Right Heart Pulmonary Circulation Unit Response to Exercise in Patients with Controlled Systemic Arterial Hypertension: Insights from the RIGHT Heart International NETwork (RIGHT-NET)
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Resting Echocardiographic Doppler Examination
2.3. Exercise Doppler Echocardiography Examination
2.4. Image Analysis and Quality Control
3. Statistical Analysis
Ethical Considerations
4. Results
4.1. Exercise Doppler Echocardiography
4.2. Analysis by Tertiles of Age
5. Discussion
Exercise Doppler Echocardiography in Systemic Arterial Hypertension
6. Study Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclosures
References
- Drazner, M.H. The progression of hypertensive heart disease. Circulation 2011, 123, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Borlaug, B.A. Heart failure with preserved ejection fraction. Curr. Probl. Cardiol. 2016, 41, 145–188. [Google Scholar] [CrossRef]
- McDonagh, T.; Metra, M. ESC scientific document group, 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [PubMed]
- Williams, B.; Mancia, G. ESC scientific document group, 2018 ESC/ESH guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Burgess, M.I.; Jenkins, C.; Sharman, J.E.; Marwick, T.H. Diastolic stress echocardiography: Hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J. Am. Coll. Cardiol. 2006, 47, 1891–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-W.; Huang, C.-Y. Stress echocardiography-derived E/e’ predicts abnormal exercise hemodynamics in heart failure with preserved ejection fraction. Front. Physiol. 2019, 10, 1470. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, F.; Gargani, L. The right heart international network (RIGHT-NET): Rationale, objectives, methodology, and clinical implications. Heart Fail. Clin. 2018, 14, 443–465. [Google Scholar] [CrossRef]
- Ferrara, F.; Gargani, L. A multicentric quality-control study of exercise Doppler echocardiography of the right heart and the pulmonary circulation. The RIGHT heart international NETwork (RIGHT-NET). Cardiovasc. Ultrasound 2021, 19, 9. [Google Scholar] [CrossRef]
- Ferrara, F.; Gargani, L. Feasibility of semi-recumbent bicycle exercise Doppler echocardiography for the evaluation of the right heart and pulmonary circulation unit in different clinical conditions: The RIGHT heart international NETwork (RIGHT-NET). Int. J. Cardiovasc. Imaging 2021, 37, 2151–2167. [Google Scholar] [CrossRef]
- Ferrara, F.; Rudski, L.G.; Vriz, O.; Gargani, L.; Afilalo, J.; D’Andrea, A.; D’Alto, M.; Marra, A.M.; Acri, E.; Stanziola, A.A.; et al. Physiologic correlates of tricuspid annular plane systolic excursion in 1168 healthy subjects. Int. J. Cardiol. 2016, 223, 736–743. [Google Scholar] [CrossRef]
- Vriz, O.; Pirisi, M.; Habib, E.; Galzerano, D.; Fadel, B.; Antonini-Canterin, F.; Veldtman, G.; Bossone, E. Age related structural and functional changes in left ventricular performance in healthy subjects: A 2D echocardiographic study. Int. J. Cardiovasc. Imaging 2019, 35, 2037–2047. [Google Scholar] [CrossRef]
