Drug-Associated Parosmia: New Perspectives from the WHO Safety Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Query
2.3. Disproportionality Analysis
3. Results
3.1. Characteristics of the Reports
3.2. Active Ingredients Ranked by Absolute Number of Reports
3.3. Disproportionality Analysis
3.4. Hyposmia Reports
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leopold, D. Distortion of Olfactory Perception: Diagnosis and Treatment. Chem. Senses 2002, 27, 611–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, Z.M.; Holbrook, E.H.; Turner, J.H.; Adappa, N.D.; Albers, M.W.; Altundag, A.; Appenzeller, S.; Costanzo, R.M.; Croy, I.; Davis, G.E.; et al. International Consensus Statement on Allergy and Rhinology: Olfaction. Int. Forum Allergy Rhinol. 2022, 12, 327–680. [Google Scholar] [CrossRef]
- Nordin, S.; Brämerson, A.; Millqvist, E.; Bende, M. Prevalence of Parosmia: The Skövde Population-Based Studies. Rhinology 2007, 45, 50–53. [Google Scholar] [PubMed]
- Pellegrino, R.; Mainland, J.D.; Kelly, C.E.; Parker, J.K.; Hummel, T. Prevalence and Correlates of Parosmia and Phantosmia among Smell Disorders. Chem. Senses 2021, 46, bjab046. [Google Scholar] [CrossRef] [PubMed]
- Bonfils, P.; Avan, P.; Faulcon, P.; Malinvaud, D. Distorted Odorant Perception: Analysis of a Series of 56 Patients With Parosmia. Arch. Otolaryngol.-Head Neck Surg. 2005, 131, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glezer, I.; Malnic, B. Chapter 5—Olfactory Receptor Function. In Handbook of Clinical Neurology; Smell and Taste; Doty, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 164, pp. 67–78. [Google Scholar]
- van Stegeren, A.H.; Goekoop, R.; Everaerd, W.; Scheltens, P.; Barkhof, F.; Kuijer, J.P.A.; Rombouts, S.A.R.B. Noradrenaline Mediates Amygdala Activation in Men and Women during Encoding of Emotional Material. NeuroImage 2005, 24, 898–909. [Google Scholar] [CrossRef]
- Iannilli, E.; Leopold, D.A.; Hornung, D.E.; Hummel, T. Advances in Understanding Parosmia: An FMRI Study. ORL 2019, 81, 185–192. [Google Scholar] [CrossRef]
- Bitter, T.; Siegert, F.; Gudziol, H.; Burmeister, H.P.; Mentzel, H.-J.; Hummel, T.; Gaser, C.; Guntinas-Lichius, O. Gray Matter Alterations in Parosmia. Neuroscience 2011, 177, 177–182. [Google Scholar] [CrossRef]
- Tuccori, M.; Lapi, F.; Testi, A.; Ruggiero, E.; Moretti, U.; Vannacci, A.; Bonaiuti, R.; Antonioli, L.; Fornai, M.; Giustarini, G.; et al. Drug-Induced Taste and Smell Alterations. Drug-Safety 2011, 34, 849–859. [Google Scholar] [CrossRef]
- Thiermann, F.; Buchbauer, G. Influence of Drugs on Smelling Capacity. A Review. Flavour Fragr. J. 2017, 32, 147–158. [Google Scholar] [CrossRef]
- Nordin, S.; Brämerson, A. Complaints of Olfactory Disorders: Epidemiology, Assessment and Clinical Implications. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 10–15. [Google Scholar] [CrossRef]
- Centre, U.M. Uppsala Monitoring Centre. Available online: https://who-umc.org/ (accessed on 28 April 2022).
