Sire, A.; Baricich, A.; Ferrillo, M.; Migliario, M.; Cisari, C.; Invernizzi, M. Buccal hemineglect: Is it useful to evaluate the differences between the two halves of the oral cavity for the multidisciplinary rehabilitative management of right brain stroke survivors? A cross-sectional study. Top. Stroke Rehabil. 2020, 27, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Ferrillo, M.; Migliario, M.; Roccuzzo, A.; Molinero-Mourelle, P.; Falcicchio, G.; Umano, G.R. Periodontal Disease and Vitamin D Deficiency in Pregnant Women: Which Correlation with Preterm and Low-Weight Birth? J. Clin. Med. 2021, 2, 4578. [Google Scholar] [CrossRef] [PubMed]
- Lindhe, J.; Haffajee, A.D.; Socransky, S.S. Progression of periodontal disease in adult subjects in the absence of periodontal therapy. J. Clin. Periodontol. 1983, 10, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Vardar-Sengul, S.; Arora, S.; Baylas, H.; Mercola, D. Expression profile of human gingival fibroblasts induced by Interleukin-1β reveals central role of nuclear factor-kappa B in stabilizing human gingival fibroblasts during inflammation. J. Periodontol. 2009, 80, 833–849. [Google Scholar] [CrossRef]
- Gomes, F.I.; Aragão, M.G.; Barbosa, F.C.; Bezerra, M.M.; de Paulo Teixeira Pinto, V.; Chaves, H.V. Inflammatory cytokines interleukin-1β and tumour necrosis factor-α-novel biomarkers for the detection of periodontal diseases: A literature review. J. Oral Maxillofac. Res. 2016, 7, e2. [Google Scholar] [CrossRef]
- Sorsa, T.; Tjaderhane, L.; Konttinen, Y.T.; Lauhio, A.; Salo, T.; Lee, H.M.; Golub, L.M.; Brown, D.L.; Mäntylä, P. Matrix metalloproteinases: Contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med. 2006, 38, 306–321. [Google Scholar] [CrossRef]
- Sorsa, T.; Ulvi, K.; Nwhator, S.; Hernandez, M.; Tervahartiala, T.; Leppilahti, J.; Gursoy, M.; Könönen, E.; Emingil, G.; Pussinen, P.J.; et al. Analysis of matrix metalloproteinases, especially MMP-8, in GCF, mouthrinse and saliva for monitoring periodontal diseases. Periodontology 2016, 70, 142–163. [Google Scholar] [CrossRef]
- Chen, B.; Wu, W.; Sun, W.; Zhang, Q.; Yan, F.; Xiao, Y. RANKL expression in periodontal disease: Where does RANKL come from? BioMed Res. Int. 2014, 2014, 731039. [Google Scholar] [CrossRef]
- Nagasawa, T.; Kiji, M.; Yashiro, R.; Hormdee, D.; Lu, H.; Kunze, M.; Suda, T.; Koshy, G.; Kobayashi, H.; Oda, S.; et al. Roles of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontol. 2000 2007, 43, 65–84. [Google Scholar] [CrossRef]
- Bostanci, N.; Ilgenli, T.; Emingil, G.; Afacan, B.; Han, B.; Töz, H.; Atilla, G.; Hughes, F.J.; Belibasakis, G.N. Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: Implications of their relative ratio. J. Clin. Periodontol. 2007, 34, 370–376. [Google Scholar] [CrossRef]
- Wu, Z.; Xiao, C.; Chen, F.; Wang, Y.; Guo, Z. Pulmonary disease and periodontal health: A meta-analysis. Sleep Breath. 2022; Online ahead of print. [Google Scholar]
- Bansal, T.; Pandey, A.; Deepa, D.; Asthana, A.K. C-Reactive Protein (CRP) and its Association with Periodontal Disease: A Brief Review. J. Clin. Diagn. Res. 2014, 8, ZE21–ZE24. [Google Scholar] [PubMed]