- Vriz, O.; Pirisi, M.; Bossone, E.; ElMula, F.E.M.F.; Palatini, P.; Naeije, R. Right ventricular–pulmonary arterial uncoupling in mild-to-moderate systemic hypertension. J. Hypertens. 2020, 38, 274–281. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Rudski, L.G.; Lai, W.W. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. Off Publ. Am. Soc. Echocardiogr. 2010, 23, 685–713; quiz 786–788. [Google Scholar]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off Publ. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Yock, P.G.; Popp, R.L. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 1984, 70, 657–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemla, D.; Castelain, V.; Humbert, M.; Hébert, J.L.; Simonneau, G.; Lecarpentier, Y.; Hervé, P. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 2004, 126, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Bandera, F. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: An index of right ventricular contractile function and prognosis. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1373–H1381. [Google Scholar] [CrossRef]
- Lancellotti, P.; Pellikka, P.A.; Budts, W.; Chaudhry, F.A.; Donal, E.; Dulgheru, R.; Edvardsen, T.; Garbi, M.; HaJ, W.; KaneG, C.; et al. The clinical use of stress echocardiography in non-ischaemic heart disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 101–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sicari, R.; Nihoyannopoulos, P. Stress echocardiography expert consensus statement—Executive summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur. Heart J. 2009, 30, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Knuuti, J.; Wijns, W. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Garbi, M.; Chambers, J.; Vannan, M.A.; Lancellotti, P. Valve stress echocardiography. JACC Cardiovasc. Imaging 2015, 8, 724–736. [Google Scholar] [CrossRef] [Green Version]
- Pieske, B.; Tschöpe, C. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef] [Green Version]
- Kasner, M.; Sinning, D.; Lober, J.; Post, H.; Fraser, A.G.; Pieske, B.; Burkhoff, D.; Tschöpe, C. Heterogeneous responses of systolic and diastolic left ventricular function to exercise in patients with heart failure and preserved ejection fraction. ESC Heart Fail. 2015, 2, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obokata, M.; Kane, G. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction: A simultaneous invasive-echocardiographic study. Circulation 2017, 135, 825–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, G.; Herve, P. An official European Respiratory Society statement: Pulmonary haemodynamics during exercise. Eur. Respir. J. 2017, 50, 1700578. [Google Scholar] [CrossRef] [PubMed]
