Does Cardiac Function Affect Cerebral Blood Flow Regulation?
Abstract
:1. Introduction
2. Does Cardiac Dysfunction Determine Characteristics in Cerebral Circulation?
3. Conceivable “Compensatory Mechanism” for Alterations in Cardiac Output and Arterial Blood Pressure to Maintain an Adequate CBF in Patients with HF
3.1. Cerebral Autoregulation
3.2. Arterial Baroreflex Function
3.3. Cardiopulmonary Baroreflex
3.4. External Carotid Artery
3.5. Neurohormonal Systems of HF
4. Possible other Physiological Factors for Impaired Cerebral Circulation in Patients with HF
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannel, W.B.; Wolf, P.A.; Verter, J. Manifestations of coronary disease predisposing to stroke. The Framingham study. JAMA 1983, 250, 2942–2946. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.R.; Kim, J.S.; Yang, Y.J.; Park, K.M.; Lee, C.W.; Kim, Y.H.; Hong, M.K.; Song, J.K.; Park, S.W.; Park, S.J.; et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2006, 97, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Woo, M.A.; Wang, D.J.J.; Fonarow, G.C.; Harper, R.M.; Kumar, R. Reduced regional cerebral blood flow in patients with heart failure. Eur. J. Heart Fail. 2017, 19, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, D.; Sievert, M.; Cencetti, S.; Uhlmann, F.; Krivokuca, M.; Zierz, S.; Werdan, K. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur. Heart J. 2000, 21, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.; Serrador, J.; Rocha, I.; Chaves, P.C.; Sorond, F.; Azevedo, E. Heart failure patients have enhanced cerebral autoregulation response in acute ischemic stroke. J. Thromb. Thrombolysis 2020, 50, 753–761. [Google Scholar] [CrossRef]
- Ide, K.; Gullov, A.L.; Pott, F.; Van Lieshout, J.J.; Koefoed, B.G.; Petersen, P.; Secher, N.H. Middle cerebral artery blood velocity during exercise in patients with atrial fibrillation. Clin. Physiol. 1999, 19, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Sailer, C.; Edelmann, H.; Buchanan, C.; Giro, P.; Babcock, M.; Swanson, C.; Spotts, M.; Schulte, M.; Pratt-Cordova, A.; Coe, G.; et al. Impairments in Blood Pressure Regulation and Cardiac Baroreceptor Sensitivity Among Patients with Heart Failure Supported with Continuous-Flow Left Ventricular Assist Devices. Circ. Heart Fail. 2021, 14, e007448. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.W.; Abboud, F.M.; Mark, A.L. Selective impairment of baroreflex-mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation 1984, 69, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, P.K.; Arrowood, J.A.; Ellenbogen, K.A.; Thames, M.D. Neurohumoral and hemodynamic effects of lower body negative pressure in patients with congestive heart failure. Am. Heart J. 1989, 118, 78–85. [Google Scholar] [CrossRef]
- Creager, M.A.; Hirsch, A.T.; Dzau, V.J.; Nabel, E.G.; Cutler, S.S.; Colucci, W.S. Baroreflex regulation of regional blood flow in congestive heart failure. Am. J. Physiol. 1990, 258, H1409–H1414. [Google Scholar] [CrossRef]
- Modesti, P.A.; Polidori, G.; Bertolozzi, I.; Vanni, S.; Cecioni, I. Impairment of cardiopulmonary receptor sensitivity in the early phase of heart failure. Heart 2004, 90, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Mottram, P.M.; Haluska, B.A.; Leano, R.; Carlier, S.; Case, C.; Marwick, T.H. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005, 91, 1551–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.S.; Kim, J.J. Heart and brain interconnection—Clinical implications of changes in brain function during heart failure. Circ. J. 2015, 79, 942–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuccala, G.; Pedone, C.; Cesari, M.; Onder, G.; Pahor, M.; Marzetti, E.; Lo Monaco, M.R.; Cocchi, A.; Carbonin, P.; Bernabei, R. The effects of cognitive impairment on mortality among hospitalized patients with heart failure. Am. J. Med. 2003, 115, 97–103. [Google Scholar] [CrossRef]