- Lindquist, M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Ther. Innov. Regul. Sci. 2008, 42, 409–419. [Google Scholar] [CrossRef]
- Gautron, S.; Wentzell, J.; Kanji, S.; Nguyen, T.; Kobewka, D.M.; MacDonald, E. Characterization of Serious Adverse Drug Reactions in Hospital to Determine Potential Implications of Mandatory Reporting. Can. J. Hosp. Pharm. 2018, 71, 316–323. [Google Scholar] [CrossRef] [Green Version]
- CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=312.32 (accessed on 29 April 2022).
- MedDRA Hierarchy|MedDRA. Available online: https://www.meddra.org/how-to-use/basics/hierarchy (accessed on 3 September 2021).
- Faillie, J.-L. Case–Non-Case Studies: Principle, Methods, Bias and Interpretation. Therapies 2019, 74, 225–232. [Google Scholar] [CrossRef]
- Blanchflower, D.G.; Oswald, A.J. Antidepressants and Age; Social Science Research Network: Rochester, NY, USA, 2011. [Google Scholar]
- Thorndike, A.N.; Biener, L.; Rigotti, N.A. Effect on Smoking Cessation of Switching Nicotine Replacement Therapy to Over-the-Counter Status. Am. J. Public Health 2002, 92, 437–442. [Google Scholar] [CrossRef]
- Bron, M.; Marynchenko, M.; Yang, H.; Yu, A.P.; Wu, E.Q. Hypoglycemia, Treatment Discontinuation, and Costs in Patients with Type 2 Diabetes Mellitus on Oral Antidiabetic Drugs. Postgrad. Med. 2012, 124, 124–132. [Google Scholar] [CrossRef]
- Moussavi, S.; Chatterji, S.; Verdes, E.; Tandon, A.; Patel, V.; Ustun, B. Depression, Chronic Diseases, and Decrements in Health: Results from the World Health Surveys. Lancet 2007, 370, 851–858. [Google Scholar] [CrossRef]
- FDA-Approved Drugs: Zithromax (Azithromycin). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050710 (accessed on 2 February 2022).
- FDA-Approved Drugs: Floxin (Ofloxacin). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=019735 (accessed on 2 February 2022).
- FDA-Approved Drugs: Flonase (Fluticasone). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020121 (accessed on 2 February 2022).
- FDA-Approved Drugs: Aerospan (Flunisolide). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (accessed on 2 February 2022).
- Heilmann, S.; Huettenbrink, K.-B.; Hummel, T. Local and Systemic Administration of Corticosteroids in the Treatment of Olfactory Loss. Am. J. Rhinol. 2004, 18, 29–33. [Google Scholar] [CrossRef]
- Alobid, I.; Benítez, P.; Cardelús, S.; de Borja Callejas, F.; Lehrer-Coriat, E.; Pujols, L.; Picado, C.; Mullol, J. Oral plus Nasal Corticosteroids Improve Smell, Nasal Congestion, and Inflammation in Sino-Nasal Polyposis. Laryngoscope 2014, 124, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Abdelalim, A.A.; Mohamady, A.A.; Elsayed, R.A.; Elawady, M.A.; Ghallab, A.F. Corticosteroid Nasal Spray for Recovery of Smell Sensation in COVID-19 Patients: A Randomized Controlled Trial. Am. J. Otolaryngol. 2021, 42, 102884. [Google Scholar] [CrossRef]
