Association of Exercise Intensity with the Prevalence of Glaucoma and Intraocular Pressure in Men: A Study Based on the Korea National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessments of Glaucoma and Intraocular Pressure
2.3. Assessment of Physical Activity: Exercise Intensity, Frequency, and Duration
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the Study Participants
3.2. Associations between Exercise and Glaucoma
3.3. Associations between Exercise and Intraocular Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A. Glaucoma. Lancet 2011, 377, 1367–1377. [Google Scholar] [CrossRef]
- Seo, S.J.; Lee, Y.H.; Lee, S.Y.; Bae, H.W.; Hong, S.; Seong, G.J.; Kim, C.Y. Estimated Prevalence of Glaucoma in South Korea Using the National Claims Database. J. Ophthalmol. 2016, 2016, 1690256. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Tribble, J.R.; Hui, F.; Joe, M.; Bell, K.; Chrysostomou, V.; Crowston, J.G.; Williams, P.A. Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Cells 2021, 10, 295. [Google Scholar] [CrossRef]
- Writing Committee for the Normal Tension Glaucoma Genetic Study Group of Japan; Glaucoma, S.; Meguro, A.; Inoko, H.; Ota, M.; Mizuki, N.; Bahram, S. Genome-wide association study of normal tension glaucoma: Common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology 2010, 117, 1331–1338.e5. [Google Scholar] [CrossRef]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef]
- Lin, S.C.; Wang, S.Y.; Pasquale, L.R.; Singh, K.; Lin, S.C. The relation between exercise and glaucoma in a South Korean population-based sample. PLoS ONE 2017, 12, e0171441. [Google Scholar] [CrossRef]
- Tseng, V.L.; Yu, F.; Coleman, A.L. Association between Exercise Intensity and Glaucoma in the National Health and Nutrition Examination Survey. Ophthalmol. Glaucoma 2020, 3, 393–402. [Google Scholar] [CrossRef]
- Gillmann, K.; Weinreb, R.N.; Mansouri, K. The effect of daily life activities on intraocular pressure related variations in open-angle glaucoma. Sci. Rep. 2021, 11, 6598. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, T.P.H.; Gao, K.; Zhou, R.; Radke, N.V.; Lam, D.S.C.; Zhang, X. Aerobic exercise reduces intraocular pressure and expands Schlemm’s canal dimensions in healthy and primary open-angle glaucoma eyes. Indian J. Ophthalmol. 2021, 69, 1127–1134. [Google Scholar] [CrossRef]
- Lee, M.J.; Wang, J.; Friedman, D.S.; Boland, M.V.; De Moraes, C.G.; Ramulu, P.Y. Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma. Ophthalmology 2019, 126, 958–964. [Google Scholar] [CrossRef]
- Roddy, G.; Curnier, D.; Ellemberg, D. Reductions in intraocular pressure after acute aerobic exercise: A meta-analysis. Clin. J. Sport Med. 2014, 24, 364–372. [Google Scholar] [CrossRef]
- Jasien, J.V.; Jonas, J.B.; De Moraes, C.G.; Ritch, R. Intraocular Pressure Rise in Subjects with and without Glaucoma during Four Common Yoga Positions. PLoS ONE 2015, 10, e0144505. [Google Scholar] [CrossRef]
- Killeen, T.K.; Wolf, B.; Greer, T.L.; Carmody, T.; Rethorst, C.D.; Trivedi, M.H. Gender and racial/ethnic differences in physiologic responses in the Stimulant Reduction Intervention using Dosed Exercise Study. Addict. Behav. 2020, 110, 106546. [Google Scholar] [CrossRef]
