Modeling Physiological Predictors of Running Velocity for Endurance Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Somatic, [La−]b Measurements, and CPET Protocol
2.4. Data Analysis and Predictors Selection
3. Results
3.1. Somatic Measurements and CPET Results
3.2. Prediction Models for VAT, VRCP, and Vmax
3.3. Internal Validation
4. Discussion
4.1. Model Performance and Physiological Properties
4.2. Clinical Considerations
4.3. Practical Applications
4.4. Limitations
4.5. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saint-Maurice, P.F.; Graubard, B.I.; Troiano, R.P.; Berrigan, D.; Galuska, D.A.; Fulton, J.E.; Matthews, C.E. Estimated Number of Deaths Prevented Through Increased Physical Activity Among US Adults. JAMA Intern. Med. 2022, 182, 349–352. [Google Scholar] [CrossRef]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2016, 133, E694–E711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.G.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Rossiter, H.B.; Brooks, G.A.; Gladden, L.B. The anaerobic threshold: 50+years of controversy. J. Physiol. 2021, 599, 737–767. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K.; McIlroy, M.B. Detecting threshold of anaerobic metabolism in cardiac patients during exercise. Am. J. Cardiol. 1964, 14, 844–852. [Google Scholar] [CrossRef]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef]
- Mann, T.; Lamberts, R.P.; Lambert, M.I. Methods of Prescribing Relative Exercise Intensity: Physiological and Practical Considerations. Sports Med. 2013, 43, 613–625. [Google Scholar] [CrossRef]
- van den Aardweg, J.G.; De Groot, N. Tight coupling between inspiration and expiration after the respiratory compensation point. Eur. Respir. J. 2015, 46, PA1553. [Google Scholar] [CrossRef]
- Takano, N. Respiratory compensation point during incremental exercise as related to hypoxic ventilatory chemosensitivity and lactate increase in man. Jpn. J. Physiol. 2000, 50, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.W.; Rowell, A.L. Running velocity at VO2max. Med. Sci. Sports Exerc. 1996, 28, 114–119. [Google Scholar] [CrossRef]
- Wiecha, S.; Price, S.; Cieslinski, I.; Kasiak, P.S.; Tota, L.; Ambrozy, T.; Sliz, D. Transferability of Cardiopulmonary Parameters between Treadmill and Cycle Ergometer Testing in Male Triathletes-Prediction Formulae. Int. J. Environ. Res. Public Health 2022, 19, 1830. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Matsuura, Y. Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J. Appl. Physiol. 1984, 57, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Galan-Rioja, M.A.; Gonzalez-Mohino, F.; Poole, D.C.; Gonzalez-Rave, J.M. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1771–1783. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; Del Rosso, S.; Larumbe-Zabala, E.; Cardona, C.; Alcocer-Gamboa, A.; Boullosa, D.A. Predicting Recreational Runners’ Marathon Performance Time During Their Training Preparation. J. Strength Cond. Res. 2021, 35, 3218–3224. [Google Scholar] [CrossRef] [PubMed]
- Rory, P.B.; Thabtah, F. A machine learning framework for sport result prediction. Appl. Comput. Inform. 2019, 15, 27–33. [Google Scholar] [CrossRef]
- Lanferdini, F.J.; Silva, E.S.; Machado, E.; Fischer, G.; Peyre-Tartaruga, L.A. Physiological Predictors of Maximal Incremental Running Performance. Front. Physiol. 2020, 11, 979. [Google Scholar] [CrossRef]
