Comparison of Transcatheter Aortic Valve Implantation Devices in Aortic Stenosis: A Network Meta-Analysis of 42,105 Patients
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brennan, J.M.; Thomas, L.; Cohen, D.J.; Shahian, D.; Wang, A.; Mack, M.J.; Holmes, D.R.; Edwards, F.H.; Frankel, N.Z.; Baron, S.J.; et al. Transcatheter Versus Surgical Aortic Valve Replacement: Propensity-Matched Comparison. J. Am. Coll. Cardiol. 2017, 70, 439–450. [Google Scholar] [CrossRef]
- Nalluri, N.; Atti, V.; Patel, N.J.; Kumar, V.; Arora, S.; Nalluri, S.; Nelluri, B.K.; Maniatis, G.A.; Kandov, R.; Kliger, C. Propensity matched comparison of in-hospital outcomes of TAVR vs. SAVR in patients with previous history of CABG: Insights from the Nationwide inpatient sample. Catheter. Cardiovasc. Interv. 2018, 92, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Naqvi, S.Y.; Giri, J.; Goldberg, S. Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. Am. J. Med. 2017, 130, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Carabello, B.A.; Paulus, W.J. Aortic stenosis. Lancet 2009, 373, 956–966. [Google Scholar] [CrossRef]
- Grimard, B.H.; Safford, R.E.; Burns, E.L. Aortic Stenosis: Diagnosis and Treatment. Am. Fam. Phys. 2016, 78, 93. [Google Scholar]
- Padang, R.; Ali, M.; Greason, K.L.; Scott, C.G.; Indrabhinduwat, M.; Rihal, C.S.; Eleid, M.F.; Nkomo, V.T.; Pellikka, P.A.; Pislaru, S.V. Comparative survival and role of STS score in aortic paravalvular leak after SAVR or TAVR: A retrospective study from the USA. BMJ Open 2018, 8, e022437. [Google Scholar] [CrossRef]
- Barbanti, M.; Buccheri, S.; Capodanno, D.; D’Errigo, P.; Ranucci, M.; Rosato, S.; Santoro, G.; Fusco, D.; Tamburino, C.; Biancari, F.; et al. Transcatheter or surgical treatment of severe aortic stenosis and coronary artery disease: A comparative analysis from the Italian OBSERVANT study. Int. J. Cardiol. 2018, 270, 102–106. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Frerker, C.; Bestehorn, K.; Schlüter, M.; Bestehorn, M.; Hamm, C.W.; Möllmann, H.; Katus, H.A.; Kuck, K.-H. In-hospital mortality in propensi-ty-score matched low-risk patients undergoing routine isolated surgical or transfemoral transcatheter aortic valve replacement in 2014 in Germany. Clin. Res. Cardiol. 2017, 106, 610–617. [Google Scholar] [CrossRef]
- Writing Committee Members; Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiolo-gy/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Thorac. Cardiovasc. Surg. 2021, 162, e183–e353. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.; Khera, S.; Kolte, D.; Goel, K.; Kalra, A.; Villablanca, P.A.; Aronow, H.D.; Abbott, J.D.; Fonarow, G.C.; Taub, C.C.; et al. Transcatheter Versus Surgical Aortic Valve Re-placement in Patients with Prior Coronary Artery Bypass Grafting: Trends in Utilization and Propensity-Matched Analysis of In-Hospital Outcomes. Circ. Cardiovasc. Interv. 2018, 11, e006179. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.; Mehilli, J.; Frerker, C.; Neumann, F.J.; Kurz, T.; Tölg, R.; Zachow, D.; Guerra, E.; Massberg, S.; Schäfer, U.; et al. Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: The CHOICE randomized clinical trial. JAMA 2014, 311, 1503–1514. [Google Scholar] [CrossRef]