- Haeusler, K.G.; Laufs, U.; Endres, M. Chronic heart failure and ischemic stroke. Stroke 2011, 42, 2977–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassell, M.E.; Nijveldt, R.; Roos, Y.B.; Majoie, C.B.; Hamon, M.; Piek, J.J.; Delewi, R. Silent cerebral infarcts associated with cardiac disease and procedures. Nat. Rev. Cardiol. 2013, 10, 696–706. [Google Scholar] [CrossRef]
- Writing Group, M.; Lloyd-Jones, D.; Adams, R.J.; Brown, T.M.; Carnethon, M.; Dai, S.; De Simone, G.; Ferguson, T.B.; Ford, E.; Furie, K.; et al. Heart disease and stroke statistics--2010 update: A report from the American Heart Association. Circulation 2010, 121, e46–e215. [Google Scholar] [CrossRef] [Green Version]
- Pullicino, P.M.; Halperin, J.L.; Thompson, J.L. Stroke in patients with heart failure and reduced left ventricular ejection fraction. Neurology 2000, 54, 288–294. [Google Scholar] [CrossRef]
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Roman, G.C. Brain hypoperfusion: A critical factor in vascular dementia. Neurol. Res. 2004, 26, 454–458. [Google Scholar] [CrossRef]
- Pullicino, P.M.; McClure, L.A.; Wadley, V.G.; Ahmed, A.; Howard, V.J.; Howard, G.; Safford, M.M. Blood pressure and stroke in heart failure in the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Stroke 2009, 40, 3706–3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lip, G.Y.; Gibbs, C.R. Does heart failure confer a hypercoagulable state? Virchow’s triad revisited. J. Am. Coll. Cardiol. 1999, 33, 1424–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopalan, B.; Raine, A.E.; Cooper, R.; Ledingham, J.G. Changes in cerebral blood flow in patients with severe congestive cardiac failure before and after captopril treatment. Am. J. Med. 1984, 76, 86–90. [Google Scholar] [CrossRef]
- Ogoh, S.; Brothers, R.M.; Barnes, Q.; Eubank, W.L.; Hawkins, M.N.; Purkayastha, S.; O-Yurvati, A.; Raven, P.B. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J. Physiol. 2005, 569, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Ogoh, S.; Tzeng, Y.C.; Lucas, S.J.; Galvin, S.D.; Ainslie, P.N. Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. J. Physiol. 2010, 588, 365–371. [Google Scholar] [CrossRef]
- Ide, K.; Boushel, R.; Sorensen, H.M.; Fernandes, A.; Cai, Y.; Pott, F.; Secher, N.H. Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol. Scand. 2000, 170, 33–38. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Petersen, P.; Kastrup, J.; Videbaek, R.; Boysen, G. Cerebral blood flow before and after cardioversion of atrial fibrillation. J. Cereb. Blood Flow Metab. 1989, 9, 422–425. [Google Scholar] [CrossRef] [Green Version]
- van Bommel, R.J.; Marsan, N.A.; Koppen, H.; Delgado, V.; Borleffs, C.J.; Ypenburg, C.; Bertini, M.; Schalij, M.J.; Bax, J.J. Effect of cardiac resynchronization therapy on cerebral blood flow. Am. J. Cardiol. 2010, 106, 73–77. [Google Scholar] [CrossRef]
- Gruhn, N.; Larsen, F.S.; Boesgaard, S.; Knudsen, G.M.; Mortensen, S.A.; Thomsen, G.; Aldershvile, J. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001, 32, 2530–2533. [Google Scholar] [CrossRef]
- Ogoh, S.; Tarumi, T. Cerebral blood flow regulation and cognitive function: A role of arterial baroreflex function. J. Physiol. Sci. 2019, 69, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Strandgaard, S.; Paulson, O.B. Cerebral autoregulation. Stroke 1984, 15, 413–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, N.A. Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 1959, 39, 183–238. [Google Scholar] [CrossRef] [Green Version]
