Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy
Author Contributions
Funding
Conflicts of Interest
References
- Lai, K.N.; Tang, S.C.W.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Prim. 2016, 2, 16001. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Julian, B.A. IgA nephropathy. N. Engl. J. Med. 2013, 368, 2402–2414. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.C.; Bursac, Z.; Julian, B.A.; Baca, E.V.; Featherston, J.; Woodford, S.Y.; Bailey, L.; Wyatt, R.J. Life expectancy for patients from the southeastern United States with IgA nephropathy. Kidney Int. Rep. 2017, 3, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davin, J.-C.; Ten Berge, I.J.; Weening, J.J. What is the difference between IgA nephropathy and Henoch-Schönlein purpura nephritis? Kidney Int. 2001, 59, 823–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, A.R.; Woodroffe, A.J.; Aarons, I.; Hiki, Y.; Hale, G. IgA nephropathy. Annu. Rev. Med. 1987, 38, 157–168. [Google Scholar] [CrossRef]
- Jennette, J.C. The Immunohistology of IgA nephropathy. Am. J. Kidney Dis. 1988, 12, 348–352. [Google Scholar] [CrossRef]
- Roberts, I.S.D. Pathology of IgA nephropathy. Nat. Rev. Nephrol. 2014, 10, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Fogo, A.B.; Lusco, M.A.; Najafian, B.; Alpers, C.E. AJKD atlas of renal pathology: IgA nephropathy. Am. J. Kidney Dis. 2015, 66, e33–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.; Mestecky, J.; Gharavi, A.G.; et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.C.; Rizk, D.V.; Kiryluk, K.; Nelson, R.; Zahr, R.S.; Novak, J.; Wyatt, R.J. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr. Nephrol. 2021, 37, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Hiki, Y.; Odani, H.; Takahashi, M.; Yasuda, Y.; Nishimoto, A.; Iwase, H.; Shinzato, T.; Kobayashi, Y.; Maeda, K. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001, 59, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.C.; Bailey, E.M.; Brenchley, P.E.; Buck, K.S.; Barratt, J.; Feehally, J. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: Observations in three patients. Kidney Int. 2001, 60, 969–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizk, D.V.; Saha, M.K.; Hall, S.; Novak, L.; Brown, R.; Huang, Z.-Q.; Fatima, H.; Julian, B.A.; Novak, J. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J. Am. Soc. Nephrol. 2019, 30, 2017–2026. [Google Scholar] [CrossRef]
- Moldoveanu, Z.; Suzuki, H.; Reily, C.; Satake, K.; Novak, L.; Xu, N.; Huang, Z.-Q.; Knoppova, B.; Khan, A.; Hall, S.; et al. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J. Autoimmun. 2021, 118, 102593. [Google Scholar] [CrossRef] [PubMed]
- Makita, Y.; Suzuki, H.; Nakano, D.; Yanagawa, H.; Kano, T.; Novak, J.; Nishiyama, A.; Suzuki, Y. Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries. Nephrol. Dial. Transplant. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Julian, B.A.; Quiggins, P.A.; Thompson, J.S.; Woodford, S.Y.; Gleason, K.; Wyatt, R.J. Familial IgA nephropathy. N. Engl. J. Med. 1985, 312, 202–208. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Moldoveanu, Z.; Wyatt, R.; Barker, C.V.; Woodford, S.Y.; Lifton, R.P.; Mestecky, J.; Novak, J.; Julian, B.A. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 2008, 19, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Kiryluk, K.; Li, Y.; Sanna-Cherchi, S.; Rohanizadegan, M.; Suzuki, H.; Eitner, F.; Snyder, H.J.; Choi, M.; Hou, P.; Scolari, F.; et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012, 8, e1002765. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Kiryluk, K.; Choi, M.; Li, Y.; Hou, P.; Xie, J.; Sanna-Cherchi, S.; Men, C.J.; Julian, B.A.; Wyatt, R.; et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 2011, 43, 321–327. [Google Scholar] [CrossRef]
