MTHFR Polymorphism and Folic Acid Supplementation Influence Serum Homocysteine Levels in Psoriatic Patients Treated with Methotrexate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Treatment Strategy and the Evaluation of Serum Homocysteine Level
2.3. DNA Extraction and Genotyping Analysis
2.4. Statistical Analysis
3. Results
3.1. TT Genotype of MTHFR rs1801133 Was Associated with Higher Serum Homocysteine Level and Better Response to MTX
3.2. Serum Homocysteine Level Was Associated with the MTHFR Polymorphism, Sex, MTX Efficacy, and Disease Severity in Psoriasis
3.3. The Effect of MTX on Serum Homocysteine Level Was Related to Sex and the Polymorphism of MTHRF rs1801133 without Folic Acid Supplementation
3.4. Folic Acid Supplementation Reverses the Upregulation of MTX on Serum Homocysteine Levels in Male Psoriatic Patients
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ApoA1 | apolipoprotein A1 |
BMI | body mass index |
BSA | body mass index |
CVD | cardiovascular disease |
HDL-C | high-density lipoprotein-cholesterol |
MTHFR | methylenetetrahydrofolate reductase |
MTX | methotrexate |
PASI | Psoriasis Area Severity Index |
PASI50 | 50% reduction from baseline PASI score |
PASI75 | 75% reduction from baseline PASI score |
PASI90 | 90% reduction from baseline PASI score |
RA | rheumatoid arthritis |
SNP | single-nucleotide polymorphism |
References
- Nestle, F.O.; Kaplan, D.H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509. [Google Scholar] [CrossRef]
- Refsum, H.; Helland, S.; Ueland, P.M. Fasting plasma homocysteine as a sensitive parameter of antifolate effect: A study of psoriasis patients receiving low-dose methotrexate treatment. Clin. Pharmacol. Ther. 1989, 46, 510–520. [Google Scholar] [CrossRef]
- Kural, B.V.; Orem, A.; Cimsit, G.; Uydu, H.A.; Yandi, Y.E.; Alver, A. Plasma homocysteine and its relationships with atherothrombotic markers in psoriatic patients. Clin. Chim. Acta. 2003, 332, 23–30. [Google Scholar] [CrossRef]
- Jacques, P.F.; Bostom, A.G.; Williams, R.R.; Ellison, R.C.; Eckfeldt, J.H.; Rosenberg, I.H.; Selhub, J.; Rozen, R. Relation Between Folate Status, a Common Mutation in Methylenetetrahydrofolate Reductase, and Plasma Homocysteine Concentrations. Circulation 1996, 93, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Yélamos, O.; Puig, L. Systemic methotrexate for the treatment of psoriasis. Expert Rev. Clin. Immunol. 2015, 11, 553–563. [Google Scholar] [CrossRef]
- van Ede, A.E.; Laan, R.F.; Blom, H.J.; Boers, G.H.; Haagsma, C.J.; Thomas, C.M.; de Boo, T.M.; van de Putte, L.B.A. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatol. (Oxf.) 2002, 41, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Broxson, E.H., Jr.; Stork, L.C.; Allen, R.H.; Stabler, S.P.; Kolhouse, J.F. Changes in plasma methionine and total homocysteine levels in patients receiving methotrexate infusions. Cancer Res. 1989, 49, 5879–5883. [Google Scholar]
- Refsum, H.; Wesenberg, F.; Ueland, P.M. Plasma homocysteine in children with acute lymphoblastic leukemia: Changes during a chemotherapeutic regimen including methotrexate. Cancer Res. 1991, 51, 828–835. [Google Scholar]
