Achievement of Low-Density Lipoprotein Cholesterol Targets in Cardiac Rehabilitation: Impact of the 2019 ESC/EAS Dyslipidaemia Guidelines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Lipid Measurements and Lipid-Lowering Therapies
2.3. Study Endpoints
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Impact of 2019 ESC/EAS Dyslipidaemia Guidelines on Intensity of Lipid-Lowering Therapy and LDL-C Target Rate Achievement
LDL-C Changes at CR Entry and Discharge before (Group A) and after (Group B) 2019 ESC/EAS Lipid Guidelines
3.3. Predictors of Therapy Intensification during CR
3.4. Predictors of LDL-C Levels at the End of CR
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Théroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2019, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Chiang, C.-E.; Munawar, M.; Pham, G.K.; Sukonthasarn, A.; Aquino, A.R.; Khoo, K.L.; Chan, H.W.R. Lipid-lowering treatment in hypercholesterolaemic patients: The CEPHEUS Pan-Asian survey. Eur. J. Prev. Cardiol. 2012, 19, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, B.; Zeymer, U.; Jannowitz, C.; Pittrow, D.; Gitt, A. Improvement of low-density lipoprotein cholesterol target achievement rates through cardiac rehabilitation for patients after ST elevation myocardial infarction or non-ST elevation myocardial infarction in Germany: Results of the PATIENT CARE registry. Eur. J. Prev. Cardiol. 2019, 26, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.L.; Kausik, K.; Haq, I.; Bilitou, A.; Catapano, A.L. Treatment of high- and very high-risk patients for the prevention of cardiovascular events in Europe: Baseline demographics from the multinational observational SANTORINI study. In Proceedings of the ESC Congress 2021—The Digital Experience, London, UK, 27–30 August 2021. [Google Scholar]
- Newman, J.D.; Alexander, K.P.; Gu, X.; O’Brien, S.M.; Boden, W.E.; Govindan, S.C.; Senior, R.; Moorthy, N.; Rezende, P.C.; Demkow, M.; et al. Baseline Predictors of Low-Density Lipoprotein Cholesterol and Systolic Blood Pressure Goal Attainment After 1 Year in the ISCHEMIA Trial. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e006002. [Google Scholar] [CrossRef] [PubMed]
- Koskinas, K.C.; Gencer, B.; Nanchen, D.; Branca, M.; Carballo, D.; Klingenberg, R.; Blum, M.R.; Carballo, S.; Muller, O.; Matter, C.M.; et al. Eligibility for PCSK9 inhibitors based on the 2019 ESC/EAS and 2018 ACC/AHA guidelines. Eur. J. Prev. Cardiol. 2021, 28, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.D.; Panza, G.; Zaleski, A.; Taylor, B. Statin-Associated Side Effects. J. Am. Coll. Cardiol. 2016, 67, 2395–2410. [Google Scholar] [CrossRef] [PubMed]
- Rallidis, L.S.; Fountoulaki, K.; Anastasiou-Nana, M. Managing the underestimated risk of statin-associated myopathy. Int. J. Cardiol. 2012, 159, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Bellosta, S.; Paoletti, R.; Corsini, A. Safety of Statins: Focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109 (Suppl. 1), III50–III57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaVan, A.H.; Gallagher, P. Predicting risk of adverse drug reactions in older adults. Ther. Adv. Drug Saf. 2016, 7, 11–22. [Google Scholar] [CrossRef] [PubMed]
Overall | Group A | Group B | p | |
---|---|---|---|---|