- Aaslid, R.; Lindegaard, K.F.; Sorteberg, W.; Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 1989, 20, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Ogoh, S.; Brothers, R.M.; Eubank, W.L.; Raven, P.B. Autonomic neural control of the cerebral vasculature: Acute hypotension. Stroke 2008, 39, 1979–1987. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, E.; Castro, P.; Santos, R.; Freitas, J.; Coelho, T.; Rosengarten, B.; Panerai, R. Autonomic dysfunction affects cerebral neurovascular coupling. Clin. Auton. Res. 2011, 21, 395–403. [Google Scholar] [CrossRef]
- Castro, P.M.; Santos, R.; Freitas, J.; Panerai, R.B.; Azevedo, E. Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: Comparison between healthy and autonomic dysfunction subjects. J. Appl. Physiol. (1985) 2014, 117, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogoh, S.; Fisher, J.P.; Dawson, E.A.; White, M.J.; Secher, N.H.; Raven, P.B. Autonomic nervous system influence on arterial baroreflex control of heart rate during exercise in humans. J. Physiol. 2005, 566, 599–611. [Google Scholar] [CrossRef]
- Pitzalis, M.V.; Mastropasqua, F.; Massari, F.; Passantino, A.; Totaro, P.; Forleo, C.; Rizzon, P. Beta-blocker effects on respiratory sinus arrhythmia and baroreflex gain in normal subjects. Chest 1998, 114, 185–191. [Google Scholar] [CrossRef]
- Silva, F.C.; Paiva, F.A.; Muller-Ribeiro, F.C.; Caldeira, H.M.; Fontes, M.A.; de Menezes, R.C.; Casali, K.R.; Fortes, G.H.; Tobaldini, E.; Solbiati, M.; et al. Chronic Treatment with Ivabradine Does Not Affect Cardiovascular Autonomic Control in Rats. Front. Physiol. 2016, 7, 305. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kawada, T.; Shimizu, S.; Uemura, K.; Inagaki, M.; Kakehi, K.; Iwanaga, Y.; Fukuda, K.; Miyamoto, T.; Miyazaki, S.; et al. Ivabradine does not acutely affect open-loop baroreflex static characteristics and spares sympathetic heart rate control in rats. Int. J. Cardiol. 2018, 257, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Ogoh, S.; Sato, K.; Okazaki, K.; Miyamoto, T.; Hirasawa, A.; Sadamoto, T.; Shibasaki, M. Blood flow in internal carotid and vertebral arteries during graded lower body negative pressure in humans. Exp. Physiol. 2015, 100, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Fisher, J.P.; Seifert, T.; Overgaard, M.; Secher, N.H.; Ogoh, S. Blood flow in internal carotid and vertebral arteries during orthostatic stress. Exp. Physiol. 2012, 97, 1272–1280. [Google Scholar] [CrossRef]
- Ogoh, S.; Brothers, R.M.; Barnes, Q.; Eubank, W.L.; Hawkins, M.N.; Purkayastha, S.; O-Yurvati, A.; Raven, P.B. Cardiopulmonary baroreflex is reset during dynamic exercise. J. Appl. Physiol. (1985) 2006, 100, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Wasmund, S.L.; Smith, M.L.; Takata, T.S.; Joglar, J.A.; Li, J.M.; Kowal, R.C.; Page, R.L.; Hamdan, M.H. Sympathoexcitation is attenuated during low level lower body negative pressure in subjects who develop pre-syncope. Clin. Auton. Res. 2003, 13, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Ogoh, S.; Hirasawa, A.; Raven, P.B.; Rebuffat, T.; Denise, P.; Lericollais, R.; Sugawara, J.; Normand, H. Effect of an acute increase in central blood volume on cerebral hemodynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R902–R911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, S.; Washio, T.; Watanabe, H.; Katayama, K.; Ogoh, S. Influence of cardiac output response to the onset of exercise on cerebral blood flow. Eur. J. Appl. Physiol. 2022, 122, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Dibner-Dunlap, M.E.; Thames, M.D. Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation 1992, 86, 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Dibner-Dunlap, M.E.; Smith, M.L.; Kinugawa, T.; Thames, M.D. Enalaprilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. J. Am. Coll. Cardiol. 1996, 27, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, A.I.; Sato, K.; Yoneya, M.; Sadamoto, T.; Bailey, D.M.; Ogoh, S. Heterogeneous Regulation of Brain Blood Flow during Low-Intensity Resistance Exercise. Med. Sci. Sports Exerc. 2016, 48, 1829–1834. [Google Scholar] [CrossRef]
- Ogoh, S.; Washio, T.; Paton, J.F.R.; Fisher, J.P.; Petersen, L.G. Gravitational effects on intracranial pressure and blood flow regulation in young men: A potential shunting role for the external carotid artery. J. Appl. Physiol. (1985) 2020, 129, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Ogoh, S.; Lericollais, R.; Hirasawa, A.; Sakai, S.; Normand, H.; Bailey, D.M. Regional redistribution of blood flow in the external and internal carotid arteries during acute hypotension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R747–R751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogoh, S.; Moralez, G.; Washio, T.; Sarma, S.; Hieda, M.; Romero, S.A.; Cramer, M.N.; Shibasaki, M.; Crandall, C.G. Effect of increases in cardiac contractility on cerebral blood flow in humans. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H1155–H1161. [Google Scholar] [CrossRef] [PubMed]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Ohyama, Y.; Ambale-Venkatesh, B.; Noda, C.; Chugh, A.R.; Teixido-Tura, G.; Kim, J.Y.; Donekal, S.; Yoneyama, K.; Gjesdal, O.; Redheuil, A.; et al. Association of Aortic Stiffness with Left Ventricular Remodeling and Reduced Left Ventricular Function Measured by Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis. Circ. Cardiovasc. Imaging 2016, 9, e004426. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.J.; Ganau, A.; Saba, P.S.; Pini, R.; Pickering, T.G.; Devereux, R.B. Impact of arterial stiffening on left ventricular structure. Hypertension 2000, 36, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, M.; Hay, I.; Fetics, B.; Kass, D.A. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: Implications for systolic and diastolic reserve limitations. Circulation 2003, 107, 714–720. [Google Scholar] [CrossRef]
- Tarumi, T.; Ayaz Khan, M.; Liu, J.; Tseng, B.Y.; Parker, R.; Riley, J.; Tinajero, C.; Zhang, R. Cerebral hemodynamics in normal aging: Central artery stiffness, wave reflection, and pressure pulsatility. J. Cereb. Blood Flow Metab. 2014, 34, 971–978. [Google Scholar] [CrossRef]
- O’Rourke, M.F.; Safar, M.E. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension 2005, 46, 200–204. [Google Scholar] [CrossRef]
- Sugawara, J.; Tarumi, T.; Xing, C.; Liu, J.; Tomoto, T.; Pasha, E.P.; Zhang, R. Older age and male sex are associated with higher cerebrovascular impedance. J. Appl. Physiol. (1985) 2021, 130, 172–181. [Google Scholar] [CrossRef]
Author | Year | Region | Subject | Type of Study | Physiological Factor | Response in Patients with HF | |||
---|---|---|---|---|---|---|---|---|---|
HF Patients | Number | Control | Number | ||||||
Cerebral Blood Flow | |||||||||
Choi et al. [2] | 2006 | Korea | Advanced HF secondary to idiopathic dilated cardiomyopathy (ejection fraction ≤ 35%) | 52 (41 ± 11yrs.) | Healthy | 10 (39 ± 13 yrs.) | Comparison study (HF vs. Control) | Global CBF | Decreased (−19%, p < 0.001) |
Roy et al. [3] | 2017 | USA | HF with hypertensive (n = 12), atrial fibrillation (n = 4), and a history of type 2 diabetes (n = 5). NYHA functional class II (80%) and III (20%) | 19 (56 ± 9 yrs.) | Healthy | 29 (51 ± 5 yrs.) | Comparison study (HF vs. Control) | Regional CBF | Decreased (MRI data, hippocampus, anterior thalamus, occipital cortex etc., p > 0.004) |
