Intraperitoneal Triamcinolone Reduces Postoperative Adhesions, Possibly through Alteration of Mitochondrial Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Surgical Evaluation of Adhesions
2.3. Cell Culture and Hypoxia Experiments
2.4. Measurement of Reactive Oxygen Species
2.5. Measurement of Intact Cellular Oxygen Consumption
2.6. ELISA
2.7. Immunoblotting
2.8. Statistical Analysis
2.9. Ethics Approval
3. Results
3.1. Sample Population
3.2. Effect of Triamcinolone Intervention on Adhesions and Surgical Complications
3.3. Risk Factors for Adhesion Formation and Severity of Adhesions in the Study Group
3.4. In Vitro Cell Culture Model of the Role of Steroids in Fibrosis
3.4.1. HIF-1α Does Not Affect TGF-β1 Secretion in Human Fibroblasts at 1% Hypoxia or after Reoxygenation
3.4.2. Triamcinolone Prevents the Increase in TGF-β1 Resulting from 2% Hypoxia
3.4.3. Triamcinolone Decreases Reactive Oxygen Species (ROS) Only at 2% Hypoxia
3.4.4. Triamcinolone Prevents the Increase in ROS through Alteration of Mitochondrial Function
4. Discussion
4.1. Adhesions
4.2. Mechanism of Steroids in Adhesion Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weibel, M.A.; Majno, G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am. J. Surg. 1973, 126, 345–353. [Google Scholar] [CrossRef]
- Koninckx, P.R.; Gomel, V.; Ussia, A.; Adamyan, L. Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue. Fertil. Steril. 2016, 106, 998–1010. [Google Scholar] [CrossRef] [Green Version]
- Monk, B.J.; Berman, M.L.; Montz, F.J. Adhesions after extensive gynecologic surgery: Clinical significance, etiology, and prevention. Am. J. Obstet. Gynecol. 1994, 170, 1396–1403. [Google Scholar] [CrossRef]
- Sikirica, V.; Bapat, B.; Candrilli, S.D.; Davis, K.L.; Wilson, M.; Johns, A. The inpatient burden of abdominal and gynecological adhesiolysis in the US. BMC Surg. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, M.C.; Ellis, H.; Moran, B.J.; Thompson, J.N.; Wilson, M.S.; Menzies, D.; McGuire, A.; Lower, A.M.; Hawthorn, R.J.; O’Briena, F.; et al. Postoperative adhesions: Ten-year follow-up of 12,584 patients undergoing lower abdominal surgery. Dis. Colon Rectum 2001, 44, 822–829; discussion 829–830. [Google Scholar] [CrossRef] [PubMed]
- Baakdah, H.; Tulandi, T. Adhesion in gynecology complication, cost, and prevention: A review. Surg. Technol. Int. 2005, 14, 185–190. [Google Scholar] [PubMed]
- Krielen, P.; Stommel, M.W.J.; Pargmae, P.; Bouvy, N.D.; Bakkum, E.A.; Ellis, H.; Parker, M.C.; Griffiths, E.A.; van Goor, H.; Ten Broek, R.P.G. Adhesion-related readmissions after open and laparoscopic surgery: A retrospective cohort study (SCAR update). Lancet 2020, 395, 33–41. [Google Scholar] [CrossRef]
- Stommel, M.W.; Ten Broek, R.P.; Strik, C.; Slooter, G.D.; Verhoef, C.; Grunhagen, D.J.; van Duijvendijk, P.; Bemelmans, M.H.; den Dulk, M.; Sietses, C.; et al. Multicenter Observational Study of Adhesion Formation after Open-and Laparoscopic Surgery for Colorectal Cancer. Ann. Surg. 2017, 267, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Menzies, D. Peritoneal adhesions. Incidence, cause, and prevention. Surg. Annu. 1992, 24 Pt 1, 27–45. [Google Scholar] [PubMed]
