Special Issue “Advances in Thrombocytopenia”
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; van der Wal, D.E.; Zhu, G.; Xu, M.; Yougbare, I.; Ma, L.; Vadasz, B.; Carrim, N.; Grozovsky, R.; Ruan, M.; et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat. Commun. 2015, 6, 7737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, N.; Solomon, C.G.; Ghanima, W. Immune Thrombocytopenia. N. Engl. J. Med. 2019, 381, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hua, F.; Zhan, Y.; Yang, Y.; Xie, J.; Cheng, Y.; Li, F. Carcinoma associated fibroblasts small extracellular vesicles with low miR-7641 promotes breast cancer stemness and glycolysis by HIF-1α. Cell Death Discov. 2021, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Cheng, Y. Treg cell abnormality and its potential treatments in patients with primary immune thrombocytopenia. Clin. Transl. Discov. 2022, 2, e277. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, L.; Li, F.; Ji, L.; Shao, X.; Wu, B.; Zhan, Y.; Liu, C.; Min, Z.; Ke, Y.; et al. The abnormal function of CD39(+) regulatory T cells could be corrected by high-dose dexamethasone in patients with primary immune thrombocytopenia. Ann. Hematol. 2019, 98, 1845–1854. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, C.; Li, F.; Wu, B.; Min, Z.; Chen, P.; Zhan, Y.; Ke, Y.; Hua, F.; Yuan, L.; et al. The prediction value of Treg cell subtype alterations for glucocorticoid treatment in newly diagnosed primary immune thrombocytopenia patients. Thromb. Res. 2019, 181, 10–16. [Google Scholar] [CrossRef]
- Qian, M.; Zhu, B.; Zhan, Y.; Wang, L.; Shen, Q.; Zhang, M.; Yue, L.; Wu, D.; Chen, H.; Wang, X.; et al. Analysis of Negative Results of Metagenomics Next-Generation Sequencing in Clinical Practice. Front. Cell. Infect. Microbiol. 2022, 12, 892076. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, M.; Yu, Y.Y.; Hou, Y.; Mi, X.; Sun, Y.X.; Ma, S.; Zuo, X.Y.; Shao, L.L.; Hou, M.; et al. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia. J. Thromb. Haemost. JTH 2017, 15, 1845–1858. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.G.; Liu, S.; Feng, Q.; Liu, X.N.; Li, G.S.; Sheng, Z.; Chen, P.; Liu, Y.; Wei, Y.; Dong, X.Y.; et al. Thrombopoietin receptor agonists shift the balance of Fcγ receptors toward inhibitory receptor IIb on monocytes in ITP. Blood 2016, 128, 852–861. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, P.; Guo, L.; Wang, H.; Min, Y.; Feng, Q.; Hou, Y.; Sun, T.; Li, G.; Ji, X.; et al. Tumor Necrosis Factor-α Blockade Corrects Monocyte/Macrophage Imbalance in Primary Immune Thrombocytopenia. Thromb. Haemost. 2021, 121, 767–781. [Google Scholar] [CrossRef]
- Neunert, C.; Terrell, D.R.; Arnold, D.M.; Buchanan, G.; Cines, D.B.; Cooper, N.; Cuker, A.; Despotovic, J.M.; George, J.N.; Grace, R.F.; et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019, 3, 3829–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provan, D.; Arnold, D.M.; Bussel, J.B.; Chong, B.H.; Cooper, N.; Gernsheimer, T.; Ghanima, W.; Godeau, B.; González-López, T.J.; Grainger, J.; et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 2019, 3, 3780–3817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.J.; Liu, H.; Zeng, Q.Z.; Liu, Y.; Wang, J.W.; Wang, W.S.; Jia, F.; Zhou, H.B.; Huang, Q.S.; He, Y.; et al. All-trans retinoic acid plus low-dose rituximab vs low-dose rituximab in corticosteroid-resistant or relapsed ITP. Blood 2022, 139, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Qin, P.; Liu, Q.; Yuan, C.; Hao, Y.; Zhang, H.; Wang, Z.; Ran, X.; Chu, X.; Yu, W.; et al. A prospective, multicenter study of low dose decitabine in adult patients with refractory immune thrombocytopenia. Am. J. Hematol. 2019, 94, 1374–1381. [Google Scholar] [CrossRef]
