Pathomechanism of Triangular Fibrocartilage Complex Injuries in Patients with Distal-Radius Fractures: A Magnetic-Resonance Imaging Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rundgren, J.; Bojan, A.; Mellstrand Navarro, C.; Enocson, A. Epidemiology, classification, treatment and mortality of distal radius fractures in adults: An observational study of 23,394 fractures from the national Swedish fracture register. BMC Musculoskelet. Disord. 2020, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, R.; Omokawa, S.; Akahane, M.; Iida, A.; Ono, H.; Tanaka, Y. Predictors of distal radioulnar joint instability in distal radius fractures. J. Hand Surg. Am. 2011, 36, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Im, J.; Kang, S.J.; Lee, S.J. A Comparative Study between Conservative and Surgical Treatments of Triangular Fibrocartilage Complex Injury of the Wrist with Distal Radius Fractures. Clin. Orthop. Surg. 2021, 13, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Jung, H.S.; Baek, S.H.; Lee, J.S. How Many Screws Are Needed for Reliable Stability of Extra-articular Nonosteoporotic Distal Radius Fractures Fixed with Volar Locking Plates? Clin. Orthop. Surg. 2020, 12, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Kastenberger, T.; Kaiser, P.; Schmidle, G.; Schwendinger, P.; Gabl, M.; Arora, R. Arthroscopic assisted treatment of distal radius fractures and concomitant injuries. Arch. Orthop. Trauma Surg. 2020, 140, 623–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Fogel, N. Arthroscopy in Distal Radius Fractures: Indications and When to Do It. Hand Clin. 2021, 37, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Xu, Z.; Chen, Y.; Yin, W. Prevalence of triangular fibrocartilage complex injuries in patients with distal radius fractures: A 3.0 T magnetic resonance imaging study. J. Int. Med. Res. 2019, 47, 3648–3655. [Google Scholar] [CrossRef] [PubMed]
- Bombaci, H.; Polat, A.; Deniz, G.; Akinci, O. The value of plain X-rays in predicting TFCC injury after distal radial fractures. J. Hand Surg. Eur. Vol. 2008, 33, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Tomori, Y.; Nanno, M.; Takai, S. The Presence and the Location of an Ulnar Styloid Fracture Associated With Distal Radius Fracture Predict the Presence of Triangular Fibrocartilage Complex 1B Injury. Arthroscopy 2020, 36, 2674–2680. [Google Scholar] [CrossRef] [PubMed]
- Scheer, J.H.; Adolfsson, L.E. Pathomechanisms of ulnar ligament lesions of the wrist in a cadaveric distal radius fracture model. Acta Orthop. 2011, 82, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Trehan, S.K.; Gould, H.P.; Meyers, K.N.; Wolfe, S.W. The Effect of Distal Radius Fracture Location on Distal Radioulnar Joint Stability: A Cadaveric Study. J. Hand Surg. Am. 2019, 44, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Scheer, J.H.; Adolfsson, L.E. Patterns of triangular fibrocartilage complex (TFCC) injury associated with severely dorsally displaced extra-articular distal radius fractures. Injury 2012, 43, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, M.; Welsh, M.; Gammon, B.; Ferreira, L.M.; Johnson, J.A.; King, G.J. Distal radioulnar joint kinematics in simulated dorsally angulated distal radius fractures. J. Hand Surg. Am. 2014, 39, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, M.; Welsh, M.F.; Gammon, B.; Ferreira, L.M.; Johnson, J.A.; King, G.J. Effect of Volarly Angulated Distal Radius Fractures on Forearm Rotation and Distal Radioulnar Joint Kinematics. J. Hand Surg. Am. 2015, 40, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- Kijima, Y.; Viegas, S.F. Wrist anatomy and