- Hajishengallis, G. Periodontitis: From Microbial Immune Subversion to Systemic Inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Kaptoge, S.; Di Angelantonio, E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 9, 132–140. [Google Scholar]
- Słowik, J.; Wnuk, M.A.; Grzech, K.; Golenia, A.; Turaj, W.; Ferens, A.; Jurczak, A.; Chomyszyn-Gajewska, M.; Loster, B.; Slowik, A. Periodontitis affects neurological deficit in acute stroke. J. Neurol. Sci. 2010, 15, 82–88. [Google Scholar] [CrossRef]
- Sexton, W.M.; Lin, Y.; Kryscio, R.J.; Dawson, D.R.; Ebersole, J.L.; Miller, C.S. Salivary Biomarkers of priodontal disease in response to treatment. J. Clin. Periodontol. 2011, 38, 434–441. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, P.D.; Grégio, A.M.; Machado, M.A.; de Lima, A.A.; Azevedo, L.R. Saliva composition and functions: A comprehensive review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar]
- Féjerdy, L.; Tóth, Z.; Kaán, B.; Tibor, F.K.; Csermely, P.; Fejérdy, P. The effect of heat stimulation and mechanical stress (massage) of salivary glands on the secretory parameters of salivary Hsp70. A pilot study. Fogorv. Sz. 2004, 97, 204–210. [Google Scholar]
- Tabak, L.A. In defense of the oral cavity: Structure, biosynthesis, and function of salivary mucins. Annu. Rev. Physiol. 1995, 57, 547–564. [Google Scholar] [CrossRef]
- Mustapha, I.Z.; Debrey, S.; Oladubu, M.; Ugarte, R. Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: A systematic review and meta-analysis. J. Periodontol. 2007, 78, 2289–2302. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Bostanci, N. The RANKL-OPG system in clinical periodontology. J. Clin. Periodontol. 2012, 39, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.; D’Aiuto, F.; Deanfield, J.; Fernandez, A.F. European workshop in periodontal health and cardiovascular disease—scientific evidence on the association between periodontal and cardiovascular diseases: A review of the literature. Eur. Heart J. Suppl. 2010, 12, B3–B12. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.L.; Marcenes, W. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. J. Dent. Res. 2014, 93, 1045–1053. [Google Scholar] [CrossRef]
- Palm, F.; Lahdentausta, L.; Sorsa, T.; Tervahartiala, T.; Gokel, P.; Buggle, F.; Safer, A.; Becher, H.; Grau, A.J.; Pussinen, P. Biomarkers of periodontitis and inflammation in ischemic stroke: A case-control study. Innate Immun. 2014, 20, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafon, A.; Pereira, B.; Dufour, T.; Rigouby, V.; Giroud, M.; Béjot, Y.; Tubert-Jeannin, S. Periodontal disease and stroke: A meta-analysis of cohort studies. Eur. J. Neurol. 2014, 21, 1155–1156. [Google Scholar] [CrossRef]