- Kiryluk, K.; Li, Y.; Scolari, F.; Sanna-Cherchi, S.; Choi, M.; Verbitsky, M.; Fasel, D.; Lata, S.; Prakash, S.; Shapiro, S.; et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 2014, 46, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Kiryluk, K.; Li, Y.; Moldoveanu, Z.; Suzuki, H.; Reily, C.; Hou, P.; Xie, J.; Mladkova, N.; Prakash, S.; Fischman, C.; et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 2017, 13, e1006609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, D.P.; Molyneux, K.; Wimbury, D.; Higgins, P.; Levine, A.P.; Caplin, B.; Ferlin, A.; Yin, P.; Nelson, C.P.; Stanescu, H.; et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol. 2017, 28, 2158–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.; Hinglais, N. Intercapillary deposits of IgA-IgG. J. Urol. Nephrol. 1968, 74, 694–695. [Google Scholar]
- Trimarchi, H.; Haas, M.; Coppo, R. Crescents and IgA nephropathy: A delicate marriage. J. Clin. Med. 2022, 11, 3569. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Liu, S.; Azrad, M.; Hall, S.; Hao, C.; Novak, J.; Julian, B.A.; Novak, L. IgA vasculitis with nephritis in adults: Histological and clinical assessment. J. Clin. Med. 2021, 10, 4851. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E. IgA vasculitis and IgA nephropathy: Same disease? J. Clin. Med. 2021, 10, 2310. [Google Scholar] [CrossRef]
- Ohyama, Y.; Renfrow, M.B.; Novak, J.; Takahashi, K. Aberrantly glycosylated IgA1 in IgA nephropathy: What we know and what we don’t know. J. Clin. Med. 2021, 10, 3467. [Google Scholar] [CrossRef]
- Knoppova, B.; Reily, C.; King, R.G.; Julian, B.A.; Novak, J.; Green, T.J. Pathogenesis of IgA nephropathy: Current understanding and implications for development of disease-specific treatment. J. Clin. Med. 2021, 10, 4501. [Google Scholar] [CrossRef] [PubMed]
- Fukao, Y.; Suzuki, H.; Kim, J.S.; Jeong, K.H.; Makita, Y.; Kano, T.; Nihei, Y.; Nakayama, M.; Lee, M.; Kato, R.; et al. Galactose-deficient IgA1 as a candidate urinary marker of IgA nephropathy. J. Clin. Med. 2022, 11, 3173. [Google Scholar] [CrossRef] [PubMed]
- Poppelaars, F.; Faria, B.; Schwaeble, W.; Daha, M.R. The Contribution of complement to the pathogenesis of IgA nephropathy: Are complement-targeted therapies moving from rare disorders to more common diseases? J. Clin. Med. 2021, 10, 4715. [Google Scholar] [CrossRef] [PubMed]
- Mizerska-Wasiak, M.; Such-Gruchot, A.; Cichoń-Kawa, K.; Turczyn, A.; Małdyk, J.; Miklaszewska, M.; Drożdż, D.; Firszt-Adamczyk, A.; Stankiewicz, R.; Rybi-Szumińska, A.; et al. The role of complement component C3 activation in the clinical presentation and prognosis of IgA nephropathy—A national study in children. J. Clin. Med. 2021, 10, 4405. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.A.; Min, J.W.; Ha, M.A.; Koh, E.S.; Kim, H.D.; Ban, T.H.; Kim, Y.S.; Kim, Y.K.; Kim, D.; Shin, S.J.; et al. The impact of obesity on the severity of clinicopathologic parameters in patients with IgA nephropathy. J. Clin. Med. 2020, 9, 2824. [Google Scholar] [CrossRef] [PubMed]
- Wehbi, B.; Pascal, V.; Zawil, L.; Cogné, M.; Aldigier, J.-C. History of IgA nephropathy mouse models. J. Clin. Med. 2021, 10, 3142. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.K.; Rajasekaran, A.; Barratt, J.; Rizk, D.V. An update on the current state of management and clinical trials for IgA nephropathy. J. Clin. Med. 2021, 10, 2493. [Google Scholar] [CrossRef] [PubMed]
- Maixnerova, D.; El Mehdi, D.; Rizk, D.V.; Zhang, H.; Tesar, V. New treatment strategies for IgA nephropathy: Targeting plasma cells as the main source of pathogenic antibodies. J. Clin. Med. 2022, 11, 2810. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, H.; Novak, J. Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy. J. Clin. Med. 2022, 11, 4378. https://doi.org/10.3390/jcm11154378
Suzuki H, Novak J. Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy. Journal of Clinical Medicine. 2022; 11(15):4378. https://doi.org/10.3390/jcm11154378
Chicago/Turabian StyleSuzuki, Hitoshi, and Jan Novak. 2022. "Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy" Journal of Clinical Medicine 11, no. 15: 4378. https://doi.org/10.3390/jcm11154378
APA StyleSuzuki, H., & Novak, J. (2022). Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy. Journal of Clinical Medicine, 11(15), 4378. https://doi.org/10.3390/jcm11154378