Factors Associated with Mortality in Coronavirus-Associated Mucormycosis: Results from Mycotic Infections in COVID-19 (MUNCO) Online Registry
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO COVID-19 Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 10 August 2022).
- Hagan Ashley. COVID-19-Associated Mucormycosis: Triple Threat of the Pandemic. American Society of Microbiology. Published 15 July 2021. Available online: https://asm.org/Articles/2021/July/COVID-19-Associated-Mucormycosis-Triple-Threat-of (accessed on 2 October 2021).
- Jeong, W.; Keighley, C.; Wolfe, R.; Lee, W.L.; Slavin, M.A.; Kong, D.C.M.; Chen, S.C.-A. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin. Microbiol. Infect. 2019, 25, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roden, M.M.; Zaoutis, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiou, C.C.; Chu, J.H.; et al. Epidemiology and Outcome of Zygomycosis: A Review of 929 Reported Cases. Clin. Infect. Dis. 2005, 41, 634–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Hemmige, V.S.; Mandke, C.; Chansoria, M.; Rawat, S.K.; Dravid, A.; Sethi, Y.; Medikeri, G.; Jariwala, S.P.; Puius, Y.A. Online Registry of COVID-19–Associated Mucormycosis Cases, India, 2021. Emerg. Infect. Dis. 2021, 27, 2963–2965. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- John, T.; Jacob, C.; Kontoyiannis, D. When uncontrolled diabetes mellitus and severe covid-19 converge: The perfect storm for mucormycosis. J. Fungi 2021, 7, 298. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Agarwal, R.; Rudramurthy, S.M.; Shevkani, M.; Xess, I.; Sharma, R.; Savio, J.; Sethuraman, N.; Madan, S.; Shastri, P.; et al. Multicenter Epidemiologic Study of Coronavirus Disease-Associated Mucormycosis, India. Emerg. Infect. Dis. 2021, 27, 2349–2359. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102146. [Google Scholar] [CrossRef]
- Singh, Y.; Ganesh, V.; Kumar, S.; Patel, N.; Aggarwala, R.; Soni, K.D.; Trikha, A. Coronavirus Disease-Associated Mucormycosis from a Tertiary Care Hospital in India: A Case Series. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Honavar, S.; Sen, M.; Sengupta, S.; Rao, R.; Kim, U.; Sharma, M.; Sachdev, M.; Grover, A.; Surve, A.; Budharapu, A.; et al. Epidemiology, clinical profile, management, and outcome of COVID-19-associated rhino-orbital-cerebral mucormycosis in 2826 patients in India—Collaborative OPAI-IJO Study on Mucormycosis in COVID-19 (COSMIC), Report 1. Indian J. Ophthalmol. 2021, 69, 1670–1692. [Google Scholar] [CrossRef]
- Budhiraja, S.; Aggarwal, M.; Mahajan, M.; Indrayan, A.; Jha, V.; Mittal, A.; Sachdeva, S.; Mrig, S.; Jain, A.; Gera, R.; et al. COVID-19 Outcomes in Pregnancy: A Review of 275 Screened Studies Profile of Mucormycosis Cases from a Network of Hospitals in North India amidst COVID-19 Pandemic. J. Infect. Dis. Ther. 2021, S5, 4. [Google Scholar]