- RudskiL, G.; Gargani, L.; Armstrong, W.F.; Lancellotti, P.; Lester, S.J.; Grünig, E.; D’Alto, M.; Aneq, M.Å.; Ferrara, F.; Saggar, R.; et al. Stressing the cardiopulmonary vascular system: The role of echocardiography. J. Am. Soc. Echocardiogr. 2018, 31, 527–550.e11. [Google Scholar]
- Lewis, G.D.; Bossone, E. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 2013, 128, 1470–1479. [Google Scholar] [CrossRef]
- Guazzi, M.; Naeije, R. Pulmonary hypertension in heart failure. J. Am. Coll. Cardiol. 2017, 69, 1718–1734. [Google Scholar] [CrossRef]
- Naeije, R.; Saggar, R. Exercise-induced pulmonary hypertension: Translating pathophysiological concepts into clinical practice. Chest 2018, 154, 10–15. [Google Scholar] [CrossRef]
- Grünig, E.; MacKenzie, A.; Peacock, A.J.; Eichstaedt, C.A.; Benjamin, N.; Nechwatal, R.; Ulrich, S.; Saxer, S.; Bussotti, M.; Sommaruga, M.; et al. Standardized exercise training is feasible, safe, and effective in pulmonary arterial and chronic thromboembolic pulmonary hypertension: Results from a large European multicentre randomized controlled trial. Eur. Heart J. 2021, 42, 2284–2295. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Mazzola, M. Haemodynamic and metabolic phenotyping of hypertensive patients with and without heart failure by combining cardiopulmonary and echocardiographic stress test. Eur. J. Heart Fail. 2020, 22, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Argiento, P.; Chesler, N. Exercise stress echocardiography for the study of the pulmonary circulation. Eur. Respir. J. 2010, 35, 1273–1278. [Google Scholar] [CrossRef] [Green Version]
- Argiento, P.; Vanderpool, R.R. Exercise stress echocardiography of the pulmonary circulation: Limits of normal and sex differences. Chest 2012, 142, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Bossone, E.; Rubenfire, M.; Bach, D.S.; Ricciardi, M.; Armstrong, W.F. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: Implications for the diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 1999, 33, 1662–1666. [Google Scholar] [CrossRef] [Green Version]
- Forton, K.; Motoji, Y.; Caravita, S.; Faoro, V.; Naeije, R. Exercise stress echocardiography of the pulmonary circulation and right ventricular-arterial coupling in healthy adolescents. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 688–694. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Borlaug, B.A. Age-Associated increases in pulmonary artery systolic pressure in the general population. Circulation 2009, 119, 2663–2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, G.; Berghold, A.; Scheidl, S.; Olschewski, H. Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review. Eur. Respir. J. 2009, 34, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Vriz, O.; Veldman, G. Age-changes in right ventricular function-pulmonary circulation coupling: From pediatric to adult stage in 1899 healthy subjects. The RIGHT Heart International NETwork (RIGHT-NET). Int. J. Cardiovasc. Imaging 2021, 37, 3399–3411. [Google Scholar] [CrossRef]