- Grube, E.; Sinning, J.M. The “Big Five” Complications After Transcatheter Aortic Valve Replacement: Do We Still Have to Be Afraid of Them? JACC Cardiovasc. Interv. 2019, 12, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Mas-Peiro, S.; Seppelt, P.C.; Weiler, H.; Mohr, G.-L.; Papadopoulos, N.; Walther, T.; Zeiher, A.M.; Fichtlscherer, S.; Vasa-Nicotera, M. A Direct Comparison of Self-Expandable Portico Versus Balloon-Expandable Sapien 3 Devices for Transcatheter Aortic Valve Replacement: A Case-Matched Cohort Study. J. Invasive Cardiol. 2019, 31, E199–E204. [Google Scholar] [PubMed]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Markov chain Monte Carlo methods in biostatistics. Stat Methods Med Res. 1996, 5, 339–355. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Landt, M.; Neumann, F.J.; Massberg, S.; Frerker, C.; Kurz, T.; Kaur, J.; Toelg, R.; Sachse, S.; Jochheim, D.; et al. 5-Year Outcomes After TAVR With Balloon-Expandable Versus Self-Expanding Valves: Results from the CHOICE Randomized Clinical Trial. JACC Cardiovasc. Interv. 2020, 13, 1071–1082. [Google Scholar] [CrossRef]
- Gleason, T.G.; Reardon, M.J.; Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Lee, J.S.; Kleiman, N.S.; Chetcuti, S.; Hermiller, J.B.; Heiser, J.; et al. 5-Year Outcomes of Self-Expanding Transcatheter Versus Surgical Aortic Valve Replacement in High-Risk Patients. J. Am. Coll. Cardiol. 2018, 72, 2687–2696. [Google Scholar] [CrossRef]
- Vincent, F.; Ternacle, J.; Delhaye, C.; Auffret, V.; DeBry, N.; Manigold, T.; Cosenza, A.; Amabile, N.; Lhermusier, T.; Porouchani, S.; et al. Response by Vincent et al to Letter Regarding Article, “Balloon-Expandable Versus Self-Expanding Transcatheter Aortic Valve Replacement: A Propensity-Matched Comparison From the FRANCE-TAVI Registry”. Circulation 2020, 141, e910–e911. [Google Scholar] [CrossRef] [PubMed]
- Schymik, G.; Heimeshoff, M.; Bramlage, P.; Herbinger, T.; Würth, A.; Pilz, L.; Schymik, J.S.; Wondraschek, R.; Süselbeck, T.; Gerhardus, J.; et al. A comparison of transcatheter aortic valve implantation and surgical aortic valve replacement in 1,141 patients with severe symptomatic aortic stenosis and less than high risk. Catheter. Cardiovasc. Interv. 2015, 86, 738–744. [Google Scholar] [CrossRef]
- Husser, O.; Kim, W.-K.; Pellegrini, C.; Holzamer, A.; Walther, T.; Mayr, P.N.; Joner, M.; Kasel, A.M.; Trenkwalder, T.; Michel, J.; et al. Multicenter Comparison of Novel Self-Expanding Versus Balloon-Expandable Transcatheter Heart Valves. JACC Cardiovasc. Interv. 2017, 10, 2078–2087. [Google Scholar] [CrossRef]
- Finkelstein, A.; Steinvil, A.; Rozenbaum, Z.; Halkin, A.; Banai, S.; Barbash, I.; Guetta, V.; Segev, A.; Danenberg, H.; Orvin, K.; et al. Efficacy and safety of new-generation transcatheter aortic valves: Insights from the Israeli transcatheter aortic valve replacement registry. Clin. Res. Cardiol. 2018, 108, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Waksman, R.; Rogers, T.; Torguson, R.; Gordon, P.; Ehsan, A.; Wilson, S.R.; Goncalves, J.; Levitt, R.; Hahn, C.; Parikh, P.; et al. Transcatheter Aortic Valve Replacement in Low-Risk Patients with Symptomatic Severe Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 72, 2095–2105. [Google Scholar] [CrossRef]
