Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Comparison of Baseline Characteristics between the Vaccinated and Unvaccinated Groups
4.2. Differences in Risks of CKD and Dialysis between the Vaccinated and Unvaccinated Groups
4.3. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.S. The discovery of diabetic nephropathy: From small print to centre stage. J. Nephrol. 2006, 19 (Suppl. S10), S75–S87. [Google Scholar]
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and trends in diabetes among adults in the united states, 1988–2012. JAMA 2015, 314, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Sheen, Y.J.; Hsu, C.C.; Jiang, Y.D.; Huang, C.N.; Liu, J.S.; Sheu, W.H. Trends in prevalence and incidence of diabetes mellitus from 2005 to 2014 in taiwan. J. Formos. Med. Assoc. 2019, 118 (Suppl. S2), S66–S73. [Google Scholar] [CrossRef]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.; Zoungas, S.; Rossing, P.; Groop, P.H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Primers 2015, 1, 15018. [Google Scholar] [CrossRef]
- Reutens, A.T. Epidemiology of diabetic kidney disease. Med. Clin. N. Am. 2013, 97, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.L.; Wu, C.C.; Lee, S.P.; Chen, Y.K.; Su, W.; Su, S.L. A predictive model for progression of ckd. Medicine 2019, 98, e16186. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hsu, C.Y.; Kao, C.C.; Chen, T.W.; Chen, H.H.; Hsu, C.C.; Wu, M.S. Incidence and prevalence of esrd in taiwan renal registry data system (twrds): 2005–2012. Acta Nephrol. 2014, 28, 65–68. [Google Scholar]
- Vallon, V.; Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol. 2011, 1, 1175–1232. [Google Scholar]
- Reidy, K.; Kang, H.M.; Hostetter, T.; Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Investig. 2014, 124, 2333–2340. [Google Scholar] [CrossRef] [PubMed]
- Usrds: The united states renal data system. Am. J. Kidney. Dis. 2003, 42, 1–230. [CrossRef]
- Remschmidt, C.; Wichmann, O.; Harder, T. Vaccines for the prevention of seasonal influenza in patients with diabetes: Systematic review and meta-analysis. BMC Med. 2015, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. Eur. J. Pediatr. 2013, 172, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Dovč, A.; Premru, V.; Pečavar, B.; Ponikvar, R. Acute kidney injury in critically-ill adult patients with seasonal influenza infection. Clin. Nephrol. 2017, 88, 18–21. [Google Scholar] [PubMed]
- Martin-Loeches, I.; Papiol, E.; Rodríguez, A.; Diaz, E.; Zaragoza, R.; Granada, R.M.; Socias, L.; Bonastre, J.; Valverdú, M.; Pozo, J.C.; et al. Acute kidney injury in critical ill patients affected by influenza a (h1n1) virus infection. Crit. Care 2011, 15, R66. [Google Scholar] [CrossRef] [PubMed]
- Gonakoti, S.; Bahirwani, J.; Maddala, R.N.M.; Vidyasagar, S. A case of h3n2 complicated by acute kidney injury secondary to rhabdomyolysis. BMJ Case Rep. 2018, 2018, bcr2018224334. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.K.; Lin, C.L.; Chang, Y.C.; Lin, P.C.; Liang, C.C.; Liu, Y.L.; Chang, C.T.; Yen, T.H.; Huang, C.C.; Sung, F.C. Effectiveness of influenza vaccination in elderly diabetic patients: A retrospective cohort study. Vaccine 2013, 31, 718–724. [Google Scholar] [CrossRef]