- Huart, C.; Philpott, C.M.; Altundag, A.; Fjaeldstad, A.W.; Frasnelli, J.; Gane, S.; Hsieh, J.W.; Holbrook, E.H.; Konstantinidis, I.; Landis, B.N.; et al. Systemic Corticosteroids in Coronavirus Disease 2019 (COVID-19)-Related Smell Dysfunction: An International View. Int. Forum Allergy Rhinol. 2021, 11, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.M.; Kern, R.C.; Foster, J.D.; Fong, K.J.; Pitovski, D.Z. Expression of Glucocorticoid Receptor MRNA and Protein in the Olfactory Mucosa: Physiologic and Pathophysiologic Implications. Laryngoscope 1998, 108, 1238–1242. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.J.; Kern, R.C.; Foster, J.D.; Zhao, J.-C.; Pitovski, D.Z. Olfactory Secretion and Sodium, Potassium–Adenosine Triphosphatase: Regulation by Corticosteroids. Laryngoscope 1999, 109, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Lerner, D.K.; Garvey, K.L.; Arrighi-Allisan, A.E.; Filimonov, A.; Filip, P.; Shah, J.; Tweel, B.; Del Signore, A.; Schaberg, M.; Colley, P.; et al. Clinical Features of Parosmia Associated With COVID-19 Infection. Laryngoscope 2022, 132, 633–639. [Google Scholar] [CrossRef]
- Rashid, R.A.; Alaqeedy, A.A.; Al-Ani, R.M. Parosmia Due to COVID-19 Disease: A 268 Case Series. Indian J. Otolaryngol. Head Neck Surg. 2021. [Google Scholar] [CrossRef]
- Dutta, S.; Kaur, R.J.; Charan, J.; Bhardwaj, P.; Sharma, P.; Ambwani, S.; Haque, M.; Tandon, A.; Abhayanand, J.P.; Sukhija, S.; et al. Serious Adverse Events Reported from the COVID-19 Vaccines: A Descriptive Study Based on WHO Database. J. Appl. Pharm. Sci. 2021. [Google Scholar] [CrossRef]
- Vaira, L.A.; De Vito, A.; Lechien, J.R.; Chiesa-Estomba, C.M.; Mayo-Yàñez, M.; Calvo-Henrìquez, C.; Saussez, S.; Madeddu, G.; Babudieri, S.; Boscolo-Rizzo, P.; et al. New Onset of Smell and Taste Loss Are Common Findings Also in Patients With Symptomatic COVID-19 After Complete Vaccination. Laryngoscope 2022, 132, 419–421. [Google Scholar] [CrossRef]
- Lechien, J.R.; Diallo, A.O.; Dachy, B.; le Bon, S.D.; Maniaci, A.; Vaira, L.A.; Saussez, S. COVID-19: Post-Vaccine Smell and Taste Disorders: Report of 6 Cases. 2021. Available online: https://journals.sagepub.com/doi/10.1177/01455613211033125 (accessed on 31 January 2022).
- Konstantinidis, I.; Tsakiropoulou, E.; Hähner, A.; de With, K.; Poulas, K.; Hummel, T. Olfactory Dysfunction after Coronavirus Disease 2019 (COVID-19) Vaccination. Int. Forum Allergy Rhinol. 2021, 11, 1399–1401. [Google Scholar] [CrossRef]
- Zamzami, O.S.; Kabli, A.F.; Alhothali, A.S.; Alhothali, O.S.; Alharbi, T.A.; Bahakim, A.K.; Marglani, O.A. Post-COVID-19 Vaccine Parosmia: A Case Report. Cureus 2021, 13, e20292. [Google Scholar] [CrossRef]
- Bonaldo, G.; Vaccheri, A.; D’Annibali, O.; Motola, D. Safety Profile of Human Papilloma Virus Vaccines: An Analysis of the US Vaccine Adverse Event Reporting System from 2007 to 2017. Br. J. Clin. Pharmacol. 2019, 85, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Doty, R.L.; Berman, A.H.; Izhar, M.; Hamilton, H.B.; Villano, D.; Vazquez, B.E.; Warrum, M.N.; Mahbob, M. Influenza Vaccinations and Chemosensory Function. Am. J. Rhinol. Allergy 2014, 28, 50–53. [Google Scholar] [CrossRef]