- Thyregod, H.G.H.; Ihlemann, N.; Jørgensen, T.H.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrøm, T.; Clemmensen, P.; et al. Five-Year Clinical and Echocardiographic Outcomes from the NOTION Randomized Clinical Trial in Patients at Lower Surgical Risk. Circulation 2019, 139, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.R.; Cheng, W.; Waksman, R.; Satler, L.F.; Chakravarty, T.; Groh, M.; Abernethy, W.; Russo, M.J.; Heimansohn, D.; Hermiller, J.; et al. Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): A randomised, controlled, non-inferiority trial. Lancet 2020, 396, 669–683. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A ran-domised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.-H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef]
- Leon, M.B.; Mack, M.J.; Hahn, R.T.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Alu, M.C.; Madhavan, M.V.; Chau, K.H.; Russo, M.; et al. Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk. J. Am. Coll. Cardiol. 2021, 77, 1149–1161. [Google Scholar] [CrossRef]
- Tamburino, C.; Bleiziffer, S.; Thiele, H.; Scholtz, S.; Hildick-Smith, D.; Cunnington, M.; Wolf, A.; Barbanti, M.; Tchetchè, D.; Garot, P.; et al. Comparison of Self-Expanding Bio-prostheses for Transcatheter Aortic Valve Replacement in Patients with Symptomatic Severe Aortic Stenosis: SCOPE 2 Ran-domized Clinical Trial. Circulation 2020, 142, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Lanz, J.; Kim, W.K.; Walther, T.; Burgdorf, C.; Möllmann, H.; Linke, A.; Thilo, C.; Hilker, M.; Joner, M.; Thiele, H.; et al. Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic ste-nosis: A randomised non-inferiority trial. Lancet 2019, 394, 1619–1628. [Google Scholar] [CrossRef]
- Feistritzer, H.-J.; Kurz, T.; Stachel, G.; Hartung, P.; Lurz, P.; Eitel, I.; Marquetand, C.; Nef, H.; Doerr, O.; Vigelius-Rauch, U.; et al. Impact of Anesthesia Strategy and Valve Type on Clinical Outcomes After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2021, 77, 2204–2215. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Castrodeza, J.; Amat-Santos, I.J.; Blanco, M.; Cortés, C.; Tobar, J.; Martin-Morquecho, I.; López, J.; Di Stefano, S.; Rojas, P.; Varela-Falcon, L.H.; et al. Propensity score matched comparison of transcatheter aortic valve implantation versus conventional surgery in intermediate and low risk aortic stenosis patients: A hint of real-world. Cardiol. J. 2016, 23, 541–551. [Google Scholar] [CrossRef]
- Auffret, V.; Becerra Munoz, V.; Loirat, A.; Dumont, E.; Le Breton, H.; Paradis, J.M.; Doyle, D.; De Larochellière, R.; Mohammadi, S.; Verhoye, J.-P.; et al. Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Lower-Surgical-Risk Patients with Chronic Obstructive Pulmonary Disease. Am. J. Cardiol. 2017, 120, 1863–1868. [Google Scholar] [CrossRef]