- Malek, M.H.; Berger, D.E.; Housh, T.J.; Coburn, J.W.; Beck, T.W. Validity of VO2max equations for aerobically trained males and females. Med. Sci. Sports Exerc. 2004, 36, 1427–1432. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M.; Grp, T. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Eur. Urol. 2015, 67, 1142–1151. [Google Scholar] [CrossRef] [Green Version]
- Schabort, E.J.; Killian, S.C.; Gibson, A.S.; Hawley, J.A.; Noakes, T.D. Prediction of triathlon race time from laboratory testing in national triathletes. Med. Sci. Sports Exerc. 2000, 32, 844–849. [Google Scholar] [CrossRef]
- Ghosh, A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. MJMS 2004, 11, 24–36. [Google Scholar]
- Lach, J.; Wiecha, S.; Sliz, D.; Price, S.; Zaborski, M.; Cieslinski, I.; Postula, M.; Knechtle, B.; Mamcarz, A. HR Max Prediction Based on Age, Body Composition, Fitness Level, Testing Modality and Sex in Physically Active Population. Front. Physiol. 2021, 12, 695950. [Google Scholar] [CrossRef] [PubMed]
- Meignie, A.; Duclos, M.; Carling, C.; Orhant, E.; Provost, P.; Toussaint, J.F.; Antero, J. The Effects of Menstrual Cycle Phase on Elite Athlete Performance: A Critical and Systematic Review. Front. Physiol. 2021, 12, 654585. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Despres, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign A Scientific Statement From the American Heart Association. Circulation 2016, 134, E653–E699. [Google Scholar] [CrossRef]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef] [Green Version]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas-exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Stekhoven, D.J.; Buhlmann, P. MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C plus plus and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Measurement in medicine–the analysis of method comparison studies. J. R. Stat. Soc. Ser. D Stat. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Jette, M.; Sidney, K.; Blumchen, G. Metabolic equivalents (mets) in exercise testing, exercise prescription, and evaluation of functional-capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Sjodin, B.; Svedenhag, J. Applied physiology of marathon running. Sports Med. 1985, 2, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Krachler, B.; Savonen, K.; Lakka, T. Obesity is an important source of bias in the assessment of cardiorespiratory fitness. Am. Heart J. 2015, 170, E7–E8. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.H.; Gey, G.O.; Bottenberg, R.A. Effects of cigarette smoking on endurance performance. J. Am. Med. Assoc. 1968, 203, 189. [Google Scholar] [CrossRef]
- Adami, P.E.; Koutlianos, N.; Baggish, A.; Bermon, S.; Cavarretta, E.; Deligiannis, A.; Furlanello, F.; Kouidi, E.; Marques-Vidal, P.; Niebauer, J.; et al. Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: A position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 559–575. [Google Scholar] [CrossRef]
- Petek, B.J.; Tso, J.V.; Churchill, T.W.; Guseh, J.S.; Loomer, G.; DiCarli, M.; Lewis, G.D.; Weiner, R.B.; Kim, J.H.; Wasfy, M.M.; et al. Normative cardiopulmonary exercise data for endurance athletes: The Cardiopulmonary Health and Endurance Exercise Registry (CHEER). Eur. J. Prev. Cardiol. 2021, 29, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.A. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance. Integr. Comp. Biol. 2017, 57, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, P.A.; Wilmore, J.H.; Coyle, E.F.; Billing, J.E.; Costill, D.L. Plasma lactate accumulation and distance running performance. Med. Sci. Sports Exerc. 1979, 11, 338–344. [Google Scholar] [CrossRef]