- Baniulyte, G.; Piela, K.; Culshaw, S. How strong is the link between periodontitis and stroke? Evid. Based Dent. 2021, 22, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Lafon, A.; Tala, S.; Ahossi, V.; Perrin, D.; Giroud, M.; Béjot, Y. Association between periodontal disease and non-fatal ischemic stroke: A case-control study. Acta Odontol. Scand. 2014, 72, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Leira, Y.; Rodríguez-Yáñez, M.; Arias, S.; López-Dequidt, I.; Campos, F.; Sobrino, T. Periodontitis as a risk indicator and predictor of poor outcome for lacunar infarct. J. Clin. Periodontol. 2019, 46, 20–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Boyle, C.; Haley, M.J.; Lemarchand, E.; Smith, C.J.; Allan, S.M.; Konkel, J.E.; Lawrence, C.B. Ligature-induced periodontitis induces systemic inflammation but does not alter acute outcome after stroke in mice. Int. J. Stroke 2020, 15, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Boaden, E.; Lyons, M.; Singhrao, S.K.; Dickinson, H.; Leathley, M.; Lightbody, C.E. Oral flora in acute stroke patients: A prospective exploratory observational study. Gerodontology 2017, 34, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Filho, I.S.; Coelho, J.M.F.; Samilly, S.; Cruz, S.S.; Trindade, S.C.; Cerqueira, E.M.M.; Passos-Soares, J.S.; Costa, M.D.C.N.; Vianna, M.I.P.; Figueiredo, A.C.M.G.; et al. Severe and moderate periodontitis are associated with acute myocardial infarction. J. Periodontol. 2020, 91, 1444–1452. [Google Scholar] [CrossRef]
- Bansal, M.; Rastogi, S.; Vineeth, M.S. Influence of periodontal disease on systemic disease: Inversion of a paradigm: A review. J. Med. Life 2013, 15, 126–130. [Google Scholar]
- Cieplik, F.; Widenhofer, A.M.; Pietsch, V.; Hiller, K.A.; Hiergeist, A. Oral Health, Oral Microbiota, and Incidence of Stroke-Associated Pneumonia-A Prospective Observational Study. Front. Neurol. 2020, 11, 528056. [Google Scholar] [CrossRef] [PubMed]
- Grau, A.J.; Becher, H.; Ziegler, C.M.; Lichy, C.; Buggle, F.; Kaiser, C.; Lutz, R.; Bültmann, S.; Preusch, M.; Dörfer, C.E. Periodontal Disease as a Risk Factor for Ischemic Stroke. Stroke 2004, 35, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Carrizales-Sepúlveda, E.F.; Ordaz-Farías, A.; Vera-Pineda, R.; Flores-Ramírez, R. Periodontal Disease, Systemic Inflammation and the Risk of Cardiovascular Disease. Heart Lung Circ. 2018, 27, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Baykal, Y.; Saglam, K.; Yilmaz, M.I.; Taslipinar, A.; Akinci, S.B.; Inal, A. Serum sIL-2r, IL-6, IL-10 and TNF-alpha level in familial Mediterranean fever patients. Clin. Rheumatol. 2003, 22, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Ktem, S.; Yavuzsen, T.U.; Sengul, B.; Akhunlar, H.; Akar, S.; Tunca, M. Levels of interleukin-6 (IL-6) and its soluble receptor (sIL-6R) in familial Mediterranean fever (FMF) patients and their first degree relatives. Clin. Exp. Rheumatol. 2004, 22, S34–S36. [Google Scholar]
- Mai, W.; Liao, Y. Targeting IL-1β in the Treatment of Atherosclerosis. Front. Immunol. 2020, 11, 589654. [Google Scholar] [CrossRef]
- Navis, A.; Garcia-Santibanez, R.; Skliut, M. Epidemiology and Outcomes of Ischemic Stroke and Transient Ischemic Attack in the Adult and Geriatric Population. J. Stroke Cerebrovasc. Dis. 2019, 28, 84–89. [Google Scholar] [CrossRef]
- Roy-O’Reilly, M.; McCullough, L.D. Age and Sex Are Critical Factors in Ischemic Stroke Pathology. Endocrinology 2018, 1, 3120–3131. [Google Scholar] [CrossRef] [Green Version]