- Nusrat, S.; Borogovac, A.; George, J.N.; Curtis, B.R.; Reese, J.A. Drug (vaccine)-induced thrombocytopenia 2021: Diversity of pathogenesis and clinical features. Am. J. Hematol. 2022, 97, E162–E165. [Google Scholar] [CrossRef]
- Fuentes, S.; Chrétien, B.; Dolladille, C.; Alexandre, J.; Dumont, A.; Nguyen, A.; de Boysson, H.; Chèze, S.; Maigné, G.; Aouba, A.; et al. An updated list of drugs suspected to be associated with immune thrombocytopenia based on the WHO pharmacovigilance database. Blood 2022, 140, 922–927. [Google Scholar] [CrossRef]
- Ghanem, P.; Marrone, K.; Shanbhag, S.; Brahmer, J.R.; Naik, R.P. Current challenges of hematologic complications due to immune checkpoint blockade: A comprehensive review. Ann. Hematol. 2022, 101, 1–10. [Google Scholar] [CrossRef]
- Rittener-Ruff, L.; Marchetti, M.; Matthey-Guirao, E.; Grandoni, F.; Gomez, F.J.; Alberio, L. Combinations of rapid immunoassays for a speedy diagnosis of heparin-induced thrombocytopenia. J. Thromb. Haemost. JTH 2022, 20, 2407–2418. [Google Scholar] [CrossRef]
- Lee, C.S.M.; Selvadurai, M.V.; Pasalic, L.; Yeung, J.; Konda, M.; Kershaw, G.W.; Favaloro, E.J.; Chen, V.M. Measurement of procoagulant platelets provides mechanistic insight and diagnostic potential in heparin-induced thrombocytopenia. J. Thromb. Haemost. JTH 2022, 20, 975–988. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Clifford, J.; Leitinger, E.; Parker, M.; Sung, P.; Chunilal, S.; Tran, H.; Kershaw, G.; Fu, S.; Passam, F.; et al. Assessment of immunological anti-platelet factor 4 antibodies for vaccine-induced thrombotic thrombocytopenia (VITT) in a large Australian cohort: A multicenter study comprising 1284 patients. J. Thromb. Haemost. JTH 2022. [Google Scholar] [CrossRef]
- de Maat, S.; Clark, C.C.; Barendrecht, A.D.; Smits, S.; van Kleef, N.D.; El Otmani, H.; Waning, M.; van Moorsel, M.; Szardenings, M.; Delaroque, N.; et al. Microlyse: A thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood 2022, 139, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, L.; Leunig, A.; Pekayvaz, K.; Esefeld, M.; Anjum, A.; Rath, J.; Riedlinger, E.; Ehreiser, V.; Mader, M.; Eivers, L.; et al. Thrombocytopenia and splenic platelet-directed immune responses after IV ChAdOx1 nCov-19 administration. Blood 2022, 140, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Perez Botero, J.; Reese, J.A.; George, J.N.; McIntosh, J.J. Severe thrombocytopenia and microangiopathic hemolytic anemia in pregnancy: A guide for the consulting hematologist. Am. J. Hematol. 2021, 96, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, W.E.M.; Nijdam, J.S.; Haitjema, S.; de Groot, M.C.H.; Huisman, A.; Punt, M.C.; Evers, A.C.C.; Schutgens, R.E.G.; Lely, A.T.; van Galen, K.P.M. Platelet count and indices as postpartum hemorrhage risk factors: A retrospective cohort study. J. Thromb. Haemost. JTH 2021, 19, 2873–2883. [Google Scholar] [CrossRef]
- Huang, Q.S.; Zhu, X.L.; Qu, Q.Y.; Liu, X.; Zhang, G.C.; Su, Y.; Chen, Q.; Liu, F.Q.; Sun, X.Y.; Liang, M.Y.; et al. Prediction of postpartum hemorrhage in pregnant women with immune thrombocytopenia: Development and validation of the MONITOR model in a nationwide multicenter study. Am. J. Hematol. 2021, 96, 561–570. [Google Scholar] [CrossRef]