- Chan, T.C.; Fu, Y.C.; Wang, D.W.; Chuang, J.H. Determinants of receiving the pandemic (h1n1) 2009 vaccine and intention to receive the seasonal influenza vaccine in taiwan. PLoS ONE 2014, 9, e101083. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Wang, T.J.; Sung, L.C.; Kao, P.F.; Yang, T.Y.; Hao, W.R.; Chen, C.C.; Hsu, Y.P.; Wu, S.Y. Influenza vaccination reduces hemorrhagic stroke risk in patients with atrial fibrillation: A population-based cohort study. Int. J. Cardiol. 2017, 232, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Wu, S.M.; Liu, J.C.; Lee, K.Y. Effect of annual influenza vaccination on reducing lung cancer in patients with chronic obstructive pulmonary disease from a population-based cohort study. Medicine 2019, 98, e18035. [Google Scholar] [CrossRef] [PubMed]
- Sung, L.C.; Chen, C.I.; Fang, Y.A.; Lai, C.H.; Hsu, Y.P.; Cheng, T.H.; Miser, J.S.; Liu, J.C. Influenza vaccination reduces hospitalization for acute coronary syndrome in elderly patients with chronic obstructive pulmonary disease: A population-based cohort study. Vaccine 2014, 32, 3843–3849. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 1998, 17, 2265–2281. [Google Scholar] [CrossRef]
- Jafar, N.; Edriss, H.; Nugent, K. The effect of short-term hyperglycemia on the innate immune system. Am.J. Med. Sci. 2016, 351, 201–211. [Google Scholar] [CrossRef]
- Hulme, K.D.; Gallo, L.A.; Short, K.R. Influenza virus and glycemic variability in diabetes: A killer combination? Front. Microbiol. 2017, 8, 861. [Google Scholar] [CrossRef]
- Knapp, S. Diabetes and infection: Is there a link?—A mini-review. Gerontology 2013, 59, 99–104. [Google Scholar] [CrossRef]
- Azuma, K.; Kawamori, R.; Toyofuku, Y.; Kitahara, Y.; Sato, F.; Shimizu, T.; Miura, K.; Mine, T.; Tanaka, Y.; Mitsumata, M.; et al. Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2275–2280. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef]
- Quagliaro, L.; Piconi, L.; Assaloni, R.; Martinelli, L.; Motz, E.; Ceriello, A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: The role of protein kinase c and nad(p)h-oxidase activation. Diabetes 2003, 52, 2795–2804. [Google Scholar] [CrossRef] [PubMed]
- Risso, A.; Mercuri, F.; Quagliaro, L.; Damante, G.; Ceriello, A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E924–E930. [Google Scholar] [CrossRef]
- Perrone, L.A.; Plowden, J.K.; García-Sastre, A.; Katz, J.M.; Tumpey, T.M. H5n1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 2008, 4, e1000115. [Google Scholar] [CrossRef]
- Short, K.R.; Kroeze, E.; Fouchier, R.A.M.; Kuiken, T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet. Infect. Dis. 2014, 14, 57–69. [Google Scholar] [CrossRef]
- Teijaro, J.R.; Walsh, K.B.; Cahalan, S.; Fremgen, D.M.; Roberts, E.; Scott, F.; Martinborough, E.; Peach, R.; Oldstone, M.B.; Rosen, H. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011, 146, 980–991. [Google Scholar] [CrossRef]