The Regulation of Cerebral Vasculature | |||||||||
Georgiadis et al. [4] | 2000 | Italy | NYHA II (n = 19), NYHA III (n = 21), and NYHA IV (n = 10) | 50 (61~53 yrs.) | Healthy | 20 (57 ± 9 yrs.) | Comparison study (HF vs. Control) | Cerebrovascular reactivity (CVR) | Decreased (Linear relationship between LVEF and CVR, r2 = 0.21, p < 0.001) |
Castro et al. [5] | 2020 | Portugal | Stroke Patients with HF (n = 8) and Non-HF (n = 42) | 50 (73 ± 12 yrs.) | Healthy | 50 (71 ± 6 yrs.) | Comparison study (HF vs. Control) | Dynamic cerebral autoregulation | Increased (TFA phase, HF compared with Non-HF, p < 0.001) |
Cardiac Output | |||||||||
Ide et al. [6] | 1999 | Denmark | Atrial Fibrillation | 11 (69, 64~73 yrs.) | Healthy | 5 (64, 61~70 yrs.) | Comparison study (HF vs. Control) | Cerebral blood flow and cardiac output during exercise | There is a correlation between the increase in CBF and the ability to increase cardiac output (r2 = 0.55, p < 0.01). |
Carotid Baroreflex | |||||||||
Sailer et al. [7] | 2021 | USA | Patients with advanced HFrEF and were scheduled to undergo CF-LVAD implantation | 12 (60 ± 11 yrs.) | n/a | n/a | Comparison study (Pre vs. Post left ventricular assist devices, LVAD) | Cardiac baroreflex | Continuous flow-LVAD implantation is associated with modest improvements in autonomic tone, but persistent reductions in cardiac baroreceptor sensitivity and BP response is blunted |
Cardiopulmonary baroreflex | |||||||||
Ferguson et al. [8] | 1984 | USA | NYHA II (n = 4), NYHA III (n = 5), NYHA IV (n = 2) | 11 (37 ± 4 yrs.) | Healthy | 17 (25 ± 1 yrs.) | Comparison study (HF vs. Control) | Cardiopulmonary baroreflex | Attenuated (Forearm vascular response to orthostatic stress, p < 0.01) |
Mohanty et al. [9] | 1989 | USA | NYHA III and IV | 29 | Healthy | 11 | Comparison study (HF vs. Control) | Cardiopulmonary baroreflex | Attenuated (Forearm vascular response to orthostatic stress) |
Creager et al. [10] | 1990 | USA | NYHA III (n = 7), IV (N = 5) | 12 (63 ± 9 yrs.) | Healthy | 20 (26 ± 5 yrs., published as a separate report, AJP H219-25, 1989) | Comparison study (HF vs. Control) | Cardiopulmonary baroreflex | Baroreceptors can regulate splanchnic and renal but not limb vascular resistance |
Modesti et al. [11] | 2004 | Italy | NYHA I (n = 18), NYHA II (n = 13) | 31 (67 ± 10 yrs.) | Healthy | 11 (53 ± 10 yrs.) | Comparison study (HF vs. Control) | Cardiopulmonary baroreflex | Reduced only in NYHA II patients (p < 0.03) but not in NYHA I. |
Arterial Stiffness | |||||||||
Mottram et al. [12] | 2005 | Australia | Hypertensive patients with suspected diastolic HF | 70 | Healthy | 15 | Comparison study (HF vs. Control) | Arterial compliance | Attenuated (p = 0.011) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogoh, S.; Sugawara, J.; Shibata, S. Does Cardiac Function Affect Cerebral Blood Flow Regulation? J. Clin. Med. 2022, 11, 6043. https://doi.org/10.3390/jcm11206043
Ogoh S, Sugawara J, Shibata S. Does Cardiac Function Affect Cerebral Blood Flow Regulation? Journal of Clinical Medicine. 2022; 11(20):6043. https://doi.org/10.3390/jcm11206043
Chicago/Turabian StyleOgoh, Shigehiko, Jun Sugawara, and Shigeki Shibata. 2022. "Does Cardiac Function Affect Cerebral Blood Flow Regulation?" Journal of Clinical Medicine 11, no. 20: 6043. https://doi.org/10.3390/jcm11206043
APA StyleOgoh, S., Sugawara, J., & Shibata, S. (2022). Does Cardiac Function Affect Cerebral Blood Flow Regulation? Journal of Clinical Medicine, 11(20), 6043. https://doi.org/10.3390/jcm11206043