- Vriz, O.; Argiento, P.; D’Alto, M.; Ferrara, F.; Vanderpool, R.; Naeije, R.; Bossone, E. Increased pulmonary vascular resistance in early stage systemic hypertension: A resting and exercise stress echocardiography study. Can. J. Cardiol. 2015, 31, 537–543. [Google Scholar] [CrossRef]
- Shah, A.M.; Claggett, B. Contemporary assessment of left ventricular diastolic function in older adults: The atherosclerosis risk in communities study. Circulation 2017, 135, 426–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donal, E.; Galli, E.; Fraser, A.G. Non-invasive estimation of left heart filling pressures: Another nail in the coffin for E/e’? Eur. J. Heart Fail. 2017, 19, 1661–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachter, R.; Schmidt-Schweda, S.; Westermann, D.; Post, H.; Edelmann, F.; Kasner, M.; Lüers, C.; Steendijk, P.; Hasenfuß, G.; Tschöpe, C.; et al. Blunted frequency-dependent upregulation of cardiac output is related to impaired relaxation in diastolic heart failure. Eur. Heart J. 2009, 30, 3027–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfs, S.; Zeh, W. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur. Heart J. 2014, 35, 3103–3112. [Google Scholar] [CrossRef] [Green Version]
- Shim, C.Y.; Kim, S.-A.; Choi, D.; Yang, W.-I.; Kim, J.-M.; Moon, S.-H.; Lee, H.-J.; Park, S.; Choi, E.-Y.; Chung, N.; et al. Clinical outcomes of exercise-induced pulmonary hypertension in subjects with preserved left ventricular ejection fraction: Implication of an increase in left ventricular filling pressure during exercise. Heart Br. Card. Soc. 2011, 97, 1417–1424. [Google Scholar] [CrossRef]
- Schmeisser, A.; Rauwolf, T. Pressure–volume loop validation of TAPSE/PASP for right ventricular arterial coupling in heart failure with pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 168–176. [Google Scholar] [CrossRef]
Normotensive n = 145 | Hypertensive n = 155 | t-Test | ANOVA Adjusted by Age, Sex, BSA | |
---|---|---|---|---|
Age (years) | 54 ± 14.9 | 62 ± 12.0 | 0.0001 | - |
M/F | 65/58 | 113/42 | 0.01 | - |
BMI (Kg/m2) | 26 ± 3.5 | 27.8 ± 4 | 0.0001 | - |
BSA (m2) | 1.97 ± 0.1 | 1.89 ± 0.2 | 0.0001 | |
SBP (mmHg) | 123 ± 16 | 137 ± 20 | 0.0001 | 0.0001 |
DBP (mmHg) | 77 ± 10 | 82 ± 11 | 0.0001 | 0.0001 |
HR (bpm) | 75 ± 15 | 73 ± 13 | 0.1 | 0.7 |
Hemoglobin (dL/L) | 14.6 ± 1.8 | 14.4 ± 1.7 | 0.3 | 0.0001 |
Creatinine (mg/dL) | 0.97 ± 0.18 | 1.0 ± 0.22 | 0.2 | 0.9 |
Glucose (mg/dL) | 110 ± 48 | 117 ± 40 | 0.4 | 0.039 |
Tot Chol (mg/dL) | 198 ± 38 | 177 ± 52 | 0.07 | 0.002 |
HDL (mg/dL) | 52 ± 13 | 49 ± 12 | 0.3 | 0.001 |
Triglycerides (mg/dL) | 117 ± 70 | 119 ± 62 | 0.9 | 0.006 |
Normotensive n = 145 | Hypertensive n = 155 | t-Test | ANOVA Adjusted by Age, Sex, BSA | |
---|---|---|---|---|
LVIDD (mm) | 47.0 ± 3.9 | 48.0 ± 7.0 | 0.1 | 0.0001 |