- Gomes, M.B.; Affonso, F.S.; Cailleaux, S.; Almeida, A.L.; Pinto, L.F.; Tibiriçá, E. Glucose levels observed in daily clinical practice induce endothelial dysfunction in the rabbit macro- and microcirculation. Fundam. Clin. Pharmacol. 2004, 18, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Runnstrom, M.; Ebied, A.M.; Khoury, A.P.; Reddy, R. Influenza-induced rhabdomyolysis. BMJ Case Rep. 2018, 11, e226610. [Google Scholar] [CrossRef] [PubMed]
- Thakar, C.V.; Christianson, A.; Himmelfarb, J.; Leonard, A.C. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin. J. Am. Soc. Nephrol. 2011, 6, 2567–2572. [Google Scholar] [CrossRef]
- Devarajan, P.; Jefferies, J.L. Progression of chronic kidney disease after acute kidney injury. Prog. Pediatr. Cardiol. 2016, 41, 33–40. [Google Scholar] [CrossRef]
- Forni, L.G.; Darmon, M.; Ostermann, M.; Oudemans-van Straaten, H.M.; Pettilä, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Renal recovery after acute kidney injury. Intensive Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef]
- Basile, D.P.; Bonventre, J.V.; Mehta, R.; Nangaku, M.; Unwin, R.; Rosner, M.H.; Kellum, J.A.; Ronco, C. Progression after aki: Understanding maladaptive repair processes to predict and identify therapeutic treatments. J. Am. Soc. Nephrol. 2016, 27, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.A.; Griffin, K.A.; Lan, R.; Geng, H.; Saikumar, P.; Bidani, A.K. Acute kidney injury: A springboard for progression in chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2010, 298, F1078–F1094. [Google Scholar] [CrossRef]
- Chawla, L.S.; Kimmel, P.L. Acute kidney injury and chronic kidney disease: An integrated clinical syndrome. Kidney. Int. 2012, 82, 516–524. [Google Scholar] [CrossRef]
- Brar, A.; Markell, M. Impact of gender and gender disparities in patients with kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 diabetes and its impact on the immune system. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [PubMed]
- Derhovanessian, E.; Pawelec, G. Vaccination in the elderly. Microb. Biotechnol. 2012, 5, 226–232. [Google Scholar] [CrossRef]
- Tsai, W.C.; Wu, H.Y.; Peng, Y.S.; Ko, M.J.; Wu, M.S.; Hung, K.Y.; Wu, K.D.; Chu, T.S.; Chien, K.L. Risk factors for development and progression of chronic kidney disease: A systematic review and exploratory meta-analysis. Medicine 2016, 95, e3013. [Google Scholar] [CrossRef] [PubMed]
Whole Cohort (n = 48,017) | Unvaccinated (n = 24,178) | Vaccinated (n = 23,839) | p-Value | ||||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Age, years (Mean ± SD) | 66.64 (8.12) | 64.47 (8.36) | 68.85 (7.23) | <0.001 | |||
55–64 | 23,245 | 48.41 | 15,259 | 63.11 | 7986 | 33.50 | <0.001 |
65–74 | 16,669 | 34.71 | 5654 | 23.38 | 11,015 | 46.21 | |
≥75 | 8103 | 16.88 | 3265 | 13.50 | 4838 | 20.29 | |
Sex | |||||||
Female | 25722 | 53.57 | 12,516 | 51.77 | 13,206 | 55.40 | <0.001 |
Male | 22,295 | 46.43 | 11,662 | 48.23 | 10,633 | 44.60 | |
Comorbidities | |||||||