biomechanics. J. Hand Surg. Am. 2009, 34, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Moritomo, H.; Murase, T.; Goto, A.; Oka, K.; Sugamoto, K.; Yoshikawa, H. Capitate-based kinematics of the midcarpal joint during wrist radioulnar deviation: An in vivo three-dimensional motion analysis. J. Hand Surg. Am. 2004, 29, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Vardakastani, V.; Bell, H.; Mee, S.; Brigstocke, G.; Kedgley, A.E. Clinical measurement of the dart throwing motion of the wrist: Variability, accuracy and correction. J. Hand Surg. Eur. Vol. 2018, 43, 723–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, S.W.; Crisco, J.J.; Orr, C.M.; Marzke, M.W. The dart-throwing motion of the wrist: Is it unique to humans? J. Hand Surg. Am. 2006, 31, 1429–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deniz, G.; Kose, O.; Yanik, S.; Colakoglu, T.; Tugay, A. Effect of untreated triangular fibrocartilage complex (TFCC) tears on the clinical outcome of conservatively treated distal radius fractures. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Kasapinova, K.; Kamiloski, V. Outcomes of surgically treated distal radius fractures associated with triangular fibrocartilage complex injury. J. Hand Ther. 2020, 33, 339–345. [Google Scholar] [CrossRef] [PubMed]
Index | TFCC Pattern Relevance (p Value) | |
---|---|---|
Index age (average) | 65.21 | >0.05 |
Gender (male:female ratio) | 8:2 | >0.05 |
BMI (average) | 24.05 | >0.05 |
Osteoporosis (%) | 37.9 | >0.05 |
TFCC Injury Pattern (Palmar Classification) | N |
---|---|
1A | 5 |
1B | 19 |
1C | 33 |
1D | 1 |
Palmar Classification | |||||
---|---|---|---|---|---|
1A | 1B | 1C | 1D | Total | |
AO/OTA classification | |||||
A2 | 2 | 5 | 9 | 1 | 17 |
A3 | 0 | 5 | 6 | 0 | 11 |
B3 | 1 | 2 | 1 | 0 | 4 |
C1 | 1 | 1 | 2 | 0 | 4 |
C2 | 0 | 4 | 6 | 0 | 10 |
C3 | 1 | 2 | 9 | 0 | 12 |
Total | 5 | 19 | 33 | 1 | 58 |
Fernandez classification | |||||
1 | 2 | 11 | 15 | 1 | 29 |
2 | 1 | 2 | 1 | 0 | 4 |
3 | 1 | 3 | 8 | 0 | 12 |
5 | 1 | 3 | 9 | 0 | 13 |
Total | 5 | 19 | 33 | 1 | 58 |
Palmar Classification | |||||
---|---|---|---|---|---|
Radiologic Parameter | 1A | 1B | 1C | 1D | p-Value |
DRUJ gap | −0.014 | 0.28 | 0.25 | 0.07 | >0.05 |
Radial length | 6.69 | 5.25 | 3.14 | 11.9 | >0.05 |
Radial length gap | 3.53 | 5.04 | 6.27 | −5.16 | <0.05 * |
Radial inclination | 18.06 | 14.026 | 13.982 | 23.9 | >0.05 |
Dorsal angulation | −2.02 | 5.13 | 7.84 | −15.9 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-S.; Cho, C.-H.; Lee, K.-J.; Lee, S.-W.; Byun, S.-H. Pathomechanism of Triangular Fibrocartilage Complex Injuries in Patients with Distal-Radius Fractures: A Magnetic-Resonance Imaging Study. J. Clin. Med. 2022, 11, 6168. https://doi.org/10.3390/jcm11206168
Kim B-S, Cho C-H, Lee K-J, Lee S-W, Byun S-H. Pathomechanism of Triangular Fibrocartilage Complex Injuries in Patients with Distal-Radius Fractures: A Magnetic-Resonance Imaging Study. Journal of Clinical Medicine. 2022; 11(20):6168. https://doi.org/10.3390/jcm11206168
Chicago/Turabian StyleKim, Beom-Soo, Chul-Hyun Cho, Kyung-Jae Lee, Si-Wook Lee, and Seok-Ho Byun. 2022. "Pathomechanism of Triangular Fibrocartilage Complex Injuries in Patients with Distal-Radius Fractures: A Magnetic-Resonance Imaging Study" Journal of Clinical Medicine 11, no. 20: 6168. https://doi.org/10.3390/jcm11206168
APA StyleKim, B.-S., Cho, C.-H., Lee, K.-J., Lee, S.-W., & Byun, S.-H. (2022). Pathomechanism of Triangular Fibrocartilage Complex Injuries in Patients with Distal-Radius Fractures: A Magnetic-Resonance Imaging Study. Journal of Clinical Medicine, 11(20), 6168. https://doi.org/10.3390/jcm11206168