- Dave, T.V.; Nair, A.G.; Hegde, R.; Vithalani, N.; Desai, S.; Adulkar, N.; Kamal, S.; Mittal, R.; Bradoo, R.A. Clinical Presentations, Management and Outcomes of Rhino-Orbital-Cerebral Mucormycosis (ROCM) Following COVID-19: A Multi-Centric Study. Ophthalmic Plast. Reconstr. Surg. 2021, 37, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Chatterjee, S.S.; Das, A.; Panda, N.; Shivaprakash, M.R.; Kaur, A.; Varma, S.C.; Singhi, S.; Bhansali, A.; Sakhuja, V. Invasive zygomycosis in India: Experience in a tertiary care hospital. Postgrad. Med. J. 2009, 85, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Kaur, H.; Xess, I.; Michael, J.; Savio, J.; Rudramurthy, S.; Singh, R.; Shastri, P.; Umabala, P.; Sardana, R.; et al. A multicentre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. Clin. Microbiol. Infect. 2020, 26, 944.e9–944.e15. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Chua, J.V.; Baddley, J.W. COVID-19 associated Mucormycosis (CAM): Risk factors and mechanisms of disease. Clin. Infect. Dis. 2021, 74, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Tandon, N.; Anjana, R.M.; Mohan, V.; Kaur, T.; Afshin, A.; Ong, K.; Mukhopadhyay, S.; Thomas, N.; Bhatia, E.; Krishnan, A.; et al. The increasing burden of diabetes and variations among the states of India: The Global Burden of Disease Study 1990–2016. Lancet Glob. Health 2018, 6, e1352–e1362. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.S.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P. Pathogenesis of mucormycosis. Clin. Infect. Dis. 2012, 54, S16–S22. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, M.; Imhof, A.; Berg, G.; Hutchinson, W.L.; Pepys, M.B.; Boeing, H.; Muche, R.; Brenner, H.; Koenig, W. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef]
- Muthu, V.; Kumar, M.; Paul, R.A.; Zohmangaihi, D.; Choudhary, H.; Rudramurthy, S.M.; Panda, N.K.; Pannu, A.K.; Sharma, N.; Sharma, S.; et al. Is there an association between zinc and COVID-19-associated mucormycosis? Results of an experimental and clinical study. Mycoses 2021, 64, 1291–1297. [Google Scholar] [CrossRef]
- Kumar, S.; Acharya, S.; Jain, S.; Shukla, S.; Talwar, D.; Shah, D.; Hulkoti, V.; Parveen, S.; Patel, M.; Patel, S. Role of Zinc and Clinicopathological Factors for COVID-19-Associated Mucormycosis (CAM) in a Rural Hospital of Central India: A Case-Control Study. Cureus 2022, 14, e22528. [Google Scholar] [CrossRef]
- Manesh, A.; Rupali, P.; Sullivan, M.O.; Raj, P.M.; Rupa, V.; George, B.; Michael, J.S. Mucormycosis—A clinicoepidemiological review of cases over 10 years. Mycoses 2019, 62, 391–398. [Google Scholar] [CrossRef]
- Bhansali, A.; Bhadada, S.; Sharma, A.; Suresh, V.; Gupta, A.; Singh, P.; Chakarbarti, A.; Dash, R.J. Presentation and outcome of rhino-orbital-cerebral mucormycosis in patients with diabetes. Postgrad. Med. J. 2004, 80, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G.; Ravani, S.; Leuva, P.; Modi, P.; Amin, K. Rise of the phoenix: Mucormycosis in COVID-19 times. Indian J. Ophthalmol. 2021, 69, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, A.; Gaikwad, R.; Krishna, S.; Hegde, R.; Tripathi, K.K.; Kale, P.G.; Rao, P.S.; Haldipur, D.; Bonanthaya, K. SARS-CoV-2, Uncontrolled Diabetes and Corticosteroids—An Unholy Trinity in Invasive Fungal Infections of the Maxillofacial Region? A Retrospective, Multi-centric Analysis. J. Maxillofac. Oral Surg. 2021, 20, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Nithyanandam, S.; Jacob, M.S.; Battu, R.R.; Thomas, R.K.; Correa, M.A.; D’Souza, O. Rhino-orbito-cerebral mucormycosis. A retrospective analysis of clinical features and treatment outcomes. Indian J. Ophthalmol. 2003, 51, 231–236. [Google Scholar]