- Proctor, G.B.; Carpenter, G.H. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci. 2007, 133, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Gerreth, P.; Maciejczyk, M.; Zalewska, A.; Gerrerth, K.; Hojan, K. Comprehensive Evaluation of the Oral Health Status, Salivary Gland Function, and Oxidative Stress in the Saliva of Patients with Subacute Phase of Stroke: A Case-Control Study. J. Clin. Med. 2020, 15, 2252. [Google Scholar] [CrossRef] [PubMed]
- Belstrøm, D.; Sembler-Møller, M.L.; Grande, M.A.; Kirkby, N.; Cotton, S.L.; Paster, B.J.; Holmstrup, P. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients. PLoS ONE 2017, 12, e0182992. [Google Scholar] [CrossRef] [Green Version]
- Belstrøm, D.; Holmstrup, P.; Bardow, A.; Kokaras, A.; Fiehn, N.E.; Paster, B.J. Comparative analysis of bacterial profiles in unstimulated and stimulated saliva samples. J. Oral Microbiol. 2016, 8, 30112. [Google Scholar] [CrossRef] [PubMed]
- Büttler, R.M.; Bagaci, E.; Brand, H.S.; den Heijer, M.; Blankenstein, M.A.; Heijboer, A.C. Testosterone, androstenedione, cortisol and cortisone levels in human unstimulated, stimulated and parotid saliva. Steroids 2018, 138, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Gröschl, M.; Rauh, M. Influence of commercial collection devices for saliva on the reliability of salivary steroids analysis. Steroids 2006, 71, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Gröschl, M.; Köhler, H.; Topf, H.G.; Rupprecht, T.; Rauh, M. Evaluation of saliva collection devices for the analysis of steroids, peptides and therapeutic drugs. J. Pharm. Biomed. Anal. 2008, 47, 478–486. [Google Scholar] [CrossRef] [PubMed]
Parameters | All Patients (n = 100) | |
---|---|---|
Demographic data | ||
Age (years; mean ± SD) | 66.1 ± 9.22 | |
Sex | Females | 40 (40%) |
Males | 60 (60%) | |
Periodontal disease | 36 (36%) | |
Characteristics of the groups | ||
Neurologopedic stimulation | Stimulated patients | 54 (54%) |
Unstimulated patients | 46 (46%) | |
Neurological state | ||
NIHSS scale (points; mean ± SD) | 1st day | 7.34 ± 4.76 |
3rd day | 4.8 ± 4.79 | |
7th day | 3.64 ± 5.14 | |
Infections | ||
Antibiotic therapy | 38 (38%) | |
Upper respiratory tract infection | 23 (23%) | |
Urinary tract infection | 14 (14%) | |
Inflammatory parameters from blood | ||
CRP (mg/L; mean ± SD) | 1st day | 9.12 ± 1.52 |
3rd day | 1.49 ± 3.63 | |
7th day | 0.7 ± 1.54 | |
WBC (G/µL; mean ± SD) | 1st day | 8.54 ± 3.20 |
3rd day | 8.48 ± 3.44 | |
7th day | 7.75 ± 2.99 | |
Concentration of biomarkers of inflammation, bone remodeling and degradation of connective tissue elements in saliva | ||
IL-1β (pg/mL; mean ± SD) | 1st day | 28.9 ± 31.08 |
7th day | 22.45 ± 19.80 | |
RANKL (ng/mL; mean ± SD) | 1st day | 0.28 ± 0.06 |
7th day | 0.27 ± 0.05 | |
OPG (ng/mL; mean ± SD) | 1st day | 0.45 ± 0.33 |
7th day | 0.4 ± 0.24 | |
MMP-8 (ng/mL; mean ± SD) | 1st day | 3524 ± 2466.10 |
7th day | 3744.4 ± 2583.69 |
Parameters | Patients with Periodontal Diseases (n = 36) | Patients without Periodontal Diseases (n = 64) | p-Value | |
---|---|---|---|---|
Demographic data | ||||
Age (years; mean ± SD) | 64.86 ± 8.99 | 66.79 ± 9.34 | 0.43 | |
Sex | females | 15 (41.67%) | 25 (39.06%) | 0.79 |