IVSD (mm) | 9.7 ±1.2 | 10.0 ± 2.0 | 0.0001 | 0.0001 |
PWTD (mm) | 9.2 ± 1.3 | 9.2 ± 1.7 | 0.4 | 0.0001 |
LVM (gr) | 153.0 ± 36 | 174.8 ± 69 | 0.001 | 0.0001 |
LVMI (gr/m2) | 81.9 ± 17 | 91.8 ± 31 | 0.001 | 0.015 |
RWT | 0.35 ± 0.08 | 0.39 ± 0.09 | 0.0001 | 0.0001 |
LVEF (%) | 64.0 ± 7.0 | 63.0 ± 9.0 | 0.1 | 0.023 |
LAVi (vol/BSA) | 22.8 ± 8 | 26.1 ± 11.7 | 0.01 | 0.0001 |
E/A | 1.20 ± 0.5 | 1.17 ± 0.5 | 0.2 | 0.0001 |
E/E’ | 7.3 ± 2.5 | 8.8 ± 3.2 | 0.0001 | 0.0001 |
SV (mL) | 69.7 ± 16 | 71.0 ± 20 | 0.6 | 0.003 |
CO (mL/min) | 5.1 ± 1.4 | 5.1 ± 1.7 | 0.7 | 0.001 |
CI (mL/min/m2) | 2.8 ± 0.8 | 2.7 ± 0.8 | 0.4 | 0.27 (*) |
TAPSE (mm) | 23.0 ± 3.0 | 23.0 ± 3.7 | 0.9 | 0.1 |
PASP (mmHg) | 22.0 ± 3.0 | 25.0 ± 7.0 | 0.0001 | 0.0001 |
mPAP (mmHg) | 15.4 ± 3.1 | 17.2 ± 4.2 | 0.0001 | 0.0001 |
PASP/CI | 4.7 ± 2.2 | 10.2 ± 4.3 | 0.0001 | 0.0001 (*) |
TAPSE/PASP (mm/mmHg) | 1.2 ± 0.4 | 1.06 ± 0.3 | 0.04 | 0.0001 |
RVOT-AccTime (ms) | 143 ± 27 | 127 ± 26 | 0.0001 | 0.0001 |
PVR (WU) | 1.27 ± 0.4 | 1.6 ± 0.6 | 0.0001 | 0.008 |
Normotensive n = 145 | Hypertensive n = 155 | t-Test | ANOVA Adjusted by Age, Sex, BSA | |
---|---|---|---|---|
Watts (peak) | 133 ± 38 | 104 ± 35 | 0.0001 | 0.0001 |
Time Exe (min) | 10.4 ± 3.0 | 8.4 ± 2.8 | 0.0001 | 0.0001 |
SBP (mmHg) | 188 ± 29 | 165 ± 24 | 0.0001 | 0.0001 |
DBP (mmHg) | 96 ± 17 | 91 ± 13 | 0.047 | 0.02 |
HR (bpm) | 138 ± 18 | 123 ± 19 | 0.0001 | 0.0001 |
LVEF (%) | 71 ± 8.1 | 69 ± 11 | 0.09 | 0.0001 |
E/E’ | 6.6 ± 2.9 | 10.7 ± 5.5 | 0.0001 | 0.0001 |
SV (mL) | 89 ± 20 | 86 ± 26 | 0.1 | 0.007 |
CO peak-rest (mL/min) | 7.2 ± 2.8 | 5.2 ± 3.5 | 0.0001 | 0.0001 |
CO (mL/min) | 12.5 ± 3.1 | 10.6 ± 3.6 | 0.0001 | 0.0001 |
CI (mL/min/m2) | 6.6 ± 1.7 | 5.6 ± 1.8 | 0.0001 | 0.0001 (*) |
TAPSE (mm) | 28.3 ± 3.4 | 28.4 ± 5.2 | 0.7 | 0.0001 |
PASP (mmHg) | 35.4 ± 9.4 | 47.3 ± 13.9 | 0.0001 | 0.0001 |
PASP peak-rest | 13.6 ± 9.1 | 22.7 ± 13.7 | 0.0001 | 0.0001 |
mPAP (mmHg) | 23 ± 5.8 | 31 ± 8.5 | 0.0001 | 0.0001 |
PASP/W | 3.1 ± 1.4 | 5.1 ± 2.4 | 0.0001 | 0.0001 |
PASP/CI | 5.8 ± 3.4 | 9.4 ± 4.6 | 0.0001 | 0.0001 (*) |
TAPSE/PASP (mm/mmHg) | 0.94 ± 0.2 | 0.65 ± 0.2 | 0.0001 | 0.0001 |
RVOT-AccTime (ms) | 142.8 ± 33 | 116 ± 24 | 0.0001 | 0.0001 |
PVR (WU) | 1.38 ± 0.5 | 1.74 ± 0.5 | 0.0001 | 0.0001 |
Group 1 <51 Years n = 28 | Group 2 >51 and <66 Years n = 65 | Group 3 >66 Years n = 62 | ANOVA | ANOVA Adjusted by Age, Sex, BSA | |
---|---|---|---|---|---|
LVIDD (mm) | 47.0 ± 3.9 | 48.0 ± 7.0 | 0.1 | 0.0001 | |
Age (years) | 43 ± 8 | 59.6 ± 4.4 | 73.5 ± 4.4 | 0.0001 | |
M/F | 24/4 | 48/17 | 41/21 | 0.1 | - |
BMI | 27 ± 5 | 28.4 ± 4 | 27 ± 3.8 | 0.2 | - |
BSA (m2) | 1.95 ± 0.2 | 1.9 ± 0.2 | 1.83 ± 0.2 | 0.004 | - |
SBP (mmHg) | 142 ± 22 | 136 ± 21 | 136 ± 18 | 0.3 | 0.0001 |
DBP (mmHg) | 87.9 ± 13 | 83 ± 12 | 78.4 ± 8 | 0.002 | 0.0001 |
HR (bpm) | 69.9 ± 13 | 74 ± 12 | 73 ± 13 | 0.4 | 0.002 |
Therapy (no/yes) | 15/13 | 15/50 | 4/58 | 0.0001 | 0.0001 (*) |