(a) Baseline variables between group with recovery and deceased | ||||
Baseline Characteristic | Overall N = 341 | Recovery N = 258 | Death N = 83 | p-Value # |
Age in years | 51.72 (13.02) | 50.07 (12.70) | 56.88 (12.72) | <0.001 |
Vaccinated | 46 (15.3%) | 34 (73.9%) | 12 (26.1%) | 0.71 |
Female | 269 (79.4%) | 204 (75.8%) | 65 (24.2%) | 0.79 |
Male | 70 (20.6%) | 52 (74.3%) | 18 (25.7%) | |
BMI kg/m2 | 24.76 (4.11) | 25.04 (4.19) | 23.87 (3.73) | 0.03 |
BMI Category: | ||||
Underweight (<18.8) | 15 (4.5%) | 5 (33.3%) | 10 (66.7%) | 0.001 |
Normal (18.5 ≤ BMI < 25) | 187 (56%) | 144 (77%) | 43 (23%) | |
Overweight (25 ≤ BMI < 30) | 105 (31.4%) | 83 (79%) | 22 (21%) | |
Obese (≥30) | 27 (8.1%) | 22 (81.5%) | 5 (18.5%) | |
Comorbidities: | ||||
Hypertension | 72 (21.1%) | 50 (69.4%) | 22 (30.6%) | 0.17 |
DM | 286 (83.9%) | 208 (72.7%) | 78 (27.3%) | 0.004 |
DM with ketoacidosis | 11 (3.2%) | 3 (27.3%) | 8 (72.7%) | 0.001 |
Cancer | 1 (0.3%) | 0 (0%) | 1 (100%) | 0.08 |
Organ Transplant | 7 (2.1%) | 5 (71.4%) | 2 (28.6%) | 0.79 |
IDU | 4 (1.2%) | 1 (25%) | 3 (75%) | 0.05 |
HIV+ | 1 (0.3%) | 1 (100%) | 0 (0%) | 0.57 |
Asthma | 3 (0.9%) | 2 (66.7%) | 1 (33.3%) | 0.72 |
Laboratory values: | ||||
CRP mg/L | 54.3 (22.6–98.5) | 40.2 (18.0–69.6) | 85.1 (47.0–118.7) | <0.001 |
Ferritin ug/L | 509 (306–931) | 359.5 (234–578) | 763 (372.9–1174) | <0.001 |
A1c% | 8.8 (7.4–10.9) | 8.0 (6.9–10.0) | 9.6 (8.3–11.8) | <0.001 |
Days from COVID-19 diagnosis to mucor | 20 (14–30) | 21 (15–30) | 17 (11–27) | 0.01 |
Corticosteroid Treatment | 292 (85.6%) | 219 (75%) | 73 (25%) | 0.49 |
Dose, prednisone equivalent | 50 (40–53.3) | 50 (40–53.3) | 53.3 (50–100) | <0.001 |
Type: Dexamethasone | 132 (56.2%) | 101 (76.5%) | 31 (23.5%) | 0.43 |
Methylrednisone | 81 (34.5%) | 56 (69.1%) | 25 (30.9%) | |
Prednisone | 22 (9.4%) | 15 (68.2%) | 7 (31.8%) | |
Treatment duration 10+ days | 124 (52.1%) | 98 (79%) | 26 (21%) | 0.03 |
(b) Mucor location/severity between CAM recovered and deceased | ||||
Location(s) of Mucor Infection | Overall N = 341 (100%) | Recovery N = 258 | Death N = 83 | p-Value # |
Sinus | 307 (90%) | 239 (77.9%) | 68 (22.1%) | 0.005 |
Pulmonary | 12 (3.5%) | 3 (25%) | 9 (75%) | 0.001 |
Cutaneous | 4 (1.2%) | 2 (50%) | 2 (50%) | 0.229 |
Gastric | 3 (0.9%) | 3 (100%) | 0 (0%) | 0.324 |
Ophthalmic | 183 (53.7%) | 133 (72.7%) | 50 (27.3%) | 0.167 |
Cerebral | 52 (15.2%) | 17 (32.7%) | 35 (67.3%) | 0.001 |
(c) Medications administered to patients during course of treatment for CAM | ||||
Mucor Treatment(s) | Overall N = 341 (100%) | Recovery N = 258 | Death N = 83 | p-Value # |
Amphotericin B | 286 (83.9%) | 217 (75.9%) | 69 (24.1%) | 0.833 |