- Latib, A.; Maisano, F.; Bertoldi, L.; Giacomini, A.; Shannon, J.; Cioni, M.; Ielasi, A.; Figini, F.; Tagaki, K.; Franco, A.; et al. Transcatheter vs surgical aortic valve re-placement in intermediate-surgical-risk patients with aortic stenosis: A propensity score-matched case-control study. Am. Heart J. 2012, 164, 910–917. [Google Scholar] [CrossRef]
- Schaefer, A.; Schofer, N.; Goßling, A.; Seiffert, M.; Schirmer, J.; Deuschl, F.; Schneeberger, Y.; Voigtländer, L.; Detter, C.; Schaefer, U.; et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement in low-risk patients: A propensity score-matched analysis. Eur. J. Cardio-Thoracic Surg. 2019, 56, 1131–1139. [Google Scholar] [CrossRef]
- Thourani, V.H.; Kodali, S.; Makkar, R.R.; Herrmann, H.C.; Williams, M.; Babaliaros, V.; Mukhtar, M.M.; Khan, M.A.; Gowda, S.N.; Kapadia, S.; et al. Transcatheter aortic valve re-placement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. Lancet 2016, 387, 2218–2225. [Google Scholar] [CrossRef]
- Tzamalis, P.; Alataki, S.; Bramlage, P.; Schmitt, C.; Schymik, G. Comparison of Valve Durability and Outcomes of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Patients with Severe Symptomatic Aortic Stenosis and Less-Than-High-Risk for Surgery. Am. J. Cardiol. 2020, 125, 1202–1208. [Google Scholar] [CrossRef]
- Ullah, W.; Zahid, S.; Zaidi, S.R.; Sarvepalli, D.; Haq, S.; Roomi, S.; Mukhtar, M.; Khan, M.A.; Gowda, S.N.; Ruggiero, N.; et al. Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement—A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e020906. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Takagi, H.; Telila, T.; Afonso, L. Comparison of outcomes in new-generation versus early-generation heart valve in transcatheter aortic valve implantation: A systematic review and meta-analysis. Cardiovasc. Revasc. Med. 2018, 19, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group; Hari, Y.; Nakashima, K.; Kuno, T.; Ando, T. Network meta-analysis of new-generation valves for transcatheter aortic valve implantation. Heart Vessel. 2019, 34, 1984–1992. [Google Scholar] [CrossRef]
- Fang, F.; Tang, J.; Zhao, Y.; He, J.; Xu, P.; Faramand, A. Transcatheter aortic valve implantation versus surgical aortic valve replacement in patients at low and intermediate risk: A risk specific meta-analysis of randomized controlled trials. PLoS ONE 2019, 14, e0221922. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Younas, S.; Syed, M.A. Meta-Analysis Comparing Transcatheter Aortic Valve Implantation to Surgical Aortic Valve Replacement in Low Surgical Risk Patients. Am. J. Cardiol. 2019, 124, 1257–1264. [Google Scholar] [CrossRef]
- Siontis, G.C.M.; Overtchouk, P.; Cahill, T.J.; Modine, T.; Prendergast, B.; Praz, F.; Pilgrim, T.; Petrinic, T.; Nikolakopoulou, A.; Salanti, G.; et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: An updated meta-analysis. Eur. Heart J. 2019, 40, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Ullah, W.; Khan, M.Z.; Uddin, M.F.; Rai, D.; Abbas, S.; Hussein, A.; Salama, A.; Bandyopadhyay, D.; Bhaibhav, B.; et al. Cerebral Embolic Protection during Transcatheter Aortic Valve Implantation: Updated Systematic Review and Meta-Analysis. Curr Probl Cardiol. 2022, 101127. [Google Scholar] [CrossRef] [PubMed]