- Douglass, A.; Dattilo, M.; Feola, A.J. Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma. Cell Mol. Neurobiol. 2022. [Google Scholar] [CrossRef]
- Williams, P.T. Relationship of incident glaucoma versus physical activity and fitness in male runners. Med. Sci. Sports Exerc. 2009, 41, 1566–1572. [Google Scholar] [CrossRef]
- Kim, Y.A.; Lee, Y.; Lee, J.H.; Seo, J.H. Effects of physical activity on bone mineral density in older adults: Korea National Health and Nutrition Examination Survey, 2008–2011. Arch. Osteoporos. 2019, 14, 103. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, Y.; Seo, J.H.; Kim, Y.A. Association between Exercise and Metabolic Syndrome in Koreans. J. Obes. Metab. Syndr. 2018, 27, 117–124. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, Y. Association of physical activity with sarcopenia evaluated based on muscle mass and strength in older adults: 2008-2011 and 2014–2018 Korea National Health and Nutrition Examination Surveys. BMC Geriatr. 2022, 22, 217. [Google Scholar] [CrossRef]
- Chan, M.P.Y.; Broadway, D.C.; Khawaja, A.P.; Yip, J.L.Y.; Garway-Heath, D.F.; Burr, J.M.; Luben, R.; Hayat, S.; Dalzell, N.; Khaw, K.T.; et al. Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: Cross sectional study. BMJ 2017, 358, j3889. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chun, Y.S.; Lee, M.Y.; Kim, J.M.; Shim, S.H.; Yoo, C.; Bae, J.H.; Park, K.H. Association of IOP with Systemic Factors in a Korean Cohort. Optom. Vis. Sci. 2015, 92, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Wang, S.Y.; Yoo, C.; Singh, K.; Lin, S.C. Association between serum ferritin and glaucoma in the South Korean population. JAMA Ophthalmol. 2014, 132, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.A.; Park, Y.M.; Han, K.; Lee, J.; Yun, J.S.; Ko, S.H. Fasting plasma glucose level and the risk of open angle glaucoma: Nationwide population-based cohort study in Korea. PLoS ONE 2020, 15, e0239529. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.C.; Choi, W.; Lee, H.S.; Kim, S.D.; Kim, S.H.; Kim, C.Y.; Park, K.H.; Park, Y.J.; Baek, S.H.; Song, S.J.; et al. An Overview of Ophthalmologic Survey Methodology in the 2008-2015 Korean National Health and Nutrition Examination Surveys. Korean J. Ophthalmol. 2015, 29, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.J.; Buhrmann, R.; Quigley, H.A.; Johnson, G.J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, M.; Guo, W.; Wang, J.; Sun, X. The effect of caffeine on intraocular pressure: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, V.; Kezic, J.M.; Trounce, I.A.; Crowston, J.G. Forced exercise protects the aged optic nerve against intraocular pressure injury. Neurobiol. Aging 2014, 35, 1722–1725. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Kim, Y.A. Association between Exercise and Metabolic Syndrome in Koreans. J. Obes. Metab. Syndr. 2018, 27, 264–266. [Google Scholar] [CrossRef]
- Olszewska, H.; Kosny, J.; Jurowski, P.; Jegier, A. Physical activity of patients with a primary open angle glaucoma. Int. J. Ophthalmol. 2020, 13, 1102–1108. [Google Scholar] [CrossRef]