- Stensvold, D.; Sandbakk, S.B.; Viken, H.; Zisko, N.; Reitlo, L.S.; Nauman, J.; Gaustad, S.E.; Hassel, E.; Moufack, M.; Bronstad, E.; et al. Cardiorespiratory Reference Data in Older Adults: The Generation 100 Study. Med. Sci. Sports Exerc. 2017, 49, 2206–2215. [Google Scholar] [CrossRef] [Green Version]
- Vogel, J.A.; Friedl, K.E. Body-fat assessment in women–special considerations. Sports Med. 1992, 13, 245–269. [Google Scholar] [CrossRef]
- McCormick, A.; Meijen, C.; Marcora, S. Psychological Determinants of Whole-Body Endurance Performance. Sports Med. 2015, 45, 997–1015. [Google Scholar] [CrossRef] [Green Version]
- Ekblom-Bak, E.; Bjorkman, F.; Hellenius, M.L.; Ekblom, B. A new submaximal cycle ergometer test for prediction of VO2max. Scand. J. Med. Sci. Sports 2014, 24, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Petek, B.J.; Groezinger, E.Y.; Pedlar, C.R.; Baggish, A.L. Cardiac effects of detraining in athletes: A narrative review. Ann. Phys. Rehabil. Med. 2022, 65, 101581. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Wiecha, S.; Cieśliński, I.; Śliż, D.; Kasiak, P.S.; Lach, J.; Gruba, G.; Kowalski, T.; Mamcarz, A. Differences between Treadmill and Cycle Ergometer Cardiopulmonary Exercise Testing Results in Triathletes and Their Association with Body Composition and Body Mass Index. Int. J. Environ. Res. Public Health 2022, 19, 3557. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lu, W.; Lang, D. Comparison between 2000 m and 3000 m time trials to estimate the maximal aerobic speed for collegiate runners. Front. Physiol. 2022, 13, 1005259. [Google Scholar] [CrossRef] [PubMed]
- Casado, A.; Tuimil, J.L.; Iglesias, X.; Fernandez-Del-Olmo, M.; Jimenez-Reyes, P.; Martin-Acero, R.; Rodriguez, F.A. Maximum aerobic speed, maximum oxygen consumption, and running spatiotemporal parameters during an incremental test among middle- and long-distance runners and endurance non-running athletes. PeerJ 2022, 10, e14035. [Google Scholar] [CrossRef]
- Figueiredo, D.H.; Figueiredo, D.H.; Manoel, F.A.; Machado, F.A. Peak Running Velocity or Critical Speed Under Field Conditions: Which Best Predicts 5-km Running Performance in Recreational Runners? Front. Physiol. 2021, 12, 680790. [Google Scholar] [CrossRef]
Variable (Unit) | Male [n = 3330; 83.23%] | Female [n = 671; 16.77%] | p-Value |
---|---|---|---|
Age (years) | 35.90 (8.15) | 33.86 (7.74) | <0.0001 |
Height (cm) | 179.58 (6.22) | 167.19 (6.88) | <0.0001 |
BM (kg) | 77.72 (9.47) | 60.60 (8.73) | <0.0001 |
BMI (kg·m−2) | 24.07 (2.44) | 21.64 (2.38) | <0.0001 |
BF (%) | 15.49 (4.53) | 22.04 (5.46) | <0.0001 |
FM (kg) | 12.29 (4.71) | 13.47 (4.65) | <0.0001 |
FFM (kg) | 65.42 (6.47) | 47.08 (6.36) | <0.0001 |
Males [n = 3330] | Females [n = 671] | p-Value | |||||
---|---|---|---|---|---|---|---|
Variable (Unit) | Mean | CI | SD | Mean | CI | SD | |
VO2AT (mL·min−1·kg−1) | 38.42 | 38.25–38.59 | 4.96 | 35.69 | 35.32–36.05 | 4.83 | <0.0001 |
VO2AT (mL·min−1) | 2955.15 | 2942.04–2968.26 | 385.79 | 2137.77 | 2113.25–2162.29 | 323.48 | <0.0001 |
RERAT | 0.87 | 0.87–0.87 | 0.04 | 0.86 | 0.85–0.86 | 0.04 | <0.0001 |
HRAT (beats·min−1) | 151.32 | 150.96–151.68 | 10.70 | 156.45 | 155.66–157.24 | 10.39 | <0.0001 |
VEAT (L·min−1) | 78.26 | 77.84–78.68 | 12.02 | 58.38 | 57.66–59.09 | 9.25 | <0.0001 |
fRAT (breaths·min−1) | 34.88 | 34.61–35.14 | 7.85 | 34.89 | 34.31–35.47 | 7.66 | <0.0001 |
[La−]bAT (mmol·L−1); | 1.95 | 1.92–1.98 | 0.67 | 1.86 | 1.80–1.93 | 0.66 | 0.99 |
VO2RCP (mL·min−1·kg−1) | 47.59 | 47.37–47.81 | 6.10 | 43.05 | 42.56–43.55 | 6.14 | <0.0001 |
VO2RCP (mL·min−1) | 3642.72 | 3626.90–3658.54 | 465.70 | 2576.01 | 2545.15–2606.87 | 407.12 | <0.0001 |