Hemoglobin (dL/L) | 15 ± 1.7 | 14.4 ± 1.4 | 13.8 ± 1.9 | 0.02 | 0.0001 |
Creatinine (mg/dL) | 0.98 ± 0.17 | 1.01 ± 0.19 | 1 ± 0.3 | 0.8 | 0.5 |
Glucose (mg/dL) | 102 ± 22 | 124 ± 46 | 120 ± 41 | 0.1 | 0.11 |
Tot Chol (mg/dL) | 190 ± 45 | 173 ± 62 | 157 ± 47 | 0.08 | 0.09 |
HDL (mg/dL) | 51 ± 11 | 49 ± 11 | 50 ± 13 | 0.5 | 0.6 |
Triglycerides (mg/dL) | 104 ± 59 | 137 ± 68 | 102 ± 49 | 0.6 | 0.018 |
Group 1 ≤51 Years n = 28 | Group 2 >51 and <66 n = 65 | Group 3 ≥66 Years n = 61 | ANOVA p | ANOVA Adj by Sex BSA, Therapy | |
---|---|---|---|---|---|
LVIDD (mm) | 49 ± 4.7 | 48 ± 8.5 | 47 ± 6.4 | 0.3 | 0.1 |
IVSD (mm) | 9.6 ±2.0 | 10.4 ± 2.3 | 10.8 ± 1.7 | 0.036 | 0.025 |
PWTD (mm) | 9.4 ± 2 | 9.1 ± 1.7 | 9.3 ± 1.5 | 0.1 | 0.9 |
LVM (gr) | 176 ± 44 | 177 ± 89 | 171 ± 55 | 0.2 | 0.09 |
LVMI (gr/m2) | 89 ± 20 | 91 ± 40 | 93 ± 25 | 0.1 | 0.1 (*) |
RWT | 0.39 ± 0.1 | 0.39 ± 0.1 | 0.40 ± 0.09 | 0.6 | 0.3 |
LVEF (%) | 62 ± 8.5 | 64 ± 8 | 61 ± 9 | 0.07 | 0.6 |
LAi (vol/BSA) | 21 ± 5.6 | 23.6 ± 9.9 | 29.4 ± 13 | 0.006 | 0.9 (*) |
E/A | 1.5 ± 0.7 | 1.2 ± 0.3 | 1.03 ± 0.3 | 0.0001 | 0.1 |
E/E’ | 6.7 ± 2.2 | 8.5 ± 3.2 | 10 ± 2.9 | 0.0001 | 0.0001 |
SV (mL) | 69 ± 18 | 73 ± 23 | 69 ± 18 | 0.001 | 0.001 |
CO (L/min) | 4.8 ± 1.5 | 5.4 ± 1.7 | 5.0 ± 1.7 | 0.8 | 0.03 |
CI (mL/min/m2) | 2.5 ± 0.8 | 2.7 ± 0.8 | 2.7 ± 0.9 | 0.5 | 0.2 (*) |
TAPSE (mm) | 23.5 ± 3.7 | 23 ± 3.2 | 23 ± 4.2 | 0.7 | 0.001 |
PASP (mmHg) | 22.2 ± 5.9 | 24.2 ± 5.7 | 26.6 ± 8.1 | 0.017 | 0.7 |
mPAP (mmHg) | 15.9 ± 3.4 | 17.8 ± 3.7 | 17.6 ± 5 | 0.036 | 0.28 |
PASP/CI | 9.7 ± 3.2 | 9.7 ± 3.9 | 10.9 ± 5.0 | 0.4 | 0.7 (*) |
TAPSE/PASP (mm/mmHg) | 1.1 ± 0.3 | 1.07 ± 0.3 | 1.02 ± 0.3 | 0.3 | 0.07 |
RVOT-AccTime (ms) | 132 ± 23 | 127 ± 24 | 124 ± 26 | 0.09 | 0.2 |
PVR (WU) | 1.61 ± 0.6 | 1.6 ± 0.5 | 1.6 ± 0.6 | 0.8 | 0.4 |
Group 1 ≤51 Years n = 28 | Group 2 >51 and <66 n = 65 | Group 3 ≥66 Years n = 62 | ANOVA | ANOVA Adj by Sex, BSA, Therapy | |
---|---|---|---|---|---|
Watts (peak) | 120 ± 33 | 100 ± 32 | 93 ± 35 | 0.0001 | 0.001 |
Time Exe (min) | 5.2 ± 1.2 | 4.3 ± 1.3 | 3.6 ± 1.3 | 0.0001 | 0.001 |
SBP (mmHg) | 175 ± 28 | 169 ± 27 | 158 ± 19 | 0.1 | 0.2 |
DBP (mmHg) | 104 ± 15 | 95 ± 14 | 84 ± 8 | 0.0001 | 0.5 |
HR (bpm) | 133 ± 16 | 127.3 ± 16 | 113 ± 19 | 0.0001 | 0.001 |
LVEF (%) | 74 ± 9.5 | 69 ± 10 | 65 ± 12 | 0.01 | 0.001 |
E/E’ | 7.5 ± 2.0 | 9.7 ± 6.0 | 13.0 ± 4.6 | 0.005 | 0.0001 |
SV (mL) | 89.0 ± 29.0 | 88.7 ± 25.0 | 82.0 ± 27.0 | 0.4 | 0.0001 |
CO peak-rest | 7.1 ± 3.8 | 5.5 ± 3.0 | 4.4 ± 3.3 | 0.005 | 0.0001 |
CO (L/min) | 12.0 ± 3.5 | 11.3 ± 3.4 | 9.3 ± 3.5 | 0.0001 | 0.0001 |
CI (L/min/m2) | 6.1 ± 1.7 | 5.8 ± 1.7 | 5.5 ± 1.7 | 0.007 | 0.0001 (*) |
TAPSE (mm) | 32 ± 5.3 | 28 ± 4.8 | 27 ± 4.8 | 0.0001 | 0.0001 |
PASP (mmHg) | 51 ± 16 | 43 ± 13 | 49 ± 12 | 0.01 | 0.0001 |
PASP/CI | 8.1 ± 2.9 | 7.9 ± 3.9 | 11.1 ± 5.0 | 0.001 | 0.016 |
mPAP (mmHg) | 34 ± 10.0 | 28 ± 8.0 | 32 ± 7.1 | 0.006 | 0.0001 |