Hypertension | 30,218 | 62.93 | 14,688 | 60.75 | 15,530 | 65.15 | <0.001 |
Cerebrovascular diseases | 8636 | 17.99 | 4147 | 17.15 | 4489 | 18.83 | <0.001 |
Dyslipidemia | 17,037 | 35.48 | 8830 | 36.52 | 8207 | 34.43 | <0.001 |
Heart diseases | 18,634 | 38.81 | 9172 | 37.94 | 9462 | 39.69 | <0.001 |
Hepatitis B virus | 1621 | 3.38 | 906 | 3.75 | 715 | 3.00 | <0.001 |
Hepatitis C virus | 2618 | 5.45 | 1194 | 4.94 | 1424 | 5.97 | <0.001 |
Cirrhosis | 2937 | 6.12 | 1369 | 5.66 | 1568 | 6.58 | <0.001 |
Moderate and severe liver disease | 1118 | 2.33 | 564 | 2.33 | 554 | 2.32 | 0.949 |
Asthma | 6820 | 14.20 | 3437 | 14.22 | 3383 | 14.19 | 0.939 |
Antidiabetic medications (ADM) | |||||||
Insulin and analogs | 11,918 | 24.82 | 4829 | 19.97 | 7089 | 29.74 | <0.001 |
Biguanides | 32,915 | 68.55 | 15,844 | 65.53 | 17,071 | 71.61 | <0.001 |
Sulfonamides and urea derivatives | 30,433 | 63.38 | 14,039 | 58.07 | 16,394 | 68.77 | <0.001 |
Other blood glucose-lowering drugs | 7963 | 16.58 | 3152 | 13.04 | 4811 | 20.18 | <0.001 |
Alpha glucosidase inhibitors | 10,416 | 21.69 | 4206 | 17.40 | 6210 | 26.05 | <0.001 |
Thiazolidinediones | 9359 | 19.49 | 3673 | 15.19 | 5686 | 23.85 | <0.001 |
Dipeptidyl peptidase 4 | 6724 | 14.00 | 3039 | 12.57 | 3685 | 15.46 | <0.001 |
Number of ADM | |||||||
0–1 | 15,746 | 32.79 | 9059 | 37.47 | 6687 | 28.05 | <0.001 |
2–3 | 17,375 | 36.19 | 9295 | 38.44 | 8080 | 33.89 | |
>3 | 14,896 | 31.02 | 5824 | 24.09 | 9072 | 38.06 | |
Co-medications | |||||||
Statin | |||||||
<28 days | 23,710 | 49.38 | 12,663 | 52.37 | 11,047 | 46.34 | <0.001 |
28–365 days | 10,143 | 21.12 | 5375 | 22.23 | 4768 | 20.00 | |
>365 days | 14,164 | 29.50 | 6140 | 25.39 | 8024 | 33.66 | |
Aspirin | |||||||
<28 days | 22,807 | 47.50 | 13,999 | 57.90 | 8808 | 36.95 | <0.001 |
28–365 days | 9406 | 19.59 | 4441 | 18.37 | 4965 | 20.83 | |
>365 days | 15,804 | 32.91 | 5738 | 23.73 | 10,066 | 42.22 | |
Angiotensin-converting enzyme inhibitors and Angiotensin receptor blockers | |||||||
<28 days | 14,916 | 31.06 | 9496 | 39.28 | 5420 | 22.74 | <0.001 |
28–365 days | 9249 | 19.26 | 4994 | 20.66 | 4255 | 17.85 | |
>365 days | 23,852 | 49.67 | 9688 | 40.07 | 14,164 | 59.42 | |
Level of urbanization | |||||||
Urban | 33,968 | 70.74 | 18,215 | 75.34 | 15,753 | 66.08 | <0.001 |
Suburban | 9453 | 19.69 | 4224 | 17.47 | 5229 | 21.93 | |
Rural | 4596 | 9.57 | 1739 | 7.19 | 2857 | 11.98 | |
Monthly income (NT$) | |||||||
0 | 5458 | 11.37 | 2244 | 9.28 | 3214 | 13.48 | <0.001 |
1–19,200 | 15,273 | 31.81 | 6755 | 27.94 | 8518 | 35.73 | |
19,200–25,000 | 13,715 | 28.56 | 6082 | 25.16 | 7633 | 32.02 | |
≥25,001 | 13,571 | 28.26 | 9097 | 37.63 | 4474 | 18.77 |
All Groups (n = 48,017) | Unvaccinated (Total Follow-Up of 129,238.4 Person-Years) | Vaccinated (Total Follow-Up of 206,888.8 Person-Years) | Adjusted HR † (95% CI) | ||
---|---|---|---|---|---|
No. of Patients with CKD | Incidence Rate (per 105 Person-Years) (95% CI) | No. of Patients with CKD | Incidence Rate (per 105 Person-Years) (95% CI) | ||
Whole cohort | |||||
Influenza season | 1450 | 1122.0 (1064.2, 1179.7) | 1319 | 637.5 (603.1, 671.9) | 0.47 (0.44, 0.51) *** |