- Mettler, L. Pelvic adhesions: Laparoscopic approach. Ann. N. Y. Acad. Sci. 2003, 997, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Tulandi, T.; Agdi, M.; Zarei, A.; Miner, L.; Sikirica, V. Adhesion development and morbidity after repeat cesarean delivery. Am. J. Obstet. Gynecol. 2009, 201, 56.e1–56.e6. [Google Scholar] [CrossRef]
- Tulandi, T.; Lyell, D.J. Classification of intra-abdominal adhesions after cesarean delivery. Gynecol. Surg. 2012, 10, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Ray, N.F.; Denton, W.G.; Thamer, M.; Henderson, S.C.; Perry, S. Abdominal adhesiolysis: Inpatient care and expenditures in the United States in 1994. J. Am. Coll. Surg. 1998, 186, 1–9. [Google Scholar] [CrossRef]
- Tulandi, T.; Murray, C.; Guralnick, M. Adhesion formation and reproductive outcome after myomectomy and second-look laparoscopy. Obstet. Gynecol. 1993, 82, 213–215. [Google Scholar] [PubMed]
- Abu-Elhasan, A.M.; Abdellah, M.S.; Hamed, H.O. Safety and efficacy of postoperative continuous intra-peritoneal wash with lactated Ringer’s for minimizing post-myomectomy pelvic adhesions: A pilot clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 183, 78–82. [Google Scholar] [CrossRef]
- Ryan, G.L.; Syrop, C.H.; Van Voorhis, B.J. Role, epidemiology, and natural history of benign uterine mass lesions. Clin. Obstet. Gynecol. 2005, 48, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Wallach, E.E.; Vlahos, N.F. Uterine myomas: An overview of development, clinical features, and management. Obstet. Gynecol. 2004, 104, 393–406. [Google Scholar] [CrossRef]
- Baird, D.D.; Dunson, D.B.; Hill, M.C.; Cousins, D.; Schectman, J.M. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence. Am. J. Obstet. Gynecol. 2003, 188, 100–107. [Google Scholar] [CrossRef]
- Zimmermann, A.; Bernuit, D.; Gerlinger, C.; Schaefers, M.; Geppert, K. Prevalence, symptoms and management of uterine fibroids: An international internet-based survey of 21,746 women. BMC Womens Health 2012, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, S.K.; Stewart, E.A. Uterine leiomyomas: Individualizing the approach to a heterogeneous condition. Obstet. Gynecol. 2011, 117, 396–403. [Google Scholar] [CrossRef]
- Recanati, M.A.; Du, H.; Kramer, K.J.; Huttemann, M.; Welch, R.A. Antisense techniques provide robust decrease in GnRH receptor expression with minimal cytotoxicity in GT1-7 cells. Syst. Biol. Reprod. Med. 2018, 64, 389–398. [Google Scholar] [CrossRef] [Green Version]
- de Milliano, I.; Twisk, M.; Ket, J.C.; Huirne, J.A.; Hehenkamp, W.J. Pre-treatment with GnRHa or ulipristal acetate prior to laparoscopic and laparotomic myomectomy: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0186158. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lu, D.; Navaratnam, K.; Shi, G. Aromatase inhibitors for uterine fibroids. Cochrane Database Syst. Rev. 2013, CD009505. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Wu, T.; Chen, X.Y.; Xie, L.; Yang, J. Selective estrogen receptor modulators (SERMs) for uterine leiomyomas. Cochrane Database Syst. Rev. 2012, 10, CD005287. [Google Scholar] [CrossRef]