- Nakashima, T.; Suzuki, H.; Teranishi, M. Olfactory and Gustatory Dysfunction Caused by SARS-CoV-2: Comparison with Cases of Infection with Influenza and Other Viruses. Infect. Control Hosp. Epidemiol. 2021, 42, 113–114. [Google Scholar] [CrossRef]
- Rasmussen, V.F.; Vestergaard, E.T.; Hejlesen, O.; Andersson, C.U.N.; Cichosz, S.L. Prevalence of Taste and Smell Impairment in Adults with Diabetes: A Cross-Sectional Analysis of Data from the National Health and Nutrition Examination Survey (NHANES). Prim. Care Diabetes 2018, 12, 453–459. [Google Scholar] [CrossRef]
- Meloni, A.R.; DeYoung, M.B.; Lowe, C.; Parkes, D.G. GLP-1 Receptor Activated Insulin Secretion from Pancreatic β-Cells: Mechanism and Glucose Dependence. Diabetes Obes. Metab. 2013, 15, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Werther, G.A.; Hogg, A.; Oldfield, B.J.; McKinley, M.J.; Figdor, R.; Allen, A.M.; Mendelsohn, F.A. Localization and Characterization of Insulin Receptors in Rat Brain and Pituitary Gland Using in Vitro Autoradiography and Computerized Densitometry. Endocrinology 1987, 121, 1562–1570. [Google Scholar] [CrossRef]
- Merchenthaler, I.; Lane, M.; Shughrue, P. Distribution of Pre-pro-Glucagon and Glucagon-like Peptide-1 Receptor Messenger RNAs in the Rat Central Nervous System. J. Comp. Neurol. 1999, 403, 261–280. [Google Scholar] [CrossRef]
- Martin, B.; Maudsley, S.; White, C.M.; Egan, J.M. Hormones in the Naso-Oropharynx: Endocrine Modulation of Taste and Smell. Trends Endocrinol. Metab. 2009, 20, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Croy, I.; Yarina, S.; Hummel, T. Research Letter Enhanced Parosmia and Phantosmia in Patients with Severe Depression. Psychol. Med. 2013, 43, 2460–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y. Neuropsychological Mechanism Underlying Antidepressant Effect: A Systematic Meta-Analysis. Mol. Psychiatry 2015, 20, 311–319. [Google Scholar] [CrossRef]
- Dell’Osso, B.; Buoli, M.; Baldwin, D.S.; Altamura, A.C. Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) in Anxiety Disorders: A Comprehensive Review of Their Clinical Efficacy. Hum. Psychopharmacol. 2010, 25, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Paroxetine: A Review—Bourin—2001—CNS Drug Reviews—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1527-3458.2001.tb00189.x (accessed on 10 February 2022).
- Ajmani, G.S.; Suh, H.H.; Wroblewski, K.E.; Pinto, J.M. Smoking and Olfactory Dysfunction: A Systematic Literature Review and Meta-Analysis. Laryngoscope 2017, 127, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Varenicline Decreases Ethanol Intake and Increases Dopamine Release via Neuronal Nicotinic Acetylcholine Receptors in the Nucleus Accumbens—Feduccia—2014—British Journal of Pharmacology—Wiley Online Library. Available online: https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.12690 (accessed on 2 February 2022).