- Sammour, Y.; Banerjee, K.; Kumar, A.; Lak, H.; Chawla, S.; Incognito, C.; Patel, J.; Kaur, M.; Abdelfattah, O.; Svensson, L.G.; et al. Systematic Approach to High Implantation of SAPIEN-3 Valve Achieves a Lower Rate of Conduction Abnormalities Including Pacemaker Implantation. Circ. Cardiovasc. Interv. 2021, 14, e009407. [Google Scholar] [CrossRef] [PubMed]
Study | Year of Publication | Follow-Up Time (mo) | Design | Cohort Size (n) | Groups (n) |
---|---|---|---|---|---|
Brennan [1] | 2017 | 12 | Propensity | 9464 | Sapien n = 4732 SAVR n = 4732 |
Evolut low risk [9] | 2019 | 24 | Randomized | 1403 | EvolutR n = 725 SAVR n = 678 |
Tanush Gupta [12] | 2018 | 24 | Propensity | 7760 | Sapien n = 3880 SAVR n = 3880 |
Choice [19] | 2020 | 60 | Randomized | 241 | SapienXT n = 121 Corevalve n = 120 |
Corevalve pivotal [20] | 2018 | 60 | Randomized | 750 | Corevalve n = 391 SAVR n = 359 |
France propensity [21] | 2020 | 24 | Propensity | 7820 | Corevalve n = 3910 SapienXT n = 3910 |
Gerhard Schymik [22] | 2015 | 36 | Propensity | 432 | Sapien + sapienXT n = 216 SAVR n = 216 |
Husser [23] | 2017 | 1 | Propensity | 933 | Acurate neo n = 311 SAVR n = 622 |
Israeli registry [24] | 2019 | 1 | Propensity | 735 | Sapien3 n = 223 EvolutR n = 512 |
LRT [25] | 2018 | 1 | Propensity | 919 | Sapien3 n = 200 SAVR n = 719 |
Notion [26] | 2019 | 60 | Randomized | 280 | Corevalve n = 145 SAVR n = 135 |
PORTICO IDE [27] | 2020 | 1 | Randomized | 750 | Portico n = 381 Sapien3 n = 369 |
Partner I [28] | 2015 | 60 | Randomized | 699 | Sapien n = 348 SAVR n = 351 |
Partner II [29] | 2020 | 60 | Randomized | 2032 | SapienXT + 3 n = 1011 SAVR n = 1021 |
Partner III [30] | 2019 | 24 | Randomized | 950 | Sapien3 n = 496 SAVR n = 454 |
SCOPE II [31] | 2020 | 12 | Randomized | 796 | Acurate neo n = 398 Corevalve n = 398 |
Scope I [32] | 2019 | 1 | Randomized | 739 | Acurate neo n = 367 Sapien n = 364 |
Solve [33] | 2021 | 12 | Randomized | 436 | Sapien3 n = 212 EvolutPRO n = 210 |
SURTAVI [34] | 2017 | 24 | Randomized | 1574 | Corevalve n = 864 SAVR n = 796 |
Castordeza [35] | 2016 | 12 | Propensity | 140 | Corevalve n = 70 SAVR n = 70 |
Auffret [36] | 2017 | 1 | Propensity | 321 | SapienXT+ Sapien n = 122 SAVR n = 199 |
Latib [37] | 2012 | 12 | Propensity | 222 | SapienXT+ Sapien n = 111 SAVR n = 111 |
Schaefer [38] | 2019 | 1 | Propensity | 218 | SapienXT+ Sapien n = 109 SAVR n = 109 |
Thourani [39] | 2016 | 12 | Propensity | 2021 | Sapien3 n = 1077 SAVR n = 944 |
Tzamalis [40] | 2020 | 72 | Propensity | 407 | SapienXT + Sapien n = 209 SAVR n = 198 |
Study | Age (Mean ± SD) | Male (%) | Ejection Fraction (Mean ± SD) | Diabetes (%) | Smoking (%) | Hypertension (%) | Dyslipidemia (%) | CABG (%) | PCI (%) | MI (%) |
---|---|---|---|---|---|---|---|---|---|---|
CHOICE | 80.7 ± 6.2 | 35.7 | 53.7 ± 12.8 | 29 | NA | NA | NA | 14.1 | 39.4 | 12.45 |
CoreValve Pivotal | 83.3 ± 6.7 | 52.7 | NA | 39.7 | NA | NA | NA | 30.4 | 35.9 | NA |
Evolut Low Risk | 73.9 ± 5.9 | 65.1 | 61.8 ± 7.8 | 31 | NA | 83.7 | NA | 2.3 | 13.5 | 5.75 |