- Perry, I.J.; Refsum, H.; Morris, R.W.; Ebrahim, S.B.; Ueland, P.M.; Shaper, A.G. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995, 346, 1395–1398. [Google Scholar] [CrossRef]
- Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA 2002, 288, 2015–2022. [Google Scholar] [CrossRef]
- Balanescu, A.R.; Bojinca, V.C.; Bojinca, M.; Donisan, T.; Balanescu, S.M. Cardiovascular effects of methotrexate in immune-mediated inflammatory diseases. Exp. Ther. Med. 2018, 17, 1024–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moll, S.; Varga, E.A. Homocysteine and MTHFR Mutations. Circulation 2015, 132, e6–e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, S.C.; Gupta, E.D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015, 58, 1–10. [Google Scholar] [CrossRef]
- Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.H.; den Heijer, M.; Kluijtmans, L.A.J.; van den Heuve, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef]
- Warren, R.B.; Smith, R.L.; Campalani, E.; Eyre, S.; Smith, C.H.; Barker, J.N.; Worthington, J.; Griffiths, C.E. Genetic Variation in Efflux Transporters Influences Outcome to Methotrexate Therapy in Patients with Psoriasis. J. Investig. Dermatol. 2008, 128, 1925–1929. [Google Scholar] [CrossRef]
- Yan, K.X.; Zhang, Y.J.; Han, L.; Huang, Q.; Zhang, Z.H.; Fang, X.; Zheng, Z.Z.; Yawalkar, N.; Chang, Y.L.; Zhang, Q.; et al. TT genotype of rs10036748 in TNIP1 shows better response to methotrexate in a Chinese population: A prospective cohort study. Br. J. Dermatol. 2019, 181, 778–785. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, H. Quantitative assessment of the association between MTHFR C677T polymorphism and hemorrhagic stroke risk. Mol. Biol. Rep. 2012, 40, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Toffoli, G.; Russo, A.; Innocenti, F.; Corona, G.; Tumolo, S.; Sartor, F.; Mini, E.; Boiocchi, M. Effect of methylenetetrahydrofolate reductase 677C? T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int. J. Cancer 2002, 103, 294–299. [Google Scholar] [CrossRef]
- Powers, R.W.; Majors, A.K.; Lykins, D.L.; Sims, C.J.; Lain, K.Y.; Roberts, J.M. Plasma homocysteine and malondialdehyde are correlated in an age-and gender-specific manner. Metabolism 2002, 51, 1433–1438. [Google Scholar] [CrossRef]
- Pang, H.; Han, B.; Fu, Q.; Hao, L.; Zong, Z. Association between homocysteine and conventional predisposing factors on risk of stroke in patients with hypertension. Sci. Rep. 2018, 8, 3900. [Google Scholar] [CrossRef]
- Clarke, R.; Armitage, J.; Lewington, S.; Collins, R.; Collaboration BVTT. Homocysteine-lowering trials for prevention of vascular disease: Protocol for a collaborative meta-analysis. Clin. Chem. Lab. Med. 2007, 45, 1575–1581. [Google Scholar] [PubMed]
- Smith, R.K.; Quigley, F.; Tosenovsky, P.; Velu, R.; Bradshaw, B.; Buettner, P.; Golledge, J. Serum homocysteine is associated with the severity of primary chronic venous disease. Phlebology 2015, 31, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, J.M.; Kim, I.T.; Yoo, C.K.; Won, Y.S.; Kim, J.H.; Kwon, H.S.; Park, K.H. Relationship between Plasma Homocysteine Level and Glaucomatous Retinal Nerve Fiber Layer Defect. Curr. Eye Res. 2017, 42, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Zheng, Y.-F.; Bu, J.-G.; Zhang, Y.-Y.; Fu, S.-L.; Wang, X.-G.; Guo, L.-L.; Zhang, J.-R. Effects of blood lead and cadmium levels on homocysteine level in plasma. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 162–166. [Google Scholar]