- Daghistani, K.J. Anosmia Due to Varenicline; A Case Report. Otolaryngol. Online J. 2014, 4, 97. [Google Scholar]
- Arias, H.R. Is the Inhibition of Nicotinic Acetylcholine Receptors by Bupropion Involved in Its Clinical Actions? Int. J. Biochem. Cell Biol. 2009, 41, 2098–2108. [Google Scholar] [CrossRef] [PubMed]
- Wadgave, U.; Nagesh, L. Nicotine Replacement Therapy: An Overview. Int. J. Health Sci. 2016, 10, 425–435. [Google Scholar] [CrossRef]
- Hazell, L.; Shakir, S.A.W. Under-Reporting of Adverse Drug Reactions: A Systematic Review. Drug Saf. 2006, 29, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Doheny, M.; Schön, P.; Orsini, N.; Fastbom, J.; Burström, B.; Agerholm, J. Socio-Demographic Differences in Polypharmacy and Potentially Inappropriate Drug Use among Older People with Different Care Needs and in Care Settings in Stockholm, Sweden. Scand. J. Public Health 2021, 14034948211018384. [Google Scholar] [CrossRef]
Characteristics | Number (%) |
---|---|
Total | 14,032 (100) |
Sex | |
Female | 8972 (63.9) |
Male | 4441 (31.6) |
Unknown | 619 (4.4) |
Country | |
United States of America | 7475 (53.3) |
Germany | 1354 (9.6) |
United Kingdom | 1202 (8.6) |
Netherlands | 639 (4.6) |
France | 351 (2.5) |
Australia | 324 (2.3) |
Canada | 301 (2.1) |
Korea | 288 (2.1) |
Sweden | 247 (1.8) |
Italy | 221 (1.6) |
Spain | 186 (1.3) |
Denmark | 147 (1.0) |
Norway | 124 (0.9) |
Switzerland | 105 (0.7) |
Japan | 96 (0.7) |
Belgium | 91 (0.6) |
Finland | 87 (0.6) |
Austria | 84 (0.6) |
Poland | 57 (0.4) |
Ireland | 53 (0.4) |
China | 51 (0.4) |
Brazil | 43 (0.3) |
Czechia | 42 (0.3) |
Croatia | 38 (0.3) |
Romania | 31 (0.2) |
New Zealand | 30 (0.2) |
Others | 365 (2.6) |
Reporter Qualification | |
Healthcare Professional | 4231 (30.1) |
Physician | 2636 (18.8) |
Pharmacist | 784 (5.6) |
Other Health Professional | 811 (5.8) |
Others | 5349 (38.1) |
Lawyer | 25 (0.2) |
Consumer | 5324 (37.9) |
Unknown | 4452 (31.7) |
Other Drugs’ Reports | COVID-19 Vaccines’ Reports | p Value | |
---|---|---|---|
Reported by a healthcare professional (%) | 50.8 | 18.0 | <0.001 |
Female (%) | 65 | 72 | <0.001 |
Age (Mean ± SD) | 47.1 ± 15.5 | 53.2 ± 16.3 | <0.001 |
Active Ingredient | ROR | 95% CI | Number of Cases (%) |
---|---|---|---|
Flunisolide | 144.5 | 115.6–180.5 | 83 (0.6) |
Oxymetazoline | 41.4 | 33.9–50.5 | 99 (0.7) |
Beclometasone | 25.8 | 21.9–30.4 | 145 (1.1) |
Ipratropium | 25.0 | 20.7–30.1 | 113 (0.8) |
Roxithromycin | 19.8 | 16.6–23.6 | 125 (0.9) |
Mometasone | 14.2 | 11.7–17.2 | 106 (0.8) |
Cromoglicic acid | 12.2 | 8.7–17.0 | 34 (0.2) |
Fluticasone | 11.9 | 10.5–13.6 | 223 (1.6) |
Clarithromycin | 11.7 | 10.4–13.2 | 288 (2.1) |
Terbinafine | 9.3 | 7.8–11.2 | 121 (0.9) |
Ofloxacin | 7.4 | 6.0–9.1 | 91 (0.6) |