- Sayed, G.H.; Zakherah, M.S.; El-Nashar, S.A.; Shaaban, M.M. A randomized clinical trial of a levonorgestrel-releasing intrauterine system and a low-dose combined oral contraceptive for fibroid-related menorrhagia. Int. J. Gynecol. Obstet. 2011, 112, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Vilos, G.A.; Allaire, C.; Laberge, P.Y.; Leyland, N.; Special, C. The management of uterine leiomyomas. J. Obstet. Gynecol. Can. 2015, 37, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Freed, M.M.; Spies, J.B. Uterine artery embolization for fibroids: A review of current outcomes. Semin. Reprod. Med. 2010, 28, 235–241. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M. Uterine fibroid management: From the present to the future. Hum. Reprod. Update 2016, 22, 665–686. [Google Scholar] [CrossRef]
- Meng, X.; He, G.; Zhang, J.; Han, Z.; Yu, M.; Zhang, M.; Tang, Y.; Fang, L.; Zhou, X. A comparative study of fibroid ablation rates using radio frequency or high-intensity focused ultrasound. Cardiovasc. Interv. Radiol. 2010, 33, 794–799. [Google Scholar] [CrossRef]
- Bulun, S.E. Uterine fibroids. N. Engl. J. Med. 2013, 369, 1344–1355. [Google Scholar] [CrossRef] [Green Version]
- Gobern, J.M.; Rosemeyer, C.J.; Barter, J.F.; Steren, A.J. Comparison of robotic, laparoscopic, and abdominal myomectomy in a community hospital. JSLS 2013, 17, 116–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cezar, C.; Becker, S.; di Spiezio Sardo, A.; Herrmann, A.; Larbig, A.; Tanos, V.; de la Roche, L.A.T.; Verhoeven, H.C.; Wallwiener, M.; De Wilde, R.L. Laparoscopy or laparotomy as the way of entrance in myoma enucleation. Arch. Gynecol. Obstet. 2017, 296, 709–720. [Google Scholar] [CrossRef]
- Falcone, T.; Parker, W.H. Surgical management of leiomyomas for fertility or uterine preservation. Obstet. Gynecol. 2013, 121, 856–868. [Google Scholar] [CrossRef] [Green Version]
- Kubinova, K.; Mara, M.; Horak, P.; Kuzel, D.; Dohnalova, A. Reproduction after myomectomy: Comparison of patients with and without second-look laparoscopy. Minim. Invasive Ther. Allied Technol. 2012, 21, 118–124. [Google Scholar] [CrossRef]
- Wechter, M.E.; Stewart, E.A.; Myers, E.R.; Kho, R.M.; Wu, J.M. Leiomyoma-related hospitalization and surgery: Prevalence and predicted growth based on population trends. Am. J. Obstet. Gynecol. 2011, 205, 492.e1–492.e5. [Google Scholar] [CrossRef] [Green Version]
- Kotani, Y.; Tobiume, T.; Fujishima, R.; Shigeta, M.; Takaya, H.; Nakai, H.; Suzuki, A.; Tsuji, I.; Mandai, M.; Matsumura, N. Recurrence of uterine myoma after myomectomy: Open myomectomy versus laparoscopic myomectomy. J. Obstet. Gynecol. Res. 2018, 44, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Stentz, N.C.; Cooney, L.G.; Sammel, M.; Shah, D.K. Changes in Myomectomy Practice After the U.S. Food and Drug Administration Safety Communication on Power Morcellation. Obstet. Gynecol. 2017, 129, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Jarvinen, P.A.; Nummi, S. Prevention of intraperitoneal adhesions by dextran. Hydrocortisone and chymotrypsin. An experimental study. Acta Obstet. Gynecol. Scand. 1976, 55, 271–273. [Google Scholar] [CrossRef]