- Gonzalez-Marrero, I.; Hernandez-Abad, L.G.; Carmona-Calero, E.M.; Castaneyra-Ruiz, L.; Abreu-Reyes, J.A.; Castaneyra-Perdomo, A. Systemic Hypertension Effects on the Ciliary Body and Iris. An Immunofluorescence Study with Aquaporin 1, Aquaporin 4, and Na+, K+ ATPase in Hypertensive Rats. Cells 2018, 7, 210. [Google Scholar] [CrossRef]
- Hong, J.; Xu, J.; Wei, A.; Wen, W.; Chen, J.; Yu, X.; Sun, X. Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology 2013, 120, 709–715. [Google Scholar] [CrossRef]
- Allingham, R.R.; De Kater, A.W.; Ethier, C.R. Schlemm’s canal and primary open angle glaucoma: Correlation between Schlemm’s canal dimensions and outflow facility. Exp. Eye Res. 1996, 62, 101–109. [Google Scholar] [CrossRef]
- Spielman, L.J.; Little, J.P.; Klegeris, A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res. Bull. 2016, 125, 19–29. [Google Scholar] [CrossRef]
- Vohra, R.; Tsai, J.C.; Kolko, M. The role of inflammation in the pathogenesis of glaucoma. Surv. Ophthalmol. 2013, 58, 311–320. [Google Scholar] [CrossRef]
- Sacca, S.C.; Corazza, P.; Gandolfi, S.; Ferrari, D.; Sukkar, S.; Iorio, E.L.; Traverso, C.E. Substances of Interest That Support Glaucoma Therapy. Nutrients 2019, 11, 239. [Google Scholar] [CrossRef]
- Lee, J.W.; Lim, S.H.; Shin, J.H.; Lee, Y.; Seo, J.H. Differences in the eyelid and buccal microbiome between open-angle glaucoma and uveitic glaucoma. Acta Ophthalmol. 2021, 100, e770–e778. [Google Scholar] [CrossRef]
- Yoon, B.W.; Lim, S.H.; Shin, J.H.; Lee, J.W.; Lee, Y.; Seo, J.H. Analysis of oral microbiome in glaucoma patients using machine learning prediction models. J. Oral Microbiol. 2021, 13, 1962125. [Google Scholar] [CrossRef]
- Ko, K.W.; Milbrandt, J.; DiAntonio, A. SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J. Cell Biol. 2020, 219, 201912047. [Google Scholar] [CrossRef]
- Chrysostomou, V.; Galic, S.; Van Wijngaarden, P.; Trounce, I.A.; Steinberg, G.R.; Crowston, J.G. Exercise reverses age-related vulnerability of the retina to injury by preventing complement-mediated synapse elimination via a BDNF-dependent pathway. Aging Cell 2016, 15, 1082–1091. [Google Scholar] [CrossRef]
- He, Y.Y.; Wang, L.; Zhang, T.; Weng, S.J.; Lu, J.; Zhong, Y.M. Aerobic exercise delays retinal ganglion cell death after optic nerve injury. Exp. Eye Res. 2020, 200, 108240. [Google Scholar] [CrossRef]
- Ramulu, P.Y.; Maul, E.; Hochberg, C.; Chan, E.S.; Ferrucci, L.; Friedman, D.S. Real-world assessment of physical activity in glaucoma using an accelerometer. Ophthalmology 2012, 119, 1159–1166. [Google Scholar] [CrossRef]
- Matlach, J.; Bender, S.; Konig, J.; Binder, H.; Pfeiffer, N.; Hoffmann, E.M. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin. Ophthalmol. 2019, 13, 9–16. [Google Scholar] [CrossRef]
Total | No Exercise | Walking Only | Moderate Intensity Exercise | Vigorous Intensity Exercise | ||
---|---|---|---|---|---|---|
(n = 6528) | (n = 651) | (n = 2337) | (n = 1132) | (n = 2408) | p | |
Age, years | 54.16 ± 0.169 | 55.25 ± 0.568 | 57.31 ± 0.297 | 54.38 ± 0.385 | 51.39 ± 0.200 | <0.001 |
a | b | a | c | |||
