Transepithelial Enhanced Fluence Pulsed Light M Accelerated Crosslinking for Early Progressive Keratoconus with Chemically Enhanced Riboflavin Solutions and Air Room Oxygen
Abstract
:1. Introduction
2. Methods
2.1. Surgical Procedure
2.2. Dataset, Study Design, and Inclusion Criteria
2.3. Measurements and Devices
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Raiskup, F.; Spoerl, E. Corneal Crosslinking with Riboflavin and Ultraviolet A. I. Principles. Ocul. Surf. 2013, 11, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.Z.; Hafezi, N.L.; Khandelwal, S.S.; Torres-Netto, E.; Hafezi, F.; Randleman, J.B. Comparative Functional Outcomes After Corneal Crosslinking Using Standard, Accelerated, and Accelerated With Higher Total Fluence Protocols. Cornea 2019, 38, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, H.; Tsubota, K. Accelerated Versus Standard Corneal Cross-Linking for Progressive Keratoconus: A Meta-Analysis of Randomized Controlled Trials. Cornea 2019, 39, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, C.; Raiskup, F.; Hafezi, F.; Torres-Netto, E.A.; Balamoun, A.A.; Giannaccare, G.; Bagaglia, S.A. Long term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: The Siena Eye-Cross Study 2. Eye Vis. 2021, 8, 16. [Google Scholar] [CrossRef]
- Baiocchi, S.; Mazzotta, C.; Cerretani, D.; Caporossi, T.; Caporossi, A. Corneal crosslinking: Riboflavin concentration in corneal stroma exposed with and without epithelium. J. Cataract Refract. Surg. 2009, 35, 893–899. [Google Scholar] [CrossRef]
- Leccisotti, A.; Islam, T. Transepithelial Corneal Collagen Cross-Linking in Keratoconus. J. Refract. Surg. 2010, 26, 942–948. [Google Scholar] [CrossRef]
- Ghanem, V.C.; Ghanem, R.C.; de Oliveira, R. Postoperative Pain after Corneal Collagen Cross-Linking. Cornea 2013, 32, 20–24. [Google Scholar] [CrossRef]
- Dhawan, S.; Rao, K.; Natrajan, S. Complications of Corneal Collagen Cross-Linking. J. Ophthalmol. 2011, 2011, 869015. [Google Scholar] [CrossRef]
- Franch, A.; Birattari, F.; Dal Mas, G.; Luznik, Z.; Parekh, M.; Ferrari, S.; Ponzin, D. Evaluation of Intrastromal Riboflavin Concentration in Human Corneas after Three Corneal Cross-Linking Imbibition Procedures: A Pilot Study. J. Ophthalmol. 2015, 2015, 794256. [Google Scholar] [CrossRef]
- Koppen, C.; Wouters, K.; Mathysen, D.; Rozema, J.; Tassignon, M.-J. Refractive and topographic results of benzalkonium chloride–assisted transepithelial crosslinking. J. Cataract Refract. Surg. 2012, 38, 1000–1005. [Google Scholar] [CrossRef]
- Caporossi, A.; Mazzotta, C.; Paradiso, A.L.; Baiocchi, S.; Marigliani, D.; Caporossi, T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J. Cataract Refract. Surg. 2013, 39, 1157–1163. [Google Scholar] [CrossRef]
- Gatzioufas, Z.; Raiskup, F.; O’Brart, D.; Spoerl, E.; Panos, G.; Hafezi, F. Transepithelial Corneal Cross-linking Using an Enhanced Riboflavin Solution. J. Refract. Surg. 2016, 32, 372–377. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Nubile, M.; Calienno, R.; Mattei, P.A.; Pedrotti, E.; Salgari, N.; Mastropasqua, R.; Lanzini, M. Corneal Cross-linking: Intrastromal Riboflavin Concentration in Iontophoresis-Assisted Imbibition Versus Traditional and Transepithelial Techniques. Am. J. Ophthalmol. 2014, 157, 623–630. [Google Scholar] [CrossRef]
- Laborante, A.; Longo, C.; Mazzilli, E. Corneal iontophoresis and cross linking: A preliminary report of our experience. Clin. Ter. 2015, 166, e254–e256. [Google Scholar] [CrossRef]
- Mazzotta, C.; Traversi, C.; Mellace, P.; Bagaglia, S.A.; Zuccarini, S.; Mencucci, R.; Jacob, S. Keratoconus Progression in Patients With Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test. Eye Contact Lens: Sci. Clin. Pract. 2018, 44, S48–S53. [Google Scholar] [CrossRef]