TAPSE/PASP (mm/mmHg) | 0.66 ± 0.2 | 0.71 ± 0.2 | 0.56 ± 0.2 | 0.0001 | 0.059 |
AccTime (ms) | 127 ± 24 | 118 ± 20 | 110 ± 2 | 0.04 | 0.003 |
PVR (WU) | 1.73 ± 0.5 | 1.70 ± 0.5 | 1.79 ± 0.5 | 0.8 | 0.2 |
Fixed Factors | Adjustment | p Value | |
---|---|---|---|
E/E’ PEAK exercise | Hypertensive status | Gender | 0.2 |
Age | Therapy | 0.7 | |
Hypertensive status * Age | E/E’ at baseline | 0.0001 | |
TAPSE PEAK | Hypertensive status | Gender | 0.0001 |
Age | Therapy | 0.8 | |
Hypertensive status * Age | TAPSE at baseline | 0.007 | |
PASP PEAK | Hypertensive status | Gender | 0.0001 |
Age | Therapy | 0.002 | |
Hypertensive status * Age | PASP at baseline | 0.15 | |
TAPSE/PASP PEAK | Hypertensive status | Gender | 0.0001 |
Age | Therapy | 0.014 | |
Hypertensive status * Age | TAPSE/PASP baseline | 0.66 | |
CO PEAK | Hypertensive status | Gender | 0.6 |
Age | Therapy | 0.012 | |
Hypertensive status * Age | CO at baseline | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vriz, O.; Palatini, P.; Rudski, L.; Frumento, P.; Kasprzak, J.D.; Ferrara, F.; Cocchia, R.; Gargani, L.; Wierzbowska-Drabik, K.; Capone, V.; et al. Right Heart Pulmonary Circulation Unit Response to Exercise in Patients with Controlled Systemic Arterial Hypertension: Insights from the RIGHT Heart International NETwork (RIGHT-NET). J. Clin. Med. 2022, 11, 451. https://doi.org/10.3390/jcm11020451
Vriz O, Palatini P, Rudski L, Frumento P, Kasprzak JD, Ferrara F, Cocchia R, Gargani L, Wierzbowska-Drabik K, Capone V, et al. Right Heart Pulmonary Circulation Unit Response to Exercise in Patients with Controlled Systemic Arterial Hypertension: Insights from the RIGHT Heart International NETwork (RIGHT-NET). Journal of Clinical Medicine. 2022; 11(2):451. https://doi.org/10.3390/jcm11020451
Chicago/Turabian StyleVriz, Olga, Paolo Palatini, Lawrence Rudski, Paolo Frumento, Jarosław D. Kasprzak, Francesco Ferrara, Rosangela Cocchia, Luna Gargani, Karina Wierzbowska-Drabik, Valentina Capone, and et al. 2022. "Right Heart Pulmonary Circulation Unit Response to Exercise in Patients with Controlled Systemic Arterial Hypertension: Insights from the RIGHT Heart International NETwork (RIGHT-NET)" Journal of Clinical Medicine 11, no. 2: 451. https://doi.org/10.3390/jcm11020451
APA StyleVriz, O., Palatini, P., Rudski, L., Frumento, P., Kasprzak, J. D., Ferrara, F., Cocchia, R., Gargani, L., Wierzbowska-Drabik, K., Capone, V., Ranieri, B., Salzano, A., Stanziola, A. A., Marra, A. M., Annunziata, R., Chianese, S., Rega, S., Saltalamacchia, T., Maramaldi, R., ... Bossone, E., on behalf of the RIGHT Heart International NETwork (RIGHT-NET) Investigators. (2022). Right Heart Pulmonary Circulation Unit Response to Exercise in Patients with Controlled Systemic Arterial Hypertension: Insights from the RIGHT Heart International NETwork (RIGHT-NET). Journal of Clinical Medicine, 11(2), 451. https://doi.org/10.3390/jcm11020451