- Martin, E.S.; Ferrer, A.; Mangaonkar, A.A.; Khan, S.P.; Kohorst, M.A.; Joshi, A.Y.; Hogan, W.J.; Olteanu, H.; Moyer, A.M.; Al-Kali, A.; et al. Spectrum of hematological malignancies, clonal evolution and outcomes in 144 Mayo Clinic patients with germline predisposition syndromes. Am. J. Hematol. 2021, 96, 1450–1460. [Google Scholar] [CrossRef]
- Scully, M. Congenital TTP: Next stop, acuity and therapy. Blood 2021, 137, 3469–3471. [Google Scholar] [CrossRef]
- Basso-Valentina, F.; Levy, G.; Varghese, L.N.; Oufadem, M.; Neven, B.; Boussard, C.; Balayn, N.; Marty, C.; Vainchenker, W.; Plo, I.; et al. CALR mutant protein rescues the response of MPL p.R464G variant associated with CAMT to eltrombopag. Blood 2021, 138, 480–485. [Google Scholar] [CrossRef]
- Sakai, K.; Fujimura, Y.; Nagata, Y.; Higasa, S.; Moriyama, M.; Isonishi, A.; Konno, M.; Kajiwara, M.; Ogawa, Y.; Kaburagi, S.; et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J. Thromb. Haemost. JTH 2020, 18, 2929–2941. [Google Scholar] [CrossRef]
- Quach, M.E.; Li, R. Structure-function of platelet glycoprotein Ib-IX. J. Thromb. Haemost. JTH 2020, 18, 3131–3141. [Google Scholar] [CrossRef]
- Pal, K.; Nowak, R.; Billington, N.; Liu, R.; Ghosh, A.; Sellers, J.R.; Fowler, V.M. Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2020, 135, 1887–1898. [Google Scholar] [CrossRef] [PubMed]
- Blaauwgeers, M.W.; Kruip, M.; Beckers, E.A.M.; Coppens, M.; Eikenboom, J.; van Galen, K.P.M.; Tamminga, R.Y.J.; Urbanus, R.T.; Schutgens, R.E.G. Bleeding phenotype and diagnostic characterization of patients with congenital platelet defects. Am. J. Hematol. 2020, 95, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, M.; Nannya, Y.; Yamazaki, R.; Yamaguchi, K.; Koda, Y.; Abe, R.; Yokoyama, K.; Ogawa, S.; Mori, T. Germline RUNX1 translocation in familial platelet disorder with propensity to myeloid malignancies. Ann. Hematol. 2022, 101, 237–239. [Google Scholar] [CrossRef]
- Tarasco, E.; Bütikofer, L.; Friedman, K.D.; George, J.N.; Hrachovinova, I.; Knöbl, P.N.; Matsumoto, M.; von Krogh, A.S.; Aebi-Huber, I.; Cermakova, Z.; et al. Annual incidence and severity of acute episodes in hereditary thrombotic thrombocytopenic purpura. Blood 2021, 137, 3563–3575. [Google Scholar] [CrossRef] [PubMed]
- Boothby, A.; Mazepa, M. Caplacizumab for congenital thrombotic thrombocytopenic purpura. Am. J. Hematol. 2022, 97, E420–E421. [Google Scholar] [CrossRef] [PubMed]
- Balitsky, A.K.; Kelton, J.G.; Arnold, D.M. Managing antithrombotic therapy in immune thrombocytopenia: Development of the TH2 risk assessment score. Blood 2018, 132, 2684–2686. [Google Scholar] [CrossRef] [Green Version]
- Thachil, J.; Carrier, M.; Lisman, T. Anticoagulation in thrombocytopenic patients—Time to rethink? J. Thromb. Haemost. JTH 2022, 20, 1951–1956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Cheng, Y. Special Issue “Advances in Thrombocytopenia”. J. Clin. Med. 2022, 11, 6679. https://doi.org/10.3390/jcm11226679
Ji L, Cheng Y. Special Issue “Advances in Thrombocytopenia”. Journal of Clinical Medicine. 2022; 11(22):6679. https://doi.org/10.3390/jcm11226679
Chicago/Turabian StyleJi, Lili, and Yunfeng Cheng. 2022. "Special Issue “Advances in Thrombocytopenia”" Journal of Clinical Medicine 11, no. 22: 6679. https://doi.org/10.3390/jcm11226679
APA StyleJi, L., & Cheng, Y. (2022). Special Issue “Advances in Thrombocytopenia”. Journal of Clinical Medicine, 11(22), 6679. https://doi.org/10.3390/jcm11226679