- West, S.; Ruiz, R.; Parker, W.H. Abdominal myomectomy in women with very large uterine size. Fertil. Steril. 2006, 85, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Aras, S.; Pak, O.; Sommer, N.; Finley, R., Jr.; Huttemann, M.; Weissmann, N.; Grossman, L.I. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res. 2013, 41, 2255–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purandare, N.; Somayajulu, M.; Huttemann, M.; Grossman, L.I.; Aras, S. The cellular stress proteins CHCHD10 and MNRR1 (CHCHD2): Partners in mitochondrial and nuclear function and dysfunction. J. Biol. Chem. 2018, 293, 6517–6529. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.M.; Desai, L.P. Reciprocal regulation of TGF-beta and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015, 6, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, N.M.; Jiang, Z.L.; Diamond, M.P.; Abu-Soud, H.M.; Saed, G.M. Hypoxia-generated superoxide induces the development of the adhesion phenotype. Free Radic. Biol. Med. 2008, 45, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Elkelani, O.A.; Binda, M.M.; Molinas, C.R.; Koninckx, P.R. Effect of adding more than 3% oxygen to carbon dioxide pneumoperitoneum on adhesion formation in a laparoscopic mouse model. Fertil. Steril. 2004, 82, 1616–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinas, C.R.; Campo, R.; Elkelani, O.A.; Binda, M.M.; Carmeliet, P.; Koninckx, P.R. Role of hypoxia inducible factors 1alpha and 2alpha in basal adhesion formation and in carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in transgenic mice. Fertil. Steril. 2003, 80 (Suppl. 2), 795–802. [Google Scholar] [CrossRef]
- Lamberti, M.J.; Pansa, M.F.; Vera, R.E.; Fernandez-Zapico, M.E.; Rumie Vittar, N.B.; Rivarola, V.A. Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy. PLoS ONE 2017, 12, e0177801. [Google Scholar] [CrossRef]
- Halberg, N.; Khan, T.; Trujillo, M.E.; Wernstedt-Asterholm, I.; Attie, A.D.; Sherwani, S.; Wang, Z.V.; Landskroner-Eiger, S.; Dineen, S.; Magalang, U.J.; et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009, 29, 4467–4483. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.A. Gas Tensions in the Tissues. Physiol. Rev. 1931, 11, 40. [Google Scholar] [CrossRef]
- Towell, M.E.; Lysak, I.; Layne, E.C.; Bessman, S.P. Tissue oxygen tension in rabbits measured with a galvanic electrode. J. Appl. Physiol. 1976, 41, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Ambler, D.R.; Fletcher, N.M.; Diamond, M.P.; Saed, G.M. Effects of hypoxia on the expression of inflammatory markers IL-6 and TNF-a in human normal peritoneal and adhesion fibroblasts. Syst. Biol. Reprod. Med. 2012, 58, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Saed, G.M.; Galijasevic, S.; Diamond, M.P.; Abu-Soud, H.M. Measurement of oxygen and nitric oxide levels in vitro and in vivo: Relationship to postoperative adhesions. Fertil. Steril. 2005, 84, 235–238. [Google Scholar] [CrossRef]
- Awonuga, A.O.; Belotte, J.; Abuanzeh, S.; Fletcher, N.M.; Diamond, M.P.; Saed, G.M. Advances in the Pathogenesis of Adhesion Development: The Role of Oxidative Stress. Reprod. Sci. 2014, 21, 823–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binda, M.M.; Molinas, C.R.; Koninckx, P.R. Reactive oxygen species and adhesion formation: Clinical implications in adhesion prevention. Hum. Reprod. 2003, 18, 2503–2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, K.M.; Diamond, M.P. The biology of adhesion formation in the peritoneal cavity. Semin. Pediatr. Surg. 2014, 23, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Giorgi, C.