males | 21(58.33%) | 39 (60.94%) | ||
Neurological state | ||||
NIHSS scale (points; mean ± SD) | 1st day | 8.88 ± 5.97 | 6.46 ± 3.71 | 0.08 |
3rd day | 7.00 ± 6.11 | 3.56 ± 3.32 | 0.006 * | |
7th day | 5.94 ± 6.99 | 2.34 ± 3.12 | 0.014 * | |
Infections | ||||
Antibiotic therapy | no | 20 (55.56%) | 42 (65.63%) | 0.32 |
yes | 16 (44.44%) | 22 (34.38%) | ||
Upper respiratory tract infection | no | 27 (75%) | 50 (78.13%) | 0.72 |
yes | 9 (25%) | 14 (21.88%) | ||
Urinary tract | no | 29 (80.5%) | 57 (89.06%) | 0.23 |
Infection | yes | 7 (19.44%) | 7 (10.94%) | |
Assessment of inflammatory parameters from blood | ||||
CRP (mg/L; mean ± SD) | 1st day | 10.72 ± 19.07 | 8.21 ± 12.67 | 0.26 |
3rd day | 15.83 ± 27.11 | 14.47 ± 40.82 | 0.15 | |
7th day | 9.44 ± 15.95 | 6.6 5± 15.14 | 0.8 | |
WBC (G/µL; mean ± SD) | 1st day | 8.52 ± 1.73 | 8.56 ± 3.81 | 0.31 |
3rd day | 8.87 ± 2.99 | 8.26 ± 3.67 | 0.24 | |
7th day | 7.99 ± 3.14 | 7.62 ± 2.92 | 0.56 | |
Concentration of biomarkers of inflammation, bone remodeling and degradation of connective tissue elements in saliva | ||||
IL-1β (pg/mL; mean ± SD) | 1st day | 25.46 ± 19.71 | 30.83 ± 35.93 | 0.58 |
7th day | 26.29 ± 26.81 | 20.70 ± 14.53 | 0.57 | |
RANKL (ng/mL; mean ± SD) | 1st day | 0.29 ± 0.07 | 0.28 ± 0.06 | 0.43 |
7th day | 0.28 ± 0.08 | 0.28 ± 0.06 | 0.15 | |
OPG (ng/mL; mean ± SD) | 1st day | 0.49 ± 0.42 | 0.42 ± 0.27 | 0.96 |
7th day | 0.44 ± 0.25 | 0.39 ± 0.23 | 0.24 | |
MMP-8 (ng/mL; mean ± SD) | 1st day | 3371.63 ± 2384.37 | 3604.18 ± 2525.60 | 0.66 |
7th day | 4155.31 ± 2626.78 | 3577.85 ± 2557.43 | 0.3 | |
Neurologopedic stimulation | ||||
stimulated patients | 22 (61.11%) | 32 (50%) | 0.28 |
Variables | Patients with Periodontal Diseases (n = 36) | Patients without Periodontal Diseases (n = 64) |
---|---|---|
p-Value | p-Value | |
Assessment of inflammatory parameters from blood | ||
CRP day 3 vs. CRP day 1 | 0.682 | 0.057 |
CRP day 7 vs. CRP day 1 | 0.009 * | 0.0002 * |
WBC day 3 vs. WBC day 1 | 0.887 | 0.169 |
WBC day 7 vs. WBC day 1 | 0.010 * | 0.019 * |
Concentration of biomarkers of inflammation, bone remodeling and degradation of connective tissue elements in saliva | ||
IL-1β day 7 vs. IL-1Β day 1 | 0.65 | 0.04 * |
RANKL day 7 vs. RANKL day 1 | 0.27 | 0.89 |
OPG day 7 vs. OPG day 1 | 1.00 | 0.68 |
MMP-8 day 7 vs. MMP-8 day 1 | 0.16 | 0.88 |
Parameters | Patients with Neurologopedic Stimulation (n = 54) | Patients without Neurologopedic Stimulation (n = 46) | p-Value | |
---|---|---|---|---|
Demographic data | ||||
Age (years; mean ± SD) | 66.00 ± 9.90 | 66.21 ± 8.45 | 0.73 | |
Sex | Females | 21 (38.8%) | 19 (41.3%) | 0.8 |
Males | 33 (61.1%) | 27 (58.6%) | ||
Neurological state | ||||
NIHSS scale (points; mean ± SD) | 1st day | 8.25 ± 4.82 | 6.26 ± 4.51 | 0.035 * |
3rd day | 5.64 ± 4.91 | 3.80 ± 4.50 | 0.026 * | |
7th day | 5.04 ± 5.52 | 2.00 ± 4.15 | 0.0004 * | |
Infections | ||||
Antibiotic therapy | No | 30 (55.5%) | 32 (69.5%) | 0.15 |
Yes | 24 (44.5%) | 14 (30.5%) | ||
Upper respiratory tract infection | No | 40 (74.07%) | 37 (80.4%) | 0.45 |
Yes | 14 (25.9%) | 9 (19.5%) | ||
Urinary tract infection | No | 44 (81.4%) | 42 (91.3%) | 0.15 |