Varenicline | 5.8 | 5.1–6.6 | 245 (1.7) |
Peginterferon alfa-2b | 4.8 | 3.7–6.3 | 55 (0.4) |
Lovastatin | 4.6 | 3.4–6.4 | 39 (0.3) |
Azithromycin | 4.3 | 3.6–5.0 | 152 (1.1) |
Doxycycline | 4.3 | 3.4–5.3 | 78 (0.6) |
Moxifloxacin | 4.1 | 3.4–5.1 | 95 (0.7) |
Triamcinolone | 3.9 | 2.8–5.3 | 38 (0.3) |
Budesonide | 3.7 | 2.8–4.9 | 45 (0.3) |
Telaprevir | 3.4 | 2.6–4.4 | 52 (0.4) |
COVID-19 Vaccine | 3.3 | 3.2–3.4 | 3796 (27.1) |
Tozinameran | 3.3 | 3.2–3.5 | 2103 (55.4) |
JNJ 78436735 | 3.2 | 2.8–3.7 | 191 (5.0) |
Elasomeran | 2.8 | 2.6–3.1 | 745 (19.6) |
AZD1222 | 2.3 | 2.1–2.4 | 724 (19.1) |
Captopril | 3.1 | 2.3–4.1 | 43 (0.3) |
Pirfenidone | 2.8 | 2.0–3.7 | 41 (0.3) |
Ribavirin | 2.5 | 2.1–3.0 | 121 (0.9) |
Duloxetine | 2.5 | 2.0–3.1 | 82 (0.6) |
Bupropion | 2.4 | 1.9–3.0 | 81 (0.6) |
Metamizole | 2.4 | 1.7–3.4 | 32 (0.2) |
Peginterferon alfa-2a | 2.2 | 1.7–2.9 | 54 (0.4) |
Budesonide; Formoterol | 2.2 | 1.6–3.0 | 35 (0.2) |
Clonazepam | 2.1 | 1.5–2.8 | 39 (0.3) |
Ciprofloxacin | 2.0 | 1.7–2.4 | 119 (0.8) |
Salbutamol | 2.0 | 1.6–2.5 | 78 (0.6) |
Exenatide | 2.0 | 1.5–2.5 | 71 (0.5) |
HPV vaccine | 2.0 | 1.6–2.4 | 106 (0.8) |
Paroxetine | 1.9 | 1.5–2.4 | 66 (0.5) |
Cetirizine | 1.8 | 1.2–2.5 | 31 (0.2) |
Dulaglutide | 1.7 | 1.3–2.4 | 40 (0.3) |
Metronidazole | 1.7 | 1.3–2.2 | 60 (0.4) |
Palbociclib | 1.6 | 1.2–2.2 | 47 (0.3) |
Liraglutide | 1.6 | 1.1–2.3 | 30 (0.2) |
Citalopram | 1.6 | 1.1–2.2 | 31 (0.2) |
Nicotine | 1.5 | 1.2–2.0 | 52 (0.4) |
Venlafaxine | 1.5 | 1.1–1.9 | 49 (0.3) |
Teriparatide | 1.3 | 1.1–1.6 | 95 (0.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino, D.; Gérard, A.O.; Thümmler, S.; Ben Othman, N.; Viard, D.; Rocher, F.; Destere, A.; Van Obberghen, E.K.; Drici, M.-D. Drug-Associated Parosmia: New Perspectives from the WHO Safety Database. J. Clin. Med. 2022, 11, 4641. https://doi.org/10.3390/jcm11164641
Merino D, Gérard AO, Thümmler S, Ben Othman N, Viard D, Rocher F, Destere A, Van Obberghen EK, Drici M-D. Drug-Associated Parosmia: New Perspectives from the WHO Safety Database. Journal of Clinical Medicine. 2022; 11(16):4641. https://doi.org/10.3390/jcm11164641
Chicago/Turabian StyleMerino, Diane, Alexandre Olivier Gérard, Susanne Thümmler, Nouha Ben Othman, Delphine Viard, Fanny Rocher, Alexandre Destere, Elise Katheryne Van Obberghen, and Milou-Daniel Drici. 2022. "Drug-Associated Parosmia: New Perspectives from the WHO Safety Database" Journal of Clinical Medicine 11, no. 16: 4641. https://doi.org/10.3390/jcm11164641
APA StyleMerino, D., Gérard, A. O., Thümmler, S., Ben Othman, N., Viard, D., Rocher, F., Destere, A., Van Obberghen, E. K., & Drici, M. -D. (2022). Drug-Associated Parosmia: New Perspectives from the WHO Safety Database. Journal of Clinical Medicine, 11(16), 4641. https://doi.org/10.3390/jcm11164641