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; Poletti, F.; et al. Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal Transduct. 2012, 2012, 329635. [Google Scholar] [CrossRef] [Green Version]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan Dunn, J.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015, 6, 472–485. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lu, P.; Beeraka, N.M.; Sukocheva, O.A.; Madhunapantula, S.V.; Liu, J.; Sinelnikov, M.Y.; Nikolenko, V.N.; Bulygin, K.V.; Mikhaleva, L.M.; et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol. 2020; in press. [Google Scholar] [CrossRef]
- Bouron, A.; Chauvet, S.; Dryer, S.; Rosado, J.A. Second Messenger-Operated Calcium Entry Through TRPC6. Adv. Exp. Med. Biol. 2016, 898, 201–249. [Google Scholar] [CrossRef]
- Shekhar, S.; Liu, Y.; Wang, S.; Zhang, H.; Fang, X.; Zhang, J.; Fan, L.; Zheng, B.; Roman, R.J.; Wang, Z.; et al. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int. J. Mol. Sci. 2021, 22, 2074. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R. Microsurgery alone or with INTERCEED Absorbable Adhesion Barrier for pelvic sidewall adhesion re-formation. The INTERCEED (TC7) Adhesion Barrier Study Group II. Surg. Gynecol. Obstet. 1993, 177, 135–139. [Google Scholar]
- Canis, M.J.; Triopon, G.; Darai, E.; Madelenat, P.; LeVeque, J.; Panel, P.; Fernandez, H.; Audebert, A.; Descamps, P.; Castaing, N.; et al. Adhesion prevention after myomectomy by laparotomy: A prospective multicenter comparative randomized single-blind study with second-look laparoscopy to assess the effectiveness of PREVADH. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 178, 42–47. [Google Scholar] [CrossRef]
- Mais, V.; Peiretti, M.; Minerba, L. The Improvement of Laparoscopic Surgical Skills Obtained by Gynecologists after Ten Years of Clinical Training Can Reduce Peritoneal Adhesion Formation during Laparoscopic Myomectomy: A Retrospective Cohort Study. BioMed Res. Int. 2017, 2017, 9068647. [Google Scholar] [CrossRef] [Green Version]
- Adhesion Scoring Group. Improvement of interobserver reproducibility of adhesion scoring systems. Fertil. Steril. 1994, 62, 984–988. [Google Scholar] [CrossRef]
- Risberg, B. Adhesions: Preventive strategies. Eur. J. Surg. Suppl. 1997, 577, 32–39. [Google Scholar]
- Rahman, M.S.; Gasem, T.; Al Suleiman, S.A.; Al Jama, F.E.; Burshaid, S.; Rahman, J. Bladder injuries during cesarean section in a University Hospital: A 25-year review. Arch. Gynecol. Obstet. 2009, 279, 349–352. [Google Scholar] [CrossRef] [PubMed]
- ten Broek, R.P.; Strik, C.; van Goor, H. Preoperative nomogram to predict risk of bowel injury during adhesiolysis. Br. J. Surg. 2014, 101, 720–727. [Google Scholar] [CrossRef]
- Catherino, W.H.; Eltoukhi, H.M.; Al-Hendy, A. Racial and ethnic differences in the pathogenesis and clinical manifestations of uterine leiomyoma. Semin. Reprod. Med. 2013, 31, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Tulandi, T.; Al-Sannan, B.; Akbar, G.; Ziegler, C.; Miner, L. Prospective study of intraabdominal adhesions among women of different races with or without keloids. Am. J. Obstet. Gynecol. 2011, 204, 132.e1–132.e4. [Google Scholar] [CrossRef]