- McCarty, M.F. Supplemental creatine may decrease serum homocysteine and abolish the homocysteine ’gender gap’ by suppressing endogenous creatine synthesis. Med. Hypotheses 2001, 56, 5–7. [Google Scholar] [CrossRef]
- Dimitrova, K.R.; DeGroot, K.W.; Myers, A.K.; Kim, Y.D. Estrogen and homocysteine. Cardiovasc. Res. 2002, 53, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Likis, F. Folic Acid. J. Midwifery Womens Health 2016, 61, 797–798. [Google Scholar]
- Morgan, S.L.; Baggott, J.E.; Vaughn, W.H.; Young, P.K.; Austin, J.V.; Krumdieck, C.L.; Alarcon, G.S. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1990, 33, 9–18. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Y.; Yuan, S.; Xie, M.; Dong, Y.; Li, J.; He, Q.; Ye, X.; Lv, Y.; Hocher, C.-F.; et al. Prevalence and risk factors for hyperhomocysteinemia: A population-based cross-sectional study from Hunan, China. BMJ Open 2021, 11, e048575. [Google Scholar]
rs1801133 (n = 201) | ||||
---|---|---|---|---|
TT (n = 35) | CT (n = 92) | CC (n = 74) | p-Value | |
Male [n(%)] | 24 (81.7) | 66 (71.7) | 55 (74.3) | 0.8168 |
Age (years), mean ± SD | 47.0 ± 14.9 | 44.4 ± 16.0 | 49.8 ± 13.6 | 0.0731 |
Age at disease onset, mean ± SD | 33.3 ± 16.2 | 31.8 ± 15.0 | 37.7 ± 15.7 | 0.0149 |
Disease duration, mean ± SD | 13.7 ± 10.6 | 12.7 ± 10.5 | 12.3 ± 9.2 | 0.7951 |
Body mass index (kgm−2), mean ± SD | 24.3 ± 4.0 | 24.2 ± 3.35 | 25.1 ± 3.4 | 0.2547 |
PASI at baseline, mean ± SD | 15.5 ± 6.0 | 13.8 ± 7.1 | 13.9 ± 8.0 | 0.4942 |
BSA (%) at baseline, mean ± SD | 29.4 ± 17.9 | 28.1 ± 21.7 | 26.4 ± 20.4 | 0.7467 |
Smoking [n(%)] | 16 (45.7) | 24 (26.1) | 23 (31.1) | 0.1032 |
Drinking alcohol [n(%)] | 9 (25.7) | 22 (23.9) | 22 (29.7) | 0.6963 |
Hypertension [n(%)] | 14 (40.0) | 27 (29.3) | 26 (35.1) | 0.4805 |
Diabetes [n(%)] | 8 (22.9) | 15 (16.3) | 11 (14.9) | 0.5698 |
Arthritis [n(%)] | 15 (42.9) | 42 (45.7) | 47 (63.5) | 0.2783 |
Complains of side effects [n(%)] | 6 (17.1) | 32 (34.8) | 25 (33.8) | 0.136 |
MTX dosage(mg), mean ± SD | 130.1 ± 16.4 | 138.8 ± 22.5 | 136.5 ± 18.1 | 0.098 |
Serum homocysteine level at baseline (μmol/L) | 21.58 ± 13.78 | 13.57 ± 3.74 | 13.15 ± 4.21 | <0.0001 |
Serum homocysteine level at week 12 (μmol/L) | 21.7 ± 12.14 | 14.98 ± 5.16 | 14.93 ± 5.78 | <0.0001 |
Outcomes at week 8 | ||||
PASI50 | 23 (65.7) | 54 (58.7) | 39 (52.7) | 0.4241 |
PASI75 | 15 (42.9) | 22 (23.9) | 16 (21.6) | 0.0487 |
PASI90 | 4 (11.4) | 7 (7.6) | 7 (9.5) | 0.7826 |
The mean PASI improvement | 55.1 ± 40.58 | 51.5 ± 29.5 | 48.2 ± 33.3 | 0.5855 |
Outcomes at week 12 | ||||
PASI50 | 28 (80.0) | 69 (75.0) | 48 (64.9) | 0.1828 |
PASI75 | 22 (62.9) | 46 (50.0) | 29 (39.2) | 0.0628 |
PASI90 | 14 (40.0) | 20 (21.7) | 12 (16.2) | 0.0208 |
The mean PASI improvement | 68.1 ± 41.3 | 64.9 ± 29.1 | 61.3 ± 30.4 | 0.5593 |
Predictors | Univariate Analysis | Multiple Analysis | |||
---|---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | ||
Homocysteine at baseline | sex | −3.997 (−6.232~−1.762) | 0.001 | −3.385 (−5.682~−1.088) | 0.004 |