- Claessens, J.L.J.; A Godefrooij, D.; Vink, G.; E Frank, L.; Wisse, R.P.L. Nationwide epidemiological approach to identify associations between keratoconus and immune-mediated diseases. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Legrottaglie, E.F.; Tredici, C.; Mazzotta, C.; Rosetta, P.; Vinciguerra, P. Transepithelial Iontophoresis-Assisted Cross Linking for Progressive Keratoconus: Up to 7 Years of Follow Up. J. Clin. Med. 2022, 11, 678. [Google Scholar] [CrossRef]
- Mazzotta, C.; Bagaglia, S.A.; Vinciguerra, R.; Ferrise, M.; Vinciguerra, P. Enhanced-Fluence Pulsed-Light Iontophoresis Corneal Cross-linking: 1-Year Morphological and Clinical Results. J. Refract. Surg. 2018, 34, 438–444. [Google Scholar] [CrossRef]
- Mazzotta, C.; Bagaglia, S.A.; Sgheri, A.; Di Maggio, A.; Fruschelli, M.; Romani, A.; Vinciguerra, R.; Vinciguerra, P.; Tosi, G.M. Iontophoresis Corneal Cross-Linking With Enhanced Fluence and Pulsed UV-A Light: 3-Year Clinical Results. J. Refract. Surg. 2020, 36, 286–292. [Google Scholar] [CrossRef]
- Mazzotta, C.; Sgheri, A.; Bagaglia, S.A.; Rechichi, M.; Di Maggio, A. Customized corneal crosslinking for treatment of progressive keratoconus: Clinical and OCT outcomes using a transepithelial approach with supplemental oxygen. J. Cataract Refract. Surg. 2020, 46, 1582–1587. [Google Scholar] [CrossRef]
- Krumeich, J.H.; Daniel, J.; Knülle, A. Live-Epikeratophakia for keratoconus. J. Cataract Refract. Surg. 1998, 24, 456–463. [Google Scholar] [CrossRef]
- Sachdev, G.S.; Ramamurthy, S.; Dandapani, R. Photorefractive intrastromal corneal crosslinking for treatment of low myopia: Clinical outcomes using the transepithelial approach with supplemental oxygen. J. Cataract Refract. Surg. 2020, 46, 428–433. [Google Scholar] [CrossRef]
- Stodulka, P.; Halasova, Z.; Slovak, M.; Sramka, M.; Liska, K.; Polisensky, J. Photorefractive intrastromal crosslinking for correction of hyperopia: 12-month results. J. Cataract Refract. Surg. 2020, 46, 434–440. [Google Scholar] [CrossRef]
- Näslund, S.; Fredriksson, A.; Alm, A.; Rehnman, J.B.; Behndig, A. Treatment effect with 2 photorefractive intrastromal cross-linking protocols in low-grade myopia through 24-month follow-up. Acta Ophthalmol. 2021, 99, 519–526. [Google Scholar] [CrossRef]
- Näslund, S.; Rehnman, J.B.; Fredriksson, A.; Behndig, A. Comparison of two annular photorefractive intrastromal cross-linking protocols in high oxygen for low-grade myopia through 24-month follow-up. Acta Ophthalmol. 2022, 100, 549–558. [Google Scholar] [CrossRef]
- Mazzotta, C.; Wollensak, G.; Raiskup, F.; Pandolfi, A.M.; Spoerl, E. The meaning of the demarcation line after riboflavin-UVA corneal collagen crosslinking. Expert Rev. Ophthalmol. 2019, 14, 115–131. [Google Scholar] [CrossRef]
- Lin, J.-T. Critical Analysis of Corneal Cross-linking (Part-II): Resolving the Controversial Issues (Theory versus Measurements). Ophthalmol. Res. An. Int. J. 2021, 15, 23–34. [Google Scholar] [CrossRef]
- Kamaev, P.; Friedman, M.D.; Sherr, E.; Muller, D. Photochemical kinetics of corneal cross-linking with riboflavin. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2360–2367. [Google Scholar] [CrossRef]
- Richoz, O.; Hammer, A.; Tabibian, D.; Gatzioufas, Z.; Hafezi, F. The Biomechanical Effect of Corneal Collagen Cross-Linking (CXL) With Riboflavin and UV-A is Oxygen Dependent. Transl. Vis. Sci. Technol. 2013, 2, 6. [Google Scholar] [CrossRef]
- Mazzotta, C.; Moramarco, A.; Traversi, C.; Baiocchi, S.; Iovieno, A.; Fontana, L. Accelerated Corneal Collagen Cross-Linking Using Topography-Guided UV-A Energy Emission: Preliminary Clinical and Morphological Outcomes. J. Ophthalmol. 2016, 2016, 2031031. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Xiao, C.; Yin, Y. Effect of a Gradient Distribution of Cross-Links on the Deformation Behaviors of Corneal Stroma: Theoretical Model and Finite Element Simulation. Front. Mater. 2022, 9, 870134. [Google Scholar] [CrossRef]