Noninfluenza season | 1308 | 1012.1 (957.2, 1066.9) | 1247 | 602.7 (569.3, 636.2) | 0.48 (0.44, 0.52) *** |
All seasons | 2758 | 2134.0 (2054.4, 2213.7) | 2566 | 1240.3 (1192.3, 1288.3) | 0.48 (0.45, 0.50) *** |
Age, <65 years a | |||||
Influenza season | 743 | 846.5 (785.6, 907.4) | 350 | 446.1 (399.3, 492.8) | 0.45 (0.39, 0.51) *** |
Noninfluenza season | 667 | 759.9 (702.2, 817.6) | 322 | 410.4 (365.6, 455.2) | 0.46 (0.40, 0.52) *** |
All seasons | 1410 | 1606.4 (1522.6, 1690.3) | 672 | 856.4 (791.7, 921.2) | 0.45 (0.41, 0.50) *** |
Age, ≥65 years b | |||||
Influenza season | 707 | 1705.0 (1579.4, 1830.7) | 969 | 754.5 (707.0, 802.0) | 0.44 (0.40, 0.48) *** |
Noninfluenza season | 641 | 1545.9 (1426.2, 1665.6) | 925 | 720.3 (673.9, 766.7) | 0.45 (0.40, 0.50) *** |
All seasons | 1348 | 3250.9 (3077.4, 3424.5) | 1894 | 1474.8 (1408.4, 1541.2) | 0.44 (0.41, 0.47) *** |
Female c | |||||
Influenza season | 704 | 1008.9 (934.3, 1083.4) | 636 | 538.9 (497.0, 580.8) | 0.44 (0.40, 0.50) *** |
Noninfluenza season | 635 | 910.0 (839.2, 980.8) | 633 | 536.3 (494.6, 578.1) | 0.45 (0.40, 0.51) *** |
All seasons | 1339 | 1918.9 (1816.1, 2021.6) | 1269 | 1075.2 (1016.1, 1134.4) | 0.45 (0.41, 0.49) *** |
Male d | |||||
Influenza season | 746 | 1254.7 (1164.6, 1344.7) | 683 | 768.6 (710.9, 826.2) | 0.50 (0.44, 0.55) *** |
Noninfluenza season | 673 | 1131.9 (1046.4, 1217.4) | 614 | 690.9 (636.3, 745.6) | 0.51 (0.45, 0.57) *** |
All seasons | 1419 | 2386.6 (2262.4, 2510.8) | 1297 | 1459.5 (1380.0, 1538.9) | 0.50 (0.46, 0.54) *** |
All Groups (n = 48,017) | Unvaccinated (Total Follow-Up of 131,187.3 Person-Years) | Vaccinated (Total Follow-Up of 219,009.2 Person-Years) | Adjusted HR † (95% CI) | ||
---|---|---|---|---|---|
No. of Patients with Dialysis | Incidence Rate (per 105 Person-Years) (95% CI) | No. of Patients with Dialysis | Incidence Rate (per 105 Person-Years) (95% CI) | ||
Whole cohort | |||||
Influenza season | 564 | 429.9 (394.4, 465.4) | 615 | 280.8 (258.6, 303.0) | 0.47 (0.42, 0.53) *** |
Noninfluenza season | 455 | 346.8 (315.0, 378.7) | 520 | 237.4 (217.0, 257.8) | 0.49 (0.43, 0.56) *** |
All seasons | 1019 | 776.8 (729.1, 824.4) | 1135 | 518.2 (488.1, 548.4) | 0.48 (0.44, 0.52) *** |
Age, <65 years a | |||||
Influenza season | 327 | 368.0 (328.1, 407.9) | 151 | 182.9 (153.7, 212.0) | 0.38 (0.31, 0.46) *** |
Noninfluenza season | 239 | 269.0 (234.9, 303.1) | 154 | 186.5 (157.0, 216.0) | 0.52 (0.42, 0.64) *** |
All seasons | 566 | 637.0 (584.5, 689.4) | 305 | 369.4 (327.9, 410.8) | 0.44 (0.38, 0.50) *** |
Age, ≥65 years b | |||||
Influenza season | 237 | 559.9 (488.6, 631.2) | 464 | 340.1 (309.1, 371.0) | 0.51 (0.43, 0.59) *** |
Noninfluenza season | 216 | 510.3 (442.3, 578.4) | 366 | 268.3 (240.8, 295.7) | 0.44 (0.37, 0.52) *** |
All seasons | 453 | 1070.2 (971.7, 1168.8) | 830 | 608.3 (567.0, 649.7) | 0.47 (0.42, 0.53) *** |
Female c | |||||
Influenza season | 297 | 420.6 (372.7, 468.4) | 325 | 263.1 (234.5, 291.7) | 0.44 (0.38, 0.52) *** |