- Allahverdi, T.D.; Allahverdi, E.; Yayla, S.; Deprem, T.; Merhan, O.; Vural, S. The comparison of the effects of ellagic acid and diclofenac sodium on intra-abdominal adhesion: An in vivo study in the rat model. Int. Surg. 2014, 99, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyhan, E.; Irkorucu, O.; Surmelioglu, A.; Ozkara, S.; Deger, K.C.; Aziret, M.; Erdem, H.; Cetinkunar, S.; Tilki, M.; Demirturk, P.; et al. Abolition of anti-adhesiogenic effect of heparin by protamine sulfate. Int. J. Surg. 2014, 12, 729–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avsar, A.F.; Avsar, F.M.; Sahin, M.; Topaloglu, S.; Vatansev, H.; Belviranli, M. Diphenhydramine and hyaluronic acid derivatives reduce adnexal adhesions and prevent tubal obstructions in rats. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 106, 50–54. [Google Scholar] [CrossRef]
- Avsar, F.M.; Sahin, M.; Aksoy, F.; Avsar, A.F.; Akoz, M.; Hengirmen, S.; Bilici, S. Effects of diphenhydramine HCl and methylprednisolone in the prevention of abdominal adhesions. Am. J. Surg. 2001, 181, 512–515. [Google Scholar] [CrossRef]
- Binda, M.M.; Molinas, C.R.; Hansen, P.; Koninckx, P.R. Effect of desiccation and temperature during laparoscopy on adhesion formation in mice. Fertil. Steril. 2006, 86, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopernik, G.; Avinoach, E.; Grossman, Y.; Levy, R.; Yulzari, R.; Rogachev, B.; Douvdevani, A. The effect of a high partial pressure of carbon dioxide environment on metabolism and immune functions of human peritoneal cells-relevance to carbon dioxide pneumoperitoneum. Am. J. Obstet. Gynecol. 1998, 179, 1503–1510. [Google Scholar] [CrossRef]
- Fabri, P.J.; Ellison, E.C.; Anderson, E.D.; Kudsk, K.A. High molecular weight dextran–effect on adhesion formation and peritonitis in rats. Surgery 1983, 94, 336–341. [Google Scholar]
- Neuwirth, R.S.; Khalaf, S.M. Effect of thirty-two per cent dextran 70 on peritoneal adhesion formation. Am. J. Obstet. Gynecol. 1975, 121, 420–422. [Google Scholar] [CrossRef]
- diZerega, G.S. The peritoneum and its response to surgical injury. Prog. Clin. Biol. Res. 1990, 358, 1–11. [Google Scholar]
- Wynn, T.A.; Barron, L. Macrophages: Master regulators of inflammation and fibrosis. Semin. Liver Dis. 2010, 30, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Chegini, N. TGF-beta system: The principal profibrotic mediator of peritoneal adhesion formation. Semin. Reprod. Med. 2008, 26, 298–312. [Google Scholar] [CrossRef]
- White, J.C.; Jiang, Z.L.; Diamond, M.P.; Saed, G.M. Macrophages induce the adhesion phenotype in normal peritoneal fibroblasts. Fertil. Steril. 2011, 96, 758–763.e3. [Google Scholar] [CrossRef]
- Nacu, N.; Luzina, I.G.; Highsmith, K.; Lockatell, V.; Pochetuhen, K.; Cooper, Z.A.; Gillmeister, M.P.; Todd, N.W.; Atamas, S.P. Macrophages produce TGF-beta-induced (beta-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J. Immunol. 2008, 180, 5036–5044. [Google Scholar] [CrossRef] [Green Version]