BMI, kg/m2 | 24.08 ± 0.048 | 23.76 ± 0.155 | 23.90 ± 0.086 | 23.88 ± 0.11 | 24.37 ± 0.075 | <0.001 |
a | a | a | b | |||
SE Right, D | −0.59 ± 0.033 | −0.58 ± 0.109 | −0.43 ± 0.059 | −0.52 ± 0.072 | −0.74 ± 0.048 | <0.001 |
ab | a | ab | b | |||
age adjusted | −0.33 ± 0.103 | −0.32 ± 0.053 | −0.22 ± 0.065 | −0.22 ± 0.043 | 0.464 | |
age and BMI adjusted | −0.33 ± 0.103 | −0.32 ± 0.053 | −0.22 ± 0.065 | −0.22 ± 0.044 | 0.443 | |
SE left, D | −0.54 ± 0.032 | −0.46 ± 0.101 | −0.33 ± 0.056 | −0.51 ± 0.075 | −0.73 ± 0.048 | <0.001 |
ab | a | ab | b | |||
age adjusted | −0.18 ± 0.092 | −0.23 ± 0.05 | −0.2 ± 0.066 | −0.19 ± 0.044 | 0.954 | |
age and BMI adjusted | −0.18 ± 0.092 | −0.23 ± 0.05 | −0.2 ± 0.067 | −0.19 ± 0.044 | 0.949 | |
IOPmax, mmHg | 14.68 ± 0.061 | 14.38 ± 0.147 | 14.62 ± 0.090 | 14.51 ± 0.118 | 14.86 ± 0.080 | 0.003 |
a | ab | ab | b | |||
age adjusted | 14.34 ± 0.146 | 14.60 ± 0.089 | 14.46 ± 0.120 | 14.76 ± 0.084 | 0.016 | |
age and BMI adjusted | 14.36 ± 0.146 | 14.60 ± 0.089 | 14.47 ± 0.119 | 14.75 ± 0.084 | 0.031 | |
Glaucoma, % | 0.9 (0.12) | 2.0 (0.71) | 1.1 (0.22) | 0.7 (0.27) | 0.6 (0.15) | 0.012 |
Alcohol consumption, % | <0.001 | |||||
None | 16.9 (0.53) | 19.2 (1.75) | 21.5 (1.07) | 16.7 (1.35) | 12.9 (0.79) | |
Moderate | 40.1 (0.79) | 41.7 (2.52) | 36.8 (1.26) | 36.4 (1.86) | 43.7 (1.22) | |
Heavy | 42.9 (0.78) | 39.0 (2.28) | 41.6 (1.34) | 46.8 (1.92) | 43.3 (1.19) | |
Smoking status, % | 0.104 | |||||
Never | 15.1 (0.55) | 14.1 (1.69) | 15.4 (0.95) | 15.1 (1.24) | 15.1 (0.85) | |
Ex- | 45.8 (0.81) | 41.4 (2.43) | 46.6 (1.31) | 43.1 (1.88) | 47.3 (1.27) | |
Current | 39.1 (0.80) | 44.5 (2.48) | 38.0 (1.30) | 41.8 (1.86) | 37.6 (1.22) | |
Monthly household income, % | <0.001 | |||||
Lowest | 15.8 (0.58) | 19.9 (1.66) | 21.5 (1.05) | 15.9 (1.26) | 10.3 (0.74) | |
Medium-lowest | 25.2 (0.79) | 30.5 (2.37) | 26.9 (1.25) | 23.2 (1.59) | 23.5 (1.13) | |
Medium-highest | 28.4 (0.73) | 29.7 (2.30) | 27.4 (1.24) | 26.8 (1.66) | 29.5 (1.14) | |
Highest | 30.6 (0.86) | 19.8 (2.01) | 24.2 (1.17) | 34.0 (1.84) | 36.8 (1.34) | |
Intake caffeine, cup/day % | 0.351 | |||||
<1 | 24.7 (0.70) | 24.1 (2.09) | 25.5 (1.27) | 25.7 (1.70) | 24.0 (1.07) | |
1 | 19.7 (0.64) | 18.7 (2.03) | 20.9 (1.11) | 18.6 (1.45) | 19.5 (0.99) | |
2 | 23.8 (0.71) | 19.9 (2.11) | 23.5 (1.24) | 23.8 (1.66) | 24.8 (1.11) | |
≥3 | 31.8 (0.84) | 37.3 (2.54) | 30.1 (1.46) | 31.9 (1.87) | 31.7 (1.24) | |
Total energy intake, kcal/d | 2326.96 ± 15.316 | 2250.29 ± 42.606 | 2196.76 ± 23.698 | 2372.25 ± 37.957 | 2427.73 ± 23.133 | <0.001 |
ab | a | bc | c | |||
Hypertension, % | 24.5 (0.65) | 22.7 (1.94) | 29.2 (1.18) | 25.0 (1.57) | 21.2 (0.94) | <0.001 |
Diabetes, % | 10.3 (0.43) | 9.4 (1.28) | 13.4 (0.84) | 11.0 (1.18) | 7.9 (0.59) | <0.001 |
Cold hands and feet, % | 11.8 (0.53) | 14.1 (1.71) | 12.8 (0.87) | 9.6 (1.04) | 11.3 (0.79) | 0.060 |
No Exercise | Walking Only | Moderate Intensity Exercise | Vigorous Intensity Exercise | p ‡ | |
---|---|---|---|---|---|
n = 651 | n = 2337 | n = 1132 | n = 2408 | ||
Glaucoma | |||||
Unadjusted | 1 | 0.559 (0.253–1.233) | 0.360 (0.131–0.990) * | 0.291 (0.123–0.687) † | 0.027 |