- Cornaggia, A.; Boschetti, F.; Mazzotta, C.; Pandolfi, A. Numerical investigation on epi-off crosslinking effects on porcine corneas. Mech. Soft Mater. 2020, 2, 15. [Google Scholar] [CrossRef]
- Boschetti, F.; Conti, D.; Soriano, E.M.; Mazzotta, C.; Pandolfi, A. Experimental in-vitro investigation on Epi-Off-Crosslinking on porcine corneas. PLoS ONE 2021, 16, e0249949. [Google Scholar] [CrossRef]
Parameter | Variable |
---|---|
Treatment target | KC stabilization |
Fluence (total) (Joule/cm2) | 7 Joule/cm2 |
Soak time and interval (minutes) | Paracel I (Part one 4 min) + Paracel II (Part two 6 min) |
Intensity (mW) | 18 mW/cm2 |
Irradiation Time | 12 min and 58 s |
Epithelium status | On |
Chromophore | Riboflavin |
Chromophore carriers | Trometamol, Na-EDTA, no Dextran |
Chromophore osmolarity | Isotonic + hypotonic |
Chromophore concentration | 0.25% (part one) + 0.22% (part two) |
Light source | New KXL I (Glaukos-Avedro, Waltam, MA, USA) |
Irradiation mode (interval) | Pulsed (1 s on–1 s off) |
Protocol modifications | EFPL I-CXL |
Protocol abbreviation | EFPL M-TECXL |
Baseline Characteristics 40 Eyes of 30 Pat | Value (Mean) | SD or % |
---|---|---|
Mean Age (Years) | 28.2 | ±4.9 |
Male | 34 | 85% |
UDVA d. eq. | 0.27 | ±0.12 |
CDVA d. eq. | 0.61 | ±0.19 |
Kmax (D) | 48.52 | ±1.63 |
Coma (D) | 1.37 | ±0.41 |
AK (D) | 55.61 | ±1.17 |
Minimum corneal Thickness µm | 467.43 | ±17.27 |
Reduction/elimination of corneal infection risk |
Reduction/elimination of corneal wound healing stimuli (haze, scarring, extreme thinning) |
Faster patient recovery and visual rehabilitation |
Minimization of microstructural damage to the ocular surface |
Prevention of dry eye preserving the nerve plexus structure |
Simultaneous bilateral treatment |
Quick rehabilitation of the patient to school and work activities |
Full outpatient procedure |
Reduced costs |
Indicationsof Enhanced Trans-Epithelial CXL Protocols |
Preventive use of CXL without awaiting progression |
Forme fruste keratoconus (FFKC) |
Suspicious ectasia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzotta, C.; Balamoun, A.A.; Chabib, A.; Rechichi, M.; D’Oria, F.; Hafezi, F.; Bagaglia, S.A.; Ferrise, M. Transepithelial Enhanced Fluence Pulsed Light M Accelerated Crosslinking for Early Progressive Keratoconus with Chemically Enhanced Riboflavin Solutions and Air Room Oxygen. J. Clin. Med. 2022, 11, 5039. https://doi.org/10.3390/jcm11175039
Mazzotta C, Balamoun AA, Chabib A, Rechichi M, D’Oria F, Hafezi F, Bagaglia SA, Ferrise M. Transepithelial Enhanced Fluence Pulsed Light M Accelerated Crosslinking for Early Progressive Keratoconus with Chemically Enhanced Riboflavin Solutions and Air Room Oxygen. Journal of Clinical Medicine. 2022; 11(17):5039. https://doi.org/10.3390/jcm11175039
Chicago/Turabian StyleMazzotta, Cosimo, Ashraf Armia Balamoun, Ayoub Chabib, Miguel Rechichi, Francesco D’Oria, Farhad Hafezi, Simone Alex Bagaglia, and Marco Ferrise. 2022. "Transepithelial Enhanced Fluence Pulsed Light M Accelerated Crosslinking for Early Progressive Keratoconus with Chemically Enhanced Riboflavin Solutions and Air Room Oxygen" Journal of Clinical Medicine 11, no. 17: 5039. https://doi.org/10.3390/jcm11175039
APA StyleMazzotta, C., Balamoun, A. A., Chabib, A., Rechichi, M., D’Oria, F., Hafezi, F., Bagaglia, S. A., & Ferrise, M. (2022). Transepithelial Enhanced Fluence Pulsed Light M Accelerated Crosslinking for Early Progressive Keratoconus with Chemically Enhanced Riboflavin Solutions and Air Room Oxygen. Journal of Clinical Medicine, 11(17), 5039. https://doi.org/10.3390/jcm11175039