FRANCE propensity | 83.5 ± 8 | 48.9 | 54.8 ± 14.6 | 25.7 | NA | 66.5 | NA | 11.4 | NA | NA |
Gerhard Schymik | 78.3 ± 4.9 | 48.8 | 62.1 ± 10.9 | NA | NA | NA | NA | NA | NA | 2.75 |
Husser | 81 ± 6 | 42.8 | NA | 32.5 | NA | NA | NA | 9.3 | 37.7 | 10 |
Israeli Registry | 82 ± 5 | 51 | NA | 40 | 5.5 | 84.5 | 69.5 | NA | NA | NA |
Brennan | 81.5 ± 4.5 | 52 | NA | NA | NA | NA | NA | 30.5 | 26.5 | 23.3 |
LRT | 71 ± 15.5 | 60.7 | 60.9 ± 17.7 | 25.7 | NA | 82.58 | NA | 2.7 | 12.18 | 6.85 |
Notion | 79.1 ± 4.8 | 53.2 | NA | 19.3 | NA | 73.6 | NA | NA | 8.2 | 5 |
PorticoIDE | 83.3± 7.3 | 47.3 | 57.4 ± 11.3 | 38 | NA | NA | NA | 21.8 | 28.6 | 13 |
Partner I | 84 ± 6.6 | 57.3 | 52.9 ± 13.2 | NA | NA | NA | NA | 43.4 | 33.3 | 28.4 |
Partner II | 81.6 ± 6.7 | 54.5 | 55.8 ± 11.4 | 35.9 | NA | NA | NA | 24.6 | 27.4 | 17.9 |
Partner III | 73.5 ± 6 | 65.8 | 66 ± 8.8 | 29.2 | NA | NA | NA | NA | NA | 5.75 |
Scope II | 83.15 ± 4.3 | 32.5 | NA | 28 | 3.5 | 85.5 | 51 | 5.5 | 25.5 | 8.5 |
Scope I | 82.8 ± 4.1 | 43 | 56.8 ± 10.9 | 30.5 | 2.5 | 91.5 | 58 | 8 | 32.5 | 11.63 |
Solve | 81.6 ± 5.5 | 48.9 | NA | 33.6 | 4.1 | 90.6 | 40.1 | 10 | 37.2 | NA |
SURTAVI | 79.8 ± 6.2 | 56.4 | NA | 34.5 | NA | NA | NA | 16.6 | 21.3 | 15.1 |
Castordeza | 78.5 ± 8.2 | 50 | 58 ± 13.8 | 31.4 | NA | 68.5 | NA | NA | NA | NA |
Tanush Gupta | 77 ± 9.9 | 78.75 | NA | 44.6 | 4.15 | 84 | NA | NA | 21 | 20.75 |
Auffret | 72.4 ± 9.3 | 35.7 | 54.6 ± 13.2 | NA | NA | NA | NA | 12.5 | NA | NA |
Latib | 79.9 ± 7.4 | 44.1 | 53.5 ± 12.5 | 20.2 | NA | 69.8 | NA | NA | NA | 14.41 |
Schaefer | 75.15 ± 9.1 | 50 | NA | 20.5 | NA | NA | NA | NA | NA | 4.5 |
Thourani | 81.75 ± 6.7 | 58.5 | 57 ± 14.9 | NA | NA | NA | NA | 27 | 29.5 | 17 |
Tzamalis | 78.25 ± 5.2 | 48.85 | 62.1 ± 11.4 | NA | NA | 1.4 | NA | NA | NA | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogosh, A.A.; Adawi, A.; El Nasasra, A.; Cafri, C.; Barrett, O.; Tsaban, G.; Barashi, R.; Koifman, E. Comparison of Transcatheter Aortic Valve Implantation Devices in Aortic Stenosis: A Network Meta-Analysis of 42,105 Patients. J. Clin. Med. 2022, 11, 5299. https://doi.org/10.3390/jcm11185299
Dogosh AA, Adawi A, El Nasasra A, Cafri C, Barrett O, Tsaban G, Barashi R, Koifman E. Comparison of Transcatheter Aortic Valve Implantation Devices in Aortic Stenosis: A Network Meta-Analysis of 42,105 Patients. Journal of Clinical Medicine. 2022; 11(18):5299. https://doi.org/10.3390/jcm11185299
Chicago/Turabian StyleDogosh, Ala Abu, Ahlam Adawi, Aref El Nasasra, Carlos Cafri, Orit Barrett, Gal Tsaban, Rami Barashi, and Edward Koifman. 2022. "Comparison of Transcatheter Aortic Valve Implantation Devices in Aortic Stenosis: A Network Meta-Analysis of 42,105 Patients" Journal of Clinical Medicine 11, no. 18: 5299. https://doi.org/10.3390/jcm11185299
APA StyleDogosh, A. A., Adawi, A., El Nasasra, A., Cafri, C., Barrett, O., Tsaban, G., Barashi, R., & Koifman, E. (2022). Comparison of Transcatheter Aortic Valve Implantation Devices in Aortic Stenosis: A Network Meta-Analysis of 42,105 Patients. Journal of Clinical Medicine, 11(18), 5299. https://doi.org/10.3390/jcm11185299