RERRCP | 1.00 | 1.00–1.00 | 0.04 | 0.99 | 0.99–1.00 | 0.04 | <0.0001 |
HRRCP (beats·min−1) | 173.43 | 173.12–173.75 | 9.33 | 176.04 | 175.34–176.73 | 9.12 | <0.0001 |
VERCP (L·min−1) | 113.82 | 113.25–114.39 | 16.43 | 81.15 | 80.20–82.11 | 12.34 | <0.0001 |
fRRCP (breaths·min−1) | 44.19 | 43.91–44.48 | 8.52 | 43.09 | 42.49–43.68 | 7.87 | <0.0001 |
[La−]bRCP (mmol·L−1); | 4.53 | 4.49–4.58 | 1.07 | 4.19 | 4.09–4.29 | 1.02 | <0.0001 |
VO2max (mL·min−1·kg−1) | 54.10 | 53.87–54.34 | 6.93 | 48.73 | 48.23–49.24 | 6.67 | <0.0001 |
VO2max (mL·min−1) | 4176.37 | 4157.64–4195.09 | 551.09 | 2949.02 | 2911.51–2986.54 | 494.89 | <0.0001 |
RERmax | 1.12 | 1.12–1.12 | 0.04 | 1.12 | 1.12–1.12 | 0.04 | 0.76 |
HRmax (beats·min−1) | 184.81 | 184.49–185.13 | 9.54 | 185.39 | 184.69–186.09 | 9.24 | 0.15 |
VEmax (L·min−1) | 148.86 | 148.15–149.57 | 20.46 | 103.83 | 102.60–105.05 | 15.86 | <0.0001 |
fRmax (breaths·min−1) | 57.59 | 57.28–57.90 | 9.20 | 55.46 | 54.83–56.09 | 8.30 | <0.0001 |
[La−]bmax (mmol·L−1); | 9.91 | 9.82–10.00 | 2.02 | 9.08 | 8.88–9.28 | 1.93 | <0.0001 |
VAT (km·h−1) | 10.97 | 10.92–11.02 | 1.40 | 9.64 | 9.53–9.74 | 1.36 | <0.0001 |
VRCP (km·h−1) | 14.02 | 13.96–14.08 | 1.74 | 12.29 | 12.16–12.41 | 1.68 | <0.0001 |
Vmax (km·h−1) | 16.07 | 16.01–16.14 | 1.93 | 14.12 | 13.98–14.26 | 1.85 | <0.0001 |
VS (km·h−1) | 8.61 | 8.56–8.66 | 1.28 | 7.60 | 7.51–7.69 | 1.08 | <0.0001 |
Model Category | Multiple Linear Regression Equation | R2 | Derivation Group Performance | Validation Group Performance | ||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |||
VAT Males | 8.00 − 0.01 · Age − 0.09 · BMI + 0.04 · VO2max + 0.09 · VO2AT − 0.65 · [La−]bAT + 0.01 · VERCP | 0.57 | 0.909 | 0.708 | 0.913 | 0.710 |
VAT Females | 7.55 − 0.02 · Age − 0.10 · BMI + 0.15 · VO2AT − 0.70 · [La−]bAT + 0.01 · VERCP | 0.62 | 0.828 | 0.657 | 0.838 | 0.665 |
VRCP Males | 10.88 − 0.02 · Age − 0.11 · BMI + 0.04 · VO2max − 0.99 · [La−]bAT + 0.10 · VO2RCP + 0.01 · VERCP + 0.10 · [La−]bRCP | 0.62 | 1.066 | 0.832 | 1.070 | 0.835 |
VRCP Females | 9.24 − 0.02 · Age − 0.11 · BMI − 1.05 · [La−]bAT + 0.15 · VO2RCP + 0.01 · VERCP + 0.19 · [La−]bRCP | 0.67 | 0.964 | 0.752 | 0.978 | 0.763 |
Vmax Males | 12.41 − 0.03 · Age + 0.01 · BM − 0.12 · BMI + 0.10 · VO2max − 0.82 · [La−]bAT + 0.07 · VO2RCP | 0.57 | 1.202 | 0.943 | 1.205 | 0.944 |
Vmax Females | 9.37 − 0.03 · Age + 0.06 · VO2max − 0.79 · [La−]bAT + 0.09 · VO2RCP + 0.01 · VEmax − 0.04 · BF | 0.65 | 1.095 | 0.861 | 1.111 | 0.881 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiecha, S.; Kasiak, P.S.; Cieśliński, I.; Maciejczyk, M.; Mamcarz, A.; Śliż, D. Modeling Physiological Predictors of Running Velocity for Endurance Athletes. J. Clin. Med. 2022, 11, 6688. https://doi.org/10.3390/jcm11226688
Wiecha S, Kasiak PS, Cieśliński I, Maciejczyk M, Mamcarz A, Śliż D. Modeling Physiological Predictors of Running Velocity for Endurance Athletes. Journal of Clinical Medicine. 2022; 11(22):6688. https://doi.org/10.3390/jcm11226688
Chicago/Turabian StyleWiecha, Szczepan, Przemysław Seweryn Kasiak, Igor Cieśliński, Marcin Maciejczyk, Artur Mamcarz, and Daniel Śliż. 2022. "Modeling Physiological Predictors of Running Velocity for Endurance Athletes" Journal of Clinical Medicine 11, no. 22: 6688. https://doi.org/10.3390/jcm11226688
APA StyleWiecha, S., Kasiak, P. S., Cieśliński, I., Maciejczyk, M., Mamcarz, A., & Śliż, D. (2022). Modeling Physiological Predictors of Running Velocity for Endurance Athletes. Journal of Clinical Medicine, 11(22), 6688. https://doi.org/10.3390/jcm11226688