Noninfluenza season | 238 | 337.0 (294.2, 379.8) | 281 | 227.5 (200.9, 254.1) | 0.46 (0.39, 0.56) *** |
All seasons | 535 | 757.6 (693.4, 821.8) | 606 | 490.6 (451.6, 529.7) | 0.45 (0.40, 0.51)*** |
Male d | |||||
Influenza season | 267 | 440.8 (388.0, 493.7) | 290 | 303.7 (268.7, 338.6) | 0.50 (0.42, 0.60) *** |
Noninfluenza season | 217 | 358.3 (310.6, 406.0) | 239 | 250.3 (218.6, 282.0) | 0.52 (0.42, 0.63) *** |
All seasons | 484 | 799.1 (727.9, 870.3) | 529 | 554.0 (506.8, 601.2) | 0.51 (0.45, 0.58) *** |
Unvaccinated | Vaccinated | p-Value for Trend | |||
---|---|---|---|---|---|
1 | 2–3 | ≥4 | |||
Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | ||
Main model † | 1.00 | 0.71 (0.65, 0.77) *** | 0.57 (0.52, 0.61) *** | 0.30(0.28, 0.33) *** | <0.001 |
Subgroup effects | |||||
Age, years | |||||
<65 | 1.00 | 0.58 (0.51, 0.67) *** | 0.51 (0.45,0.59) *** | 0.31 (0.27, 0.36) *** | <0.001 |
≥65 | 1.00 | 0.71 (0.64, 0.78) *** | 0.52 (0.47,0.57) *** | 0.25 (0.23, 0.28) *** | <0.001 |
Sex | |||||
Female | 1.00 | 0.72 (0.64, 0.80) *** | 0.54 (0.48, 0.60) *** | 0.28 (0.25, 0.31) *** | <0.001 |
Male | 1.00 | 0.70 (0.63, 0.79) *** | 0.60 (0.54, 0.67) *** | 0.33 (0.29, 0.37) *** | <0.001 |
Hypertension | |||||
No | 1.00 | 0.64 (0.55, 0.74) *** | 0.55 (0.48, 0.63) *** | 0.32 (0.28, 0.36) *** | <0.001 |
Yes | 1.00 | 0.74 (0.67, 0.81) *** | 0.57 (0.52, 0.63) *** | 0.29 (0.27, 0.32) *** | <0.001 |
Cerebrovascular diseases | |||||
No | 1.00 | 0.72 (0.66, 0.78) *** | 0.58 (0.53, 0.63) *** | 0.32 (0.29, 0.35) *** | <0.001 |
Yes | 1.00 | 0.67 (0.56, 0.80) *** | 0.51 (0.43, 0.61) *** | 0.23 (0.19, 0.29) *** | <0.001 |
Dyslipidemia | |||||
No | 1.00 | 0.71 (0.64, 0.78) *** | 0.57 (0.52, 0.63) *** | 0.31 (0.28, 0.35) *** | <0.001 |
Yes | 1.00 | 0.71 (0.62, 0.82) *** | 0.55 (0.48, 0.63) *** | 0.28 (0.24, 0.32) *** | <0.001 |
Heart diseases | |||||
No | 1.00 | 0.68 (0.61, 0.75) *** | 0.57 (0.52, 0.63) *** | 0.32 (0.29, 0.35) *** | <0.001 |
Yes | 1.00 | 0.75 (0.66, 0.85) *** | 0.55 (0.48, 0.62) *** | 0.28 (0.24, 0.32) *** | <0.001 |
Asthma | |||||
No | 1.00 | 0.70 (0.64, 0.76) *** | 0.57 (0.53, 0.62) *** | 0.31 (0.28, 0.34) *** | <0.001 |
Yes | 1.00 | 0.78 (0.62, 0.97) * | 0.51 (0.41, 0.64) *** | 0.27 (0.21, 0.34) *** | <0.001 |
Insulin and analogs | |||||
No (<28 days) | 1.00 | 0.72 (0.65, 0.79) *** | 0.56 (0.51, 0.61) *** | 0.29 (0.26, 0.32) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.71 (0.61, 0.81) *** | 0.61 (0.53, 0.69) *** | 0.35 (0.30, 0.40) *** | <0.001 |
Biguanides | |||||
No (<28 days) | 1.00 | 0.61 (0.53, 0.70) *** | 0.46 (0.40, 0.53) *** | 0.22 (0.19, 0.26) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.77 (0.70, 0.85) *** | 0.63 (0.57, 0.69) *** | 0.35 (0.32, 0.38) *** | <0.001 |
Sulfonamides, urea derivatives | |||||
No (< 28 days) | 1.00 | 0.61 (0.52, 0.71) *** | 0.40 (0.34, 0.46) *** | 0.23 (0.19, 0.27) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.76 (0.70, 0.84) *** | 0.65 (0.60, 0.71) *** | 0.34 (0.31, 0.38) *** | <0.001 |
Alpha glucosidase inhibitors | |||||
