Increased Respiratory Drive after Prolonged Isoflurane Sedation: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Drug Administration
2.4. Ventilation
2.5. Measurements
2.6. Outcomes
2.7. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Primary Outcome—Increased Respiratory Drive after Sedation Stop
3.3. Secondary Outcomes—Acid-Base Balance, Ventilation and Opioid Consumption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meiser, A.; Volk, T.; Wallenborn, J.; Guenther, U.; Becher, T.; Bracht, H.; Schwarzkopf, K.; Knafelj, R.; Faltlhauser, A.; Thal, S.C.; et al. Inhaled isoflurane via the anaesthetic conserving device versus propofol for sedation of invasively ventilated patients in intensive care units in Germany and Slovenia: An open-label, phase 3, randomised controlled, non-inferiority trial. Lancet Respir. Med. 2021, 9, 1231–1240. [Google Scholar] [CrossRef]
- Jerath, A.; Wong, K.; Wasowicz, M.; Fowler, T.; Steel, A.; Grewal, D.; Huszti, E.; Parotto, M.; Zhang, H.; Wilcox, M.E.; et al. Use of Inhaled Volatile Anesthetics for Longer Term Critical Care Sedation: A Pilot Randomized Controlled Trial. Crit. Care Explor. 2020, 2, e0281. [Google Scholar] [CrossRef]
- Bellgardt, M.; Bomberg, H.; Herzog-Niescery, J.; Dasch, B.; Vogelsang, H.; Weber, T.P.; Steinfort, C.; Uhl, W.; Wagenpfeil, S.; Volk, T.; et al. Survival after long-term isoflurane sedation as opposed to intravenous sedation in critically ill surgical patients. Eur. J. Anaesthesiol. 2016, 33, 6–13. [Google Scholar] [CrossRef]
- Hemphill, S.; McMenamin, L.; Bellamy, M.C.; Hopkins, P.M. Propofol infusion syndrome: A structured literature review and analysis of published case reports. Br. J. Anaesth. 2019, 122, 448–459. [Google Scholar] [CrossRef]
- Naritoku, D.K.; Sinha, S. Prolongation of midazolam half-life after sustained infusion for status epilepticus. Neurology 2000, 54, 1366–1368. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.; Khoo, K.; Soni, P.; Patel, I. Increased volume of distribution prolongs midazolam half-life. Br. J. Clin. Pharmacol. 1990, 29, 269–272. [Google Scholar] [CrossRef]
- Yang, Y.; Ou, M.; Liu, J.; Zhao, W.; Zhuoma, L.; Liang, Y.; Zhu, T.; Mulkey, D.K.; Zhou, C. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology 2020, 133, 824–838. [Google Scholar] [CrossRef]
- Lazarenko, R.M.; Fortuna, M.G.; Shi, Y.; Mulkey, D.K.; Takakura, A.C.; Moreira, T.S.; Guyenet, P.G.; Bayliss, D.A. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K+ current. J. Neurosci. 2010, 30, 9324–9334. [Google Scholar] [CrossRef]
- Hao, X.; Ou, M.; Li, Y.; Zhou, C. Volatile anesthetics maintain tidal volume and minute ventilation to a greater degree than propofol under spontaneous respiration. BMC Anesthesiol. 2021, 21, 238. [Google Scholar] [CrossRef]
- Müller-Wirtz, L.M.; Behne, F.; Kermad, A.; Wagenpfeil, G.; Schroeder, M.; Sessler, D.I.; Volk, T.; Meiser, A. Isoflurane promotes early spontaneous breathing in ventilated intensive care patients: A post hoc subgroup analysis of a randomized trial. Acta Anaesthesiol. Scand. 2022, 66, 354–364. [Google Scholar] [CrossRef]
- Kermad, A.; Speltz, J.; Danziger, G.; Mertke, T.; Bals, R.; Volk, T.; Lepper, P.M.; Meiser, A. Comparison of isoflurane and propofol sedation in critically ill COVID-19 patients—A retrospective chart review. J. Anesth. 2021, 35, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.-R. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA J. Am. Med. Assoc. 1993, 270, 2957. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef]