Yes | 10 (18.5%) | 4 (8.6%) | ||
Inflammatory parameters from blood | ||||
CRP (mg/L; mean ± SD) | 1st day | 10.24 ± 16.97 | 7.79 ± 12.98 | 0.35 |
3rd day | 20.15 ± 45.66 | 8.87 ± 19.51 | 0.21 | |
7th day | 9.78 ± 17.63 | 5.16 ± 12.04 | 0.23 | |
WBC (G/µL; mean ± SD) | 1st day | 8.99 ± 3.83 | 8.24 ± 2.20 | 0.2 |
3rd day | 9.01 ± 4.26 | 7.86 ± 1.99 | 0.28 | |
7th day | 8.04 ± 3.60 | 7.41 ± 2.04 | 0.79 | |
Concentration of biomarkers of inflammation, bone remodeling and degradation of connective tissue elements in saliva | ||||
IL-1β (pg/mL; mean ± SD) | 1st day | 30.71 ± 37.81 | 26.77 ± 20.97 | 0.94 |
7th day | 24.55 ± 22.28 | 20.51 ± 16.47 | 0.14 | |
RANKL (ng/mL; mean ± SD) | 1st day | 0.29 ± 0.07 | 0.28 ± 0.04 | 0.45 |
7th day | 0.28 ± 0.06 | 0.27 ± 0.02 | 0.4 | |
OPG (ng/mL; mean ± SD) | 1st day | 0.47 ± 0.39 | 0.42 ± 0.26 | 0.99 |
7th day | 0.44 ± 0.28 | 0.35 ± 0.16 | 0.23 | |
MMP-8 (ng/mL; mean ± SD) | 1st day | 3498.34 ± 2519.39 | 3546.44 ± 2429.53 | 0.92 |
7th day | 3708.37 ± 2656.80 | 3866.84 ± 2523.34 | 0.8 |
Variables | Patients with Neurologopedic Stimulation (n = 54) | Patients without Neurologopedic Stimulation (n = 46) |
---|---|---|
p-Value | p-Value | |
Assessment of inflammatory parameters from blood | ||
CRP day 3 vs. CRP day 1 | 0.29 | 0.15 |
CRP day 7 vs. CRP day 1 | 0.0065 * | 0.0001 * |
WBC day 3 vs. WBC day 1 | 0.53 | 0.47 |
WBC day 7 vs. WBC day 1 | 0.007 * | 0.047 * |
Concentration of biomarkers of inflammation, bone remodeling and degradation of connective tissue elements in saliva | ||
IL-1Β day 7 vs. IL-1Β day 1 | 0.69 | 0.10 |
RANKL day 7 vs. RANKL day 1 | 0.22 | 0.94 |
OPG day 7 vs. OPG day 1 | 0.45 | 0.21 |
MMP-8 day 7 vs. MMP-8 day 1 | 0.86 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlukowska, W.; Baumert, B.; Meller, A.; Dziewulska, A.; Zawiślak, A.; Grocholewicz, K.; Nowacki, P.; Masztalewicz, M. The Influence of Periodontal Diseases and the Stimulation of Saliva Secretion on the Course of the Acute Phase of Ischemic Stroke. J. Clin. Med. 2022, 11, 4321. https://doi.org/10.3390/jcm11154321
Pawlukowska W, Baumert B, Meller A, Dziewulska A, Zawiślak A, Grocholewicz K, Nowacki P, Masztalewicz M. The Influence of Periodontal Diseases and the Stimulation of Saliva Secretion on the Course of the Acute Phase of Ischemic Stroke. Journal of Clinical Medicine. 2022; 11(15):4321. https://doi.org/10.3390/jcm11154321
Chicago/Turabian StylePawlukowska, Wioletta, Bartłomiej Baumert, Agnieszka Meller, Anna Dziewulska, Alicja Zawiślak, Katarzyna Grocholewicz, Przemysław Nowacki, and Marta Masztalewicz. 2022. "The Influence of Periodontal Diseases and the Stimulation of Saliva Secretion on the Course of the Acute Phase of Ischemic Stroke" Journal of Clinical Medicine 11, no. 15: 4321. https://doi.org/10.3390/jcm11154321
APA StylePawlukowska, W., Baumert, B., Meller, A., Dziewulska, A., Zawiślak, A., Grocholewicz, K., Nowacki, P., & Masztalewicz, M. (2022). The Influence of Periodontal Diseases and the Stimulation of Saliva Secretion on the Course of the Acute Phase of Ischemic Stroke. Journal of Clinical Medicine, 11(15), 4321. https://doi.org/10.3390/jcm11154321