No (<28 days) | 1.00 | 0.68 (0.62, 0.74) *** | 0.53 (0.48, 0.58) *** | 0.27 (0.25, 0.30) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.85 (0.72, 0.99) * | 0.72 (0.62, 0.83) *** | 0.42 (0.36, 0.48) *** | <0.001 |
Thiazolidinediones | |||||
No (<28 days) | 1.00 | 0.69 (0.63, 0.76) *** | 0.53 (0.48, 0.58) *** | 0.27 (0.25, 0.30) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.79 (0.67, 0.93) ** | 0.72 (0.62, 0.84) *** | 0.42 (0.37, 0.49) *** | <0.001 |
Dipeptidyl peptidase 4 inhibitor | |||||
No (<28 days) | 1.00 | 0.68 (0.63, 0.74) *** | 0.54 (0.50, 0.59) *** | 0.28 (0.26, 0.30) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.97 (0.70, 1.34) | 0.83 (0.62, 1.12) | 0.69 (0.54, 0.90)** | 0.004 |
Other blood glucose lowering drugs | |||||
No (<28 days) | 1.00 | 0.71 (0.65, 0.78) *** | 0.57 (0.52, 0.62) *** | 0.28 (0.26, 0.31) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.72 (0.60, 0.85) *** | 0.58 (0.50, 0.68) *** | 0.38 (0.32, 0.44) *** | <0.001 |
Number of Antidiabetes medications | |||||
0–1 | 1.00 | 0.62 (0.53, 0.72) *** | 0.42 (0.36, 0.49) *** | 0.23 (0.19, 0.27) *** | <0.001 |
2–3 | 1.00 | 0.74 (0.65, 0.85) *** | 0.62 (0.55, 0.71) *** | 0.29 (0.25, 0.33) *** | <0.001 |
>3 | 1.00 | 0.79 (0.70, 0.90) *** | 0.67 (0.59, 0.75) *** | 0.40 (0.35, 0.45) *** | <0.001 |
Unvaccinated | Vaccinated | p-Value for Trend | |||
---|---|---|---|---|---|
1 | 2–3 | ≥4 | |||
Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | ||
Main model † | 1.00 | 0.77 (0.68, 0.87) *** | 0.63 (0.56, 0.70) *** | 0.28 (0.24, 0.31) *** | <0.001 |
Subgroup effects | |||||
Age, years | |||||
<65 | 1.00 | 0.63 (0.52, 0.77) *** | 0.47 (0.38, 0.58) *** | 0.29 (0.23, 0.36) *** | <0.001 |
≥65 | 1.00 | 0.82 (0.70, 0.97) * | 0.66 (0.58, 0.77) *** | 0.25 (0.21, 0.29) *** | <0.001 |
Sex | |||||
Female | 1.00 | 0.73 (0.62, 0.87) *** | 0.59 (0.51, 0.69) *** | 0.28 (0.23, 0.33) *** | <0.001 |
Male | 1.00 | 0.82 (0.68, 0.98) * | 0.68 (0.57, 0.80) *** | 0.28 (0.23, 0.33) *** | <0.001 |
Hypertension | |||||
No | 1.00 | 0.64 (0.51, 0.81) *** | 0.63 (0.51, 0.76) *** | 0.27 (0.21, 0.34) *** | <0.001 |
Yes | 1.00 | 0.82 (0.71, 0.95) ** | 0.62 (0.54, 0.71) *** | 0.28 (0.24, 0.32) *** | <0.001 |
Cerebrovascular diseases | |||||
No | 1.00 | 0.75 (0.66, 0.87) *** | 0.65 (0.57, 0.73) *** | 0.29 (0.25, 0.33) *** | <0.001 |
Yes | 1.00 | 0.80 (0.61, 1.05) | 0.54 (0.41, 0.70) *** | 0.22 (0.16, 0.30) *** | <0.001 |
Dyslipidemia | |||||
No | 1.00 | 0.72 (0.62, 0.83) *** | 0.63 (0.55, 0.72) *** | 0.28 (0.24, 0.32) *** | <0.001 |
Yes | 1.00 | 0.90 (0.72, 1.11) | 0.63 (0.51, 0.78) *** | 0.28 (0.23, 0.36) *** | <0.001 |
Heart diseases | |||||
No | 1.00 | 0.74 (0.63, 0.86) *** | 0.62 (0.53, 0.71) *** | 0.28 (0.24, 0.33) *** | <0.001 |
Yes | 1.00 | 0.82 (0.67, 1.01) | 0.64 (0.53, 0.78) *** | 0.27 (0.22, 0.33) *** | <0.001 |
Asthma | |||||
No | 1.00 | 0.77 (0.67, 0.87) *** | 0.63 (0.56, 0.71) *** | 0.27 (0.24, 0.31) *** | <0.001 |
Yes | 1.00 | 0.82 (0.55, 1.23) | 0.68 (0.47, 0.98) * | 0.32 (0.21, 0.48) *** | <0.001 |
Insulin and analogs | |||||