Posaconazole | 202 (59.2%) | 164 (81.2%) | 38 (18.8%) | 0.004 |
Isavuconazole | 22 (6.5%) | 18 (81.8%) | 4 (18.2%) | 0.486 |
Surgery | 258 (75.7%) | 209 (81%) | 49 (19%) | 0.001 |
Voriconazole | 6 (1.8%) | 5 (83.3%) | 1 (16.7%) | 0.659 |
Amphotericin B regimen(s) | ||||
Amphotericin B deoxycholate | 47 (16.4%) | 37 (78.7%) | 10 (21.3%) | 0.617 |
Liposomal amphotericin B | 269 (94.1%) | 209 (77.7%) | 60 (22.3%) | 0.004 |
Amphotericin B lipid complex, ABLC | 39 (13.6%) | 27 (69.2%) | 12 (30.8%) | 0.297 |
Amphotericin B cholesteryl sulfate complex | 0 (0%) | 0 (0%) | 0 (0%) | 0.297 |
(d) Medications administered to patients during course of treatment for COVID-19 | ||||
COVID-19 Treatment(s) | Overall N = 341 (100%) | Recovery N = 258 | Death N = 83 | p-Value # |
Favipiravir | 93 (27.3%) | 76 (81.7%) | 17 (18.3%) | 0.110 |
Remdesivir | 161 (47.2%) | 121 (75.2%) | 40 (24.8%) | 0.837 |
Doxycycline | 138 (40.5%) | 105 (76.1%) | 33 (23.9%) | 0.880 |
Azithromycin | 97 (28.4%) | 74 (76.3%) | 23 (23.7%) | 0.865 |
Ivermectin | 146 (42.8%) | 118 (80.8%) | 28 (19.2%) | 0.055 |
Tocilizumab | 14 (4.1%) | 8 (57.1%) | 6 (42.9%) | 0.099 |
Itolizumab | 1 (0.3%) | 1 (100%) | 0 (0%) | 0.570 |
Zinc | 216 (63.3%) | 166 (76.9%) | 50 (23.1%) | 0.500 |
Other | 35 (10.3%) | 20 (57.1%) | 15 (42.9%) | 0.007 |
Estimated Odds Ratio | p-Value | |
---|---|---|
Patient age, years | 1.04 (1.02, 1.07) | 0.001 |
Azithromycin treatment | 0.99 (0.49, 2.03) | 0.76 |
Zinc treatment | 0.76 (0.37, 1.57) | 0.46 |
History of DM | 3.47 (1.01, 11.93) | 0.02 |
BMI, kg/m2 | 0.90 (0.82, 0.98) | 0.03 |
Steroid treatment Ref: no steroid treatment | 1.67 (0.68, 4.12) | 0.22 |
Known ICU stay Ref: no known ICU stay | 1.50 (0.70, 3.25) | 0.16 |
Days to mucor (continuous) | 0.98 (0.96, 1.00) | 0.15 |
Location of mucor: Sinus Ref: not sinus | 0.23 (0.09, 0.57) | 0.001 |
Ophthalmic Ref: not ophthalmic | 0.87 (0.45, 1.69) | 0.61 |
Cerebral Ref: not cerebral | 10.96 (4.93, 24.36) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arora, S.; Narayanan, S.; Fazzari, M.; Bhavana, K.; Bharti, B.; Walia, S.; Kori, N.; Kataria, S.; Sharma, P.; Atluri, K.; et al. Factors Associated with Mortality in Coronavirus-Associated Mucormycosis: Results from Mycotic Infections in COVID-19 (MUNCO) Online Registry. J. Clin. Med. 2022, 11, 7015. https://doi.org/10.3390/jcm11237015
Arora S, Narayanan S, Fazzari M, Bhavana K, Bharti B, Walia S, Kori N, Kataria S, Sharma P, Atluri K, et al. Factors Associated with Mortality in Coronavirus-Associated Mucormycosis: Results from Mycotic Infections in COVID-19 (MUNCO) Online Registry. Journal of Clinical Medicine. 2022; 11(23):7015. https://doi.org/10.3390/jcm11237015
Chicago/Turabian StyleArora, Shitij, Shivakumar Narayanan, Melissa Fazzari, Kranti Bhavana, Bhartendu Bharti, Shweta Walia, Neetu Kori, Sushila Kataria, Pooja Sharma, Kavya Atluri, and et al. 2022. "Factors Associated with Mortality in Coronavirus-Associated Mucormycosis: Results from Mycotic Infections in COVID-19 (MUNCO) Online Registry" Journal of Clinical Medicine 11, no. 23: 7015. https://doi.org/10.3390/jcm11237015