- Heider, J.; Bansbach, J.; Kaufmann, K.; Heinrich, S.; Loop, T.; Kalbhenn, J. Does volatile sedation with sevoflurane allow spontaneous breathing during prolonged prone positioning in intubated ARDS patients? A retrospective observational feasibility trial. Ann. Intensive Care 2019, 9, 41. [Google Scholar] [CrossRef]
- Meiser, A.; Groesdonk, H.V.; Bonnekessel, S.; Volk, T.; Bomberg, H. Inhalation Sedation in Subjects With ARDS Undergoing Continuous Lateral Rotational Therapy. Respir. Care 2018, 63, 441–447. [Google Scholar] [CrossRef]
- Bourgeois, T.; Ringot, M.; Ramanantsoa, N.; Matrot, B.; Dauger, S.; Delclaux, C.; Gallego, J. Breathing under Anesthesia. Anesthesiology 2019, 130, 995–1006. [Google Scholar] [CrossRef]
- Yasuda, N.; Lockhart, S.H.; Eger, E.I.; Weiskopf, R.B.; Johnson, B.H.; Frelre, B.A.; Fassoulakl, A. Kinetics of Desflurane, Isoflurane, and Halothane in Humans. Anesthesiology 1991, 74, 489–498. [Google Scholar] [CrossRef]
- Lu, C.C.; Tsai, C.S.; Hu, O.Y.P.; Chen, R.M.; Chen, T.L.; Ho, S.T. Pharmacokinetics of isoflurane in human blood. Pharmacology 2008, 81, 344–349. [Google Scholar] [CrossRef]
- Hüppe, T.; Dreyer, D.B.; Genoux, L.H.; Meiers, K.; Volk, T.; Kreuer, S. Desflurane and Sevoflurane are Detectable in Expired Air Up to 14 Days after General Anesthesia (Conference Abstract, A3161). American Society of Anesthesiologists Annual Meeting. 15 October 2018. Available online: https://www.abstractsonline.com/pp8/#!/4593/presentation/5903 (accessed on 28 July 2022).
- Fernández Del Río, R.; O’Hara, M.E.; Pemberton, P.; Whitehouse, T.; Mayhew, C.A. Elimination characteristics of post-operative isoflurane levels in alveolar exhaled breath via PTR-MS analysis. J. Breath Res. 2016, 10, 046006. [Google Scholar] [CrossRef]
- Bomberg, H.; Meiser, F.; Zimmer, S.; Bellgardt, M.; Volk, T.; Sessler, D.I.; Groesdonk, H.V.; Meiser, A. Halving the volume of AnaConDa: Initial clinical experience with a new small-volume anaesthetic reflector in critically ill patients-a quality improvement project. J. Clin. Monit. Comput. 2018, 32, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, H.; Meiser, F.; Daume, P.; Bellgardt, M.; Volk, T.; Sessler, D.I.; Groesdonk, H.V.; Meiser, A. Halving the Volume of AnaConDa: Evaluation of a New Small-Volume Anesthetic Reflector in a Test Lung Model. Anesth. Analg. 2019, 129, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, H.; Veddeler, M.; Volk, T.; Groesdonk, H.V.; Meiser, A. Volumetric and reflective device dead space of anaesthetic reflectors under different conditions. J. Clin. Monit. Comput. 2018, 32, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Sturesson, L.W.; Bodelsson, M.; Johansson, A.; Jonson, B.; Malmkvist, G. Apparent dead space with the anesthetic conserving device, AnaConDa®: A clinical and laboratory investigation. Anesth. Analg. 2013, 117, 1319–1324. [Google Scholar] [CrossRef]
- MacDonald, S.M.; Tin, C.; Song, G.; Poon, C.S. Use-dependent learning and memory of the Hering-Breuer inflation reflex in rats. Exp. Physiol. 2009, 94, 269–278. [Google Scholar] [CrossRef] [Green Version]
Parameter | Isoflurane | Propofol | SMD |
---|---|---|---|
n | 23 | 41 | - |
Sex [male] | 20 (87) | 24 (58) | 0.673 |
Age [years] | 55 [52, 65] | 69 [60, 80] | 0.833 |
Height [cm] | 175 [171, 180] | 170 [165, 178] | 0.218 |
Weight [kg] | 85 ± 28 | 81 ± 23 | 0.158 |
BMI | 26 [23, 32] | 27 [23, 30] | 0.028 |
SAPS II | 37 ± 13 | 41 ± 13 | 0.313 |