- Koninckx, P.R.; Gomel, V. Introduction: Quality of pelvic surgery and postoperative adhesions. Fertil. Steril. 2016, 106, 991–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, N.M.; Awonuga, A.O.; Neubauer, B.R.; Abusamaan, M.S.; Saed, M.G.; Diamond, M.P.; Saed, G.M. Shifting anaerobic to aerobic metabolism stimulates apoptosis through modulation of redox balance: Potential intervention in the pathogenesis of postoperative adhesions. Fertil. Steril. 2015, 104, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Copple, B.L. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver Int. 2010, 30, 669–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingyuan, X.; Qianqian, P.; Shengquan, X.; Chenyi, Y.; Rui, L.; Yichen, S.; Jinghong, X. Hypoxia-inducible factor-1alpha activates transforming growth factor-beta1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget 2018, 9, 3188–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushida, N.; Nomura, S.; Mimura, I.; Fujita, T.; Yamamoto, S.; Nangaku, M.; Aburatani, H. Hypoxia-Inducible Factor-1alpha Activates the Transforming Growth Factor-beta/SMAD3 Pathway in Kidney Tubular Epithelial Cells. Am. J. Nephrol. 2016, 44, 276–285. [Google Scholar] [CrossRef]
- Blanco-Ayala, T.; Anderica-Romero, A.C.; Pedraza-Chaverri, J. New insights into antioxidant strategies against paraquat toxicity. Free Radic. Res. 2014, 48, 623–640. [Google Scholar] [CrossRef]
- Palmeira, C.M.; Moreno, A.J.; Madeira, V.M. Mitochondrial bioenergetics is affected by the herbicide paraquat. Biochim. Biophys. Acta 1995, 1229, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Puyou, A.; Pena-Dias, A.; Guzman-Garcia, J.; Laguna, J. Effect of triamcinolone and other steriods on the oxidative phosphorylation reaction. BioChem. Pharmacol. 1963, 12, 331–340. [Google Scholar] [CrossRef]
- Koh, M.Y.; Powis, G. Passing the baton: The HIF switch. Trends BioChem. Sci. 2012, 37, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.H.; Semenza, G.L.; Bauer, C.; Marti, H.H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 1996, 271, C1172–C1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aras, S.; Bai, M.; Lee, I.; Springett, R.; Huttemann, M.; Grossman, L.I. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion 2015, 20, 43–51. [Google Scholar] [CrossRef] [PubMed]
Type of Adhesion | Extent of Total Area |
---|---|
0- None | 0- None |
1- Filmy, avascular | 1- <25% |
2- Vascular and/or dense | 2- 26–50% |
3- Cohesive | 3- 51–75% |
4- >76% |
Study Population | Controls | p | |
---|---|---|---|
Mean (SEM) | Mean (SEM) | ||
Reoperation (Second Look) | |||
Number of patients | 31 | 21 | |
Age | 45.3 (0.8) | 44.0 (1.2) | 0.321 |
Race | African American (19), White (8), Hispanic (3), other (1) | African American (9), White (7), Hispanic (3), other (2) | |
Mean time to reoperation (years) | 7.7 (0.5) | 8.1 (0.5) | 0.591 |
Mean uterine size (weeks) | 12.0 (0.3) | 12.4 (0.5) | 0.710 |
Original Surgery | |||
Age (years) | 37.7 (0.9) | 36.0 (1.0) | 0.257 |
Avg. original Uterine Size (weeks) | 22.1 (0.8) | 20.8 (0.8) | 0.318 |
Avg. fibroids removed/patient (#) | 7.5 (0.7) | 6.8 (0.7) | 0.522 |
Avg. aggregate weight (g) | 525 (41.4) | 465 (43.9) | 0.333 |
Avg. surgical time (min) | 205 (10.5) | 237 (18.5) | 0.120 |
Avg. EBL (mL) | 624 (90.8) | 605 (92.2) | 0.885 |
Total fibroids removed (#) | 231 | ||
Fibroid distribution | 37% anterior, 20% posterior, 30% fundal, 13% cervical | ||
Adhesions | |||
Number of patients with adhesions | 10 (32%) | 15 (71%) | 0.006 * |
Avg. number adhesions/patient | 0.71 (0.2) | 2.09 (0.5) | 0.006 ** |
Avg. severity of adhesions/patient | 0.54 (0.2) | 1.38 (0.2) | 0.005 *** |