No (<28 days) | 1.00 | 0.86 (0.72, 1.03) | 0.72 (0.61, 0.85) *** | 0.26 (0.22, 0.32) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.69 (0.58, 0.82) *** | 0.57 (0.48, 0.66) *** | 0.32 (0.27, 0.37) *** | <0.001 |
Biguanides | |||||
No (<28 days) | 1.00 | 0.79 (0.62, 1.01) | 0.58 (0.46, 0.74) *** | 0.23 (0.17, 0.30) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.77 (0.67, 0.89) *** | 0.66 (0.57, 0.75) *** | 0.30 (0.26, 0.35) *** | <0.001 |
Sulfonamides, urea derivatives | |||||
No (<28 days) | 1.00 | 0.84 (0.63, 1.11) | 0.62 (0.47, 0.82) *** | 0.26 (0.19, 0.36) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.77 (0.67, 0.88) *** | 0.65 (0.57, 0.73) *** | 0.29 (0.26, 0.33) *** | <0.001 |
Alpha glucosidase inhibitors | |||||
No (<28 days) | 1.00 | 0.77 (0.66, 0.89) *** | 0.64 (0.56, 0.73) *** | 0.28 (0.24, 0.33) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.78 (0.63, 0.98) * | 0.61 (0.49, 0.75) *** | 0.27 (0.22, 0.34) *** | <0.001 |
Thiazolidinediones | |||||
No (<28 days) | 1.00 | 0.69 (0.63, 0.76) *** | 0.53 (0.48, 0.58) *** | 0.27 (0.25, 0.30) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.79 (0.67, 0.93) ** | 0.72 (0.62, 0.84) *** | 0.42 (0.37, 0.49) *** | <0.001 |
Dipeptidyl peptidase 4 inhibitor | |||||
No (<28 days) | 1.00 | 0.73 (0.64, 0.82) *** | 0.61 (0.54, 0.68) *** | 0.26 (0.23, 0.30) *** | <0.001 |
Yes (≥28 days) | 1.00 | 1.29 (0.77, 2.17) | 0.73 (0.43, 1.25) | 0.54 (0.33, 0.87) * | 0.004 |
Other blood glucose lowering drugs | |||||
No (<28 days) | 1.00 | 0.76 (0.65, 0.88) *** | 0.68 (0.59, 0.77) *** | 0.28 (0.24, 0.32) *** | <0.001 |
Yes (≥28 days) | 1.00 | 0.79 (0.64, 0.98) * | 0.54 (0.44, 0.67) *** | 0.29 (0.24, 0.36) *** | <0.001 |
Number of Antidiabetes medications | |||||
0–1 | 1.00 | 0.86 (0.64, 1.16) | 0.66 (0.50, 0.88) ** | 0.26 (0.19, 0.36) *** | <0.001 |
2–3 | 1.00 | 0.76 (0.62, 0.94) * | 0.69 (0.57, 0.83) *** | 0.29 (0.24, 0.36) *** | <0.001 |
>3 | 1.00 | 0.78 (0.65, 0.92) ** | 0.61 (0.52, 0.72) *** | 0.30 (0.25, 0.36) *** | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, L.-C.; Chen, C.-C.; Liu, S.-H.; Chiu, C.-C.; Yang, T.-Y.; Lin, C.-H.; Fang, Y.-A.; Jian, W.; Lei, M.-H.; Yeh, H.-T.; et al. Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2022, 11, 4520. https://doi.org/10.3390/jcm11154520
Sung L-C, Chen C-C, Liu S-H, Chiu C-C, Yang T-Y, Lin C-H, Fang Y-A, Jian W, Lei M-H, Yeh H-T, et al. Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine. 2022; 11(15):4520. https://doi.org/10.3390/jcm11154520
Chicago/Turabian StyleSung, Li-Chin, Chun-Chao Chen, Shih-Hao Liu, Chun-Chih Chiu, Tsung-Yeh Yang, Cheng-Hsin Lin, Yu-Ann Fang, William Jian, Meng-Huan Lei, Hsien-Tang Yeh, and et al. 2022. "Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus" Journal of Clinical Medicine 11, no. 15: 4520. https://doi.org/10.3390/jcm11154520
APA StyleSung, L.-C., Chen, C.-C., Liu, S.-H., Chiu, C.-C., Yang, T.-Y., Lin, C.-H., Fang, Y.-A., Jian, W., Lei, M.-H., Yeh, H.-T., Hsu, M.-H., Hao, W.-R., & Liu, J.-C. (2022). Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 11(15), 4520. https://doi.org/10.3390/jcm11154520