Model 1 | 1 | 0.527 (0.236–1.176) | 0.396 (0.139–1.130) | 0.380 (0.144–1.005) | 0.235 |
Model 2 | 1 | 0.373 (0.159–0.877) * | 0.338 (0.117–0.974) * | 0.233 (0.085–0.637) † | 0.042 |
Model 3 | 1 | 0.351 (0.149–0.826) * | 0.332 (0.114–0.970) * | 0.222 (0.080–0.615) † | 0.034 |
Model 4 | 1 | 0.303 (0.126–0.730) † | 0.322 (0.109–0.945) * | 0.183 (0.068–0.495) † | 0.010 |
Model 5 | 1 | 0.306 (0.129–0.727) † | 0.329 (0.112–0.962) * | 0.182 (0.067–0.490) † | 0.009 |
IOPmax | |||||
Unadjusted | 14.38 ± 0.147 | 14.62 ± 0.09 | 14.51 ± 0.118 | 14.86 ± 0.08 † | 0.003 |
Model 1 | 14.36 ± 0.146 | 14.60 ± 0.089 | 14.47 ± 0.119 | 14.75 ± 0.084 * | 0.031 |
Model 2 | 14.34 ± 0.154 | 14.62 ± 0.095 | 14.43 ± 0.124 | 14.75 ± 0.088 * | 0.025 |
Model 3 | 14.53 ± 0.170 | 14.79 ± 0.110 | 14.62 ± 0.139 | 14.94 ± 0.109 * | 0.024 |
Model 4 | 14.55 ± 0.170 | 14.79 ± 0.110 | 14.65 ± 0.141 | 14.96 ± 0.109 * | 0.026 |
Men (n = 6528) | ||
---|---|---|
Glaucoma § | IOP Max # | |
Walking only | n = 2337 | |
Frequency | ||
1–3 | 1 | 14.58 ± 0.171 |
4–6 | 6.185 (1.516–25.239) * | 14.82 ± 0.207 |
everyday | 2.468 (0.707–8.611) | 14.8 ± 0.160 |
p | 0.030 | 0.419 |
Duration | ||
<3 | 1 | 14.63 ± 0.172 |
3- <7 | 1.080 (0.323–3.614) | 14.69 ± 0.184 |
≥7 | 2.028 (0.606–6.794) | 14.84 ± 0.161 |
p | 0.374 | 0.556 |
Moderate Intensity Exercise | n = 1132 | |
Frequency | ||
1–3 | 1 | 14.76 ± 0.237 |
4–6 | 0.648 (0.117–3.589) | 14.49 ± 0.300 |
everyday | 0.395 (0.045–3.432) | 14.17 ± 0.312 * |
p | 0.673 | 0.090 |
Duration | ||
<3 | 1 | 14.77 ± 0.257 |
3–<7 | 1.156 (0.265–5.045) | 14.65 ± 0.253 |
≥7 | 0.210 (0.031–1.439) | 14.32 ± 0.297 |
p | 0.237 | 0.263 |
Vigorous intensity Exercise | n = 2408 | |
Frequency | ||
1–3 | 1 | 15.10 ± 0.152 |
4–6 | 0.711 (0.166–3.049) | 15.06 ± 0.195 |
everyday | 1.015 (0.168–6.150) | 14.64 ± 0.257 |
p | 0.899 | 0.215 |
Duration | ||
<3 | 1 | 15.02 ± 0.173 |
3–<7 | 0.541 (0.152–1.917) | 15.16 ± 0.174 |
≥7 | 0.278 (0.034–2.308) | 14.95 ± 0.167 |
p | 0.360 | 0.499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.-H.; Lee, Y. Association of Exercise Intensity with the Prevalence of Glaucoma and Intraocular Pressure in Men: A Study Based on the Korea National Health and Nutrition Examination Survey. J. Clin. Med. 2022, 11, 4725. https://doi.org/10.3390/jcm11164725
Seo J-H, Lee Y. Association of Exercise Intensity with the Prevalence of Glaucoma and Intraocular Pressure in Men: A Study Based on the Korea National Health and Nutrition Examination Survey. Journal of Clinical Medicine. 2022; 11(16):4725. https://doi.org/10.3390/jcm11164725
Chicago/Turabian StyleSeo, Je-Hyun, and Young Lee. 2022. "Association of Exercise Intensity with the Prevalence of Glaucoma and Intraocular Pressure in Men: A Study Based on the Korea National Health and Nutrition Examination Survey" Journal of Clinical Medicine 11, no. 16: 4725. https://doi.org/10.3390/jcm11164725
APA StyleSeo, J. -H., & Lee, Y. (2022). Association of Exercise Intensity with the Prevalence of Glaucoma and Intraocular Pressure in Men: A Study Based on the Korea National Health and Nutrition Examination Survey. Journal of Clinical Medicine, 11(16), 4725. https://doi.org/10.3390/jcm11164725