weight | 0.092 (0.013–0.171) | 0.024 | 0.081 (0.004–0.158) | 0.040 | |
PASI score at baseline | 0.195 (0.055–0.334) | 0.007 | 0.142 (0.008–0.276) | 0.038 | |
rs1801133 | −3.546 (−4.913~−2.179) | 0.000 | −3.713 (−5.083~−2.342) | 0.000 | |
ApoA1 | −8.464 (−14.675~−2.253) | 0.008 | |||
HDL-C | −4.887 (−8.682~−1.092) | 0.012 | |||
Homocysteine at week 12 | sex | −5.008 (−7.226~−2.791) | 0.000 | −5.339 (−7.432~−3.245) | 0.000 |
the mean PASI improvement at week 12 | 4.301 (1.08–7.522) | 0.009 | 4.156 (1.200–7.112) | 0.006 | |
rs1801133 | −2.799 (−4.213~−1.384) | 0.000 | −2.807 (−4.131~−1.483) | 0.000 | |
PASI score at baseline | 0.165 (0.024–0.307) | 0.022 |
Total (n = 201) | Male (n = 145) | Female (n = 56) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | 0 W | 12 W | p-Value | Genotype | 0 W | 12 W | p-Value | Genotype | 0 W | 12 W | p-Value |
TT (n = 35) | 21.58 ± 13.78 | 21.7 ± 12.14 | 0.9465 | TT (n = 24) | 24.09 ± 14.20 | 24.29 ± 13.62 | 0.935 | TT (n = 11) | 16.10 ± 11.58 | 16.06 ± 4.80 | 0.083 |
CT (n = 92) | 13.57 ± 3.74 | 14.98 ± 5.16 | 0.0004 | CT (n = 66) | 14.41 ± 3.89 | 16.14 ± 5.39 | 0.0011 | CT (n = 26) | 11.43 ± 2.24 | 12.02 ± 2.94 | 0.112 |
CC (n = 74) | 13.15 ± 4.21 | 14.93 ± 5.78 | <0.0001 | CC (n = 55) | 14.17 ± 4.02 | 16.24 ± 5.91 | 0.0005 | CC (n = 19) | 10.19 ± 3.30 | 11.14 ± 3.19 | 0.0081 |
Total (n = 294) | Male (n = 207) | Female (n = 87) | |||||||
---|---|---|---|---|---|---|---|---|---|
0 W | 12 W | p-Value | 0 W | 12 W | p-Value | 0 W | 12 W | p-Value | |
without folate (n = 201) | 14.81 ± 7.41 | 16.13 ± 7.48 | 0.001 | 15.92 ± 7.64 | 17.52 ± 8.06 | 0.0019 | 11.93 ± 5.90 | 12.52 ± 3.84 | 0.0002 |
with folate (n = 93) | 14.76 ± 11.7 | 13.44 ± 7.52 | 0.0012 | 16.84 ± 13.74 | 14.6 ± 8.34 | 0.0002 | 10.61 ± 3.04 | 11.13 ± 4.86 | 0.3678 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Lin, J.; Zhang, Z.; Han, L.; Huang, Q.; Zhu, J.; Wang, B.; Fang, X.; Zheng, Z.; Yawalkar, N.; et al. MTHFR Polymorphism and Folic Acid Supplementation Influence Serum Homocysteine Levels in Psoriatic Patients Treated with Methotrexate. J. Clin. Med. 2022, 11, 4580. https://doi.org/10.3390/jcm11154580
Zhang Q, Lin J, Zhang Z, Han L, Huang Q, Zhu J, Wang B, Fang X, Zheng Z, Yawalkar N, et al. MTHFR Polymorphism and Folic Acid Supplementation Influence Serum Homocysteine Levels in Psoriatic Patients Treated with Methotrexate. Journal of Clinical Medicine. 2022; 11(15):4580. https://doi.org/10.3390/jcm11154580
Chicago/Turabian StyleZhang, Qi, Jinran Lin, Zhenghua Zhang, Ling Han, Qiong Huang, Jie Zhu, Bing Wang, Xu Fang, Zhizhong Zheng, Nikhil Yawalkar, and et al. 2022. "MTHFR Polymorphism and Folic Acid Supplementation Influence Serum Homocysteine Levels in Psoriatic Patients Treated with Methotrexate" Journal of Clinical Medicine 11, no. 15: 4580. https://doi.org/10.3390/jcm11154580
APA StyleZhang, Q., Lin, J., Zhang, Z., Han, L., Huang, Q., Zhu, J., Wang, B., Fang, X., Zheng, Z., Yawalkar, N., Liang, J., & Yan, K. (2022). MTHFR Polymorphism and Folic Acid Supplementation Influence Serum Homocysteine Levels in Psoriatic Patients Treated with Methotrexate. Journal of Clinical Medicine, 11(15), 4580. https://doi.org/10.3390/jcm11154580