Avg. extent of adhesions/patient | 0.45 (0.1) | 1.28 (0.2) | 0.003 **** |
Location | 40% multiple sites, 60% posterior | 67% multiple sites, 20% posterior | |
# Surgical Complications at second surgery | 1 (bladder injury) | 3 (2 bladder, 1 bowel injury) |
Estimated Blood Loss | <500 mL | >500 mL | p |
N size | 15 | 16 | |
Uterine size (weeks) | 18.5 (0.83) | 25.3 (0.72) | 10−6 |
Fibroids removed | 4.6 (0.66) | 10.2 (0.82) | 10−5 |
Aggregate weight (g) | 347 (39) | 693 (37.9) | 10−7 |
Posterior fibroid | 0.6 (0.21) | 2.37 (0.35) | 0.002 |
Cervical fibroid | 0.13 (0.09) | 1.81 (0.36) | 0.001 |
Operative time (min) | 164 (11.5) | 244 (10.35) | 10−5 |
Adhesion number | 0 (0) | 1.37 (0.36) | 0.001 |
Operative Time | <200 min | >200 min | p |
N size | 13 | 18 | |
Uterine size (weeks) | 17.8 (0.799) | 25.11 (0.67) | 10−7 |
Fibroids removed | 3.8 (0.57) | 10.1 (0.69) | 10−7 |
Aggregate weight (g) | 314.9 (37.6) | 677.0 (35.1) | 10−7 |
Posterior fibroid | 0.53 (0.26) | 2.23 (0.31) | 0.005 |
Cervical fibroid | 0.15 (0.1) | 1.61 (0.35) | 0.007 |
Estimated blood loss | 219.2 (46.2) | 916.67 (109.44) | 10−6 |
Adhesion number | 0 (0) | 1.22 (.34) | 0.005 |
Fibroids Removed | ≤7 | >8 | p |
N size | 16 | 15 | |
Uterine size (weeks) | 19.1 (0.96) | 25.2 (0.69) | 10−5 |
Aggregate weight (g) | 376 (48.3) | 685 (37.1) | 10−6 |
Operative time (min) | 162 (9.7) | 251.5 (8.4) | 10−7 |
Estimated blood loss | 303.1 (59.6) | 966.7 (127.4) | 0.001 |
Adhesion number | 0 (0) | 1.46 (0.37) | 0.001 |
Uterine Size (Weeks) | <22 | ≥22 | p |
N size | 12 | 19 | |
Fibroids removed | 4.1 (0.66) | 9.63 (0.78) | 10−6 |
Aggregate weight (g) | 292.2 (34.4) | 673 (32.8) | 10−8 |
Operative time (min) | 148.4 (8.5) | 241.5 (9.4) | 10−8 |
Estimated blood loss | 225 (60.1) | 876 (109.1) | 10−5 |
Adhesion number | 0 (0) | 1.16 (0.33) | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purandare, N.; Kramer, K.J.; Minchella, P.; Ottum, S.; Walker, C.; Rausch, J.; Chao, C.R.; Grossman, L.I.; Aras, S.; Recanati, M.-A. Intraperitoneal Triamcinolone Reduces Postoperative Adhesions, Possibly through Alteration of Mitochondrial Function. J. Clin. Med. 2022, 11, 301. https://doi.org/10.3390/jcm11020301
Purandare N, Kramer KJ, Minchella P, Ottum S, Walker C, Rausch J, Chao CR, Grossman LI, Aras S, Recanati M-A. Intraperitoneal Triamcinolone Reduces Postoperative Adhesions, Possibly through Alteration of Mitochondrial Function. Journal of Clinical Medicine. 2022; 11(2):301. https://doi.org/10.3390/jcm11020301
Chicago/Turabian StylePurandare, Neeraja, Katherine J. Kramer, Paige Minchella, Sarah Ottum, Christopher Walker, Jessica Rausch, Conrad R. Chao, Lawrence I. Grossman, Siddhesh Aras, and Maurice-Andre Recanati. 2022. "Intraperitoneal Triamcinolone Reduces Postoperative Adhesions, Possibly through Alteration of Mitochondrial Function" Journal of Clinical Medicine 11, no. 2: 301. https://doi.org/10.3390/jcm11020301
APA StylePurandare, N., Kramer, K. J., Minchella, P., Ottum, S., Walker, C., Rausch, J., Chao, C. R., Grossman, L. I., Aras, S., & Recanati, M. -A. (2022). Intraperitoneal Triamcinolone Reduces Postoperative Adhesions, Possibly through Alteration of Mitochondrial Function. Journal of Clinical Medicine, 11(2), 301. https://doi.org/10.3390/jcm11020301