SOFA | 10 ± 4 | 10 ± 3 | 0.121 |
CVVHD [n] | 11 (48) | 11 (27) | 0.445 |
Death [n] | 5 (22) | 13 (32) | 0.227 |
Tracheostomy [n] | 16 (70) | 11 (27) | 0.946 |
Total ventilation time [h] | 114 [86, 171] | 108 [79, 167] | 0.402 |
Total sedation time [h] | 179 [141, 234] | 108 [79, 167] | 0.845 |
Surgical patients [n] | 20 (87) | 38 (93) | |
Visceral [n] | 11 (48) | 19 (46) | - |
Trauma [n] | 2 (9) | 10 (24) | - |
Other [n] | 7 (30) | 9 (22) | - |
Medical patients [n] | 3 (13) | 3 (7) | - |
Before Sedation Stop | After Sedation Stop | |||||
---|---|---|---|---|---|---|
Parameter | Isoflurane | Propofol | P | Isoflurane | Propofol | P |
n | 23 | 41 | - | 23 | 41 | - |
Circulation | ||||||
Heart rate [bpm] * | 95 [87, 101] | 84 [79, 89] | 0.012 | 93 [86, 100] | 87 [83, 92] | 0.157 |
Mean arterial blood pressure [mmHg] | 69 [61, 69] | 71 [68, 73] | 0.195 | 80 [71, 88] | 78 [72, 80] | 0.585 |
Sedation and analgesia | ||||||
End-tidal isoflurane [Vol%] | 0.64 [0.55, 0.70] | - | - | - | - | - |
Propofol dose [mg/kg/h] | - | 1.4 [1.1, 1.7] | - | - | - | - |
Morphine equivalent dose [µg/kg/h] | 39 [29, 60] | 31 [22, 38] | 0.087 | 34 [18, 46] † | 25 [15, 26] † | 0.073 |
Primary outcome—Increased respiratory drive | ||||||
Total observations [n] | 318 | 520 | 515 | 924 | ||
Observations with increased respiratory drive [n] | 9 (3%) | 27 (5%) | 159 (31%) | 110 (12%) | ||
Risk ratio | 0.5 [0.1, 2.1] | 0.319 | 2.6 [1.3, 5.2] | 0.005 | ||
Adjusted risk ratio # | 0.9 [0.2, 5.5] | 0.926 | 2.9 [1.3, 6.5] | 0.010 | ||
Adjusted risk ratio #,§ | 0.9 [0.2, 5.4] | 0.925 | 3.3 [1.3, 8.3] † | 0.012 | ||
Secondary outcomes—Acid–base balance and ventilation | ||||||
pH | 7.41 [7.38, 7.43] | 7.40 [7.37, 7.41] | 0.374 | 7.45 [7.41, 7.46] | 7.43 [7.42, 7.44] | 0.221 |
PaCO2 [mmHg] | 47 [44, 52] | 44 [42, 45] | 0.096 | 37 [35, 42] | 41 [39, 45] | 0.007 |
Base excess [mmol/L] | 4.3 [3.1, 5.0] | 1.9 [0.7, 2.7] | 0.005 | 1.7 [0.9, 3.0] | 2.5 [1.5, 3.5] | 0.297 |
Tidal volume [ml] * | 613 [559, 660] | 526 [503, 550] | 0.001 | 609 [556, 668] | 503 [471, 540] | 0.002 |
Tidal volume normalized to IBW [ml/kg] * | 9.0 [8.4, 9.6] | 8.2 [7.8, 8.5] | 0.014 | 9.0 [8.3, 9.7] | 7.8 [7.3, 8.2] | 0.006 |
Respiratory rate [bpm] | 17 [15, 19] | 17 [15, 17] | 0.238 | 19 [15, 19] | 19 [16, 20] | 0.445 |
Inspiratory pressure support [cmH2O] * | 8 [7, 10] | 8 [7, 9] | 0.377 | 6 [5, 7] | 7 [6, 8] | 0.362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Wirtz, L.M.; Grimm, D.; Albrecht, F.W.; Fink, T.; Volk, T.; Meiser, A. Increased Respiratory Drive after Prolonged Isoflurane Sedation: A Retrospective Cohort Study. J. Clin. Med. 2022, 11, 5422. https://doi.org/10.3390/jcm11185422
Müller-Wirtz LM, Grimm D, Albrecht FW, Fink T, Volk T, Meiser A. Increased Respiratory Drive after Prolonged Isoflurane Sedation: A Retrospective Cohort Study. Journal of Clinical Medicine. 2022; 11(18):5422. https://doi.org/10.3390/jcm11185422
Chicago/Turabian StyleMüller-Wirtz, Lukas Martin, Dustin Grimm, Frederic Walter Albrecht, Tobias Fink, Thomas Volk, and Andreas Meiser. 2022. "Increased Respiratory Drive after Prolonged Isoflurane Sedation: A Retrospective Cohort Study" Journal of Clinical Medicine 11, no. 18: 5422. https://doi.org/10.3390/jcm11185422
APA StyleMüller-Wirtz, L. M., Grimm, D., Albrecht, F. W., Fink, T., Volk, T., & Meiser, A. (2022). Increased Respiratory Drive after Prolonged Isoflurane Sedation: A Retrospective Cohort Study. Journal of Clinical Medicine, 11(18), 5422. https://doi.org/10.3390/jcm11185422