[875] | [593] | [282] | ||
Male Sex (%) | 712 (81) | 497 (84) | 215 (76) | 0.009 * |
Age (median [IQR]) | 62.4 [54.9, 71.4] | 62.3 [54.7, 70.8] | 63.2 [55.4, 73.2] | 0.23 |
BMI (median [IQR]) | 26.0 [24.0, 29.0] | 26.0 [24.0, 29.0] | 27.0 [24.0, 30.0] | 0.074 |
Cardiovascular Risk Factors | ||||
Diabetes Mellitus (%) | 181 (21) | 120 (20) | 61 (22) | 0.72 |
Hypertension (%) | 566 (65) | 369 (62) | 197 (70) | 0.036 * |
Family History for CVE (%) | 324 (37) | 209 (35) | 115 (41) | 0.12 |
Dyslipidemia (%) | 532 (61) | 330 (56) | 202 (72) | <0.001 * |
Active Smoker (%) | 138 (25) | 94 (26) | 44 (22) | 0.42 |
Smoking History (%) | 563 (64) | 366 (62) | 197 (70) | 0.019 * |
Diagnosis | 0.73 | |||
STEMI | 347 (40) | 237 (40) | 110 (39) | |
NSTEMI | 317 (36) | 213 (36) | 104 (37) | |
Unstable Angina | 24 (3) | 14 (2) | 10 (4) | |
CCS | 183 (21) | 127 (21) | 56 (20) | |
Therapy | 0.099 | |||
PCI | 689 (79) | 469 (79) | 220 (78) | |
CABG | 114 (13) | 83 (14) | 31 (11) | |
no therapy | 71 (8) | 41 (7) | 30 (11) |
Overall | Group A | Group B | p | |
---|---|---|---|---|
[875] | [593] | [282] | ||
Patients with LDL-C at discharge <1.4 mmol/L (%) | 351 (43) | 232 (39) | 119 (53) | <0.001 * |
Patients with LDL-C at discharge <1.8 mmol/L (%) | 592 (73) | 412 (70) | 180 (80) | 0.003 * |
LDL-C CR entry mmol/L (median [IQR]) | 1.6 [1.2, 2.0] | 1.6 [1.2, 2.0] | 1.7 [1.3, 2.0] | 0.311 |
LDL-C CR discharge mmol/L (median [IQR]) | 1.5 [1.2, 1.8] | 1.5 [1.2, 1.9] | 1.4 [1.1, 1.7] | <0.001 * |
<0.001 * | 0.072 | <0.001 * |
Coefficient/Estimate | 95% Confidence Interval | p | |
---|---|---|---|
Intercept | 1.0 | [0.60, 1.4] | <0.001 * |
Age | 0.0037 | [−0.00024, 0.0074] | 0.048 * |
Male Sex | −0.049 | [−0.17, 0.075] | 0.44 |
Hypertension | 0.0037 | [−0.078, 0.086] | 0.93 |
Dyslipidaemia | 0.13 | [0.053, 0.21] | 0.0012 * |
Smoking History | 0.14 | [0.057, 0.22] | <0.001 * |
Statin Monotherapy | −0.049 | [−0.24, 0.14] | 0.61 |
Combination-therapy | −0.13 | [−0.37, 0.11] | 0.28 |
Therapy PCI | −0.0038 | [−0.19, 0.18] | 0.97 |
Therapy CABG | 0.15 | [−0.059, 0.37] | 0.16 |
Group B | −0.21 | [−0.30, −0.12] | <0.001 * |
Rehabilitation Duration | 0.0015 | [−0.00026, 0.0033] | 0.075 |
Family History for CVE | 0.010 | [0.016, 0.18] | 0.021 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haegele, M.; Djurdjevic, A.; Jordan, F.; Liu, Y.-C.; Mildner, L.; Frey, S.; Strebel, I.; Clerc, O.; Burkard, T.; Pfister, O. Achievement of Low-Density Lipoprotein Cholesterol Targets in Cardiac Rehabilitation: Impact of the 2019 ESC/EAS Dyslipidaemia Guidelines. J. Clin. Med. 2022, 11, 7057. https://doi.org/10.3390/jcm11237057
Haegele M, Djurdjevic A, Jordan F, Liu Y-C, Mildner L, Frey S, Strebel I, Clerc O, Burkard T, Pfister O. Achievement of Low-Density Lipoprotein Cholesterol Targets in Cardiac Rehabilitation: Impact of the 2019 ESC/EAS Dyslipidaemia Guidelines. Journal of Clinical Medicine. 2022; 11(23):7057. https://doi.org/10.3390/jcm11237057
Chicago/Turabian StyleHaegele, Matthias, Aleksandar Djurdjevic, Fabian Jordan, Yu-Ching Liu, Leonie Mildner, Simon Frey, Ivo Strebel, Olivier Clerc, Thilo Burkard, and Otmar Pfister. 2022. "Achievement of Low-Density Lipoprotein Cholesterol Targets in Cardiac Rehabilitation: Impact of the 2019 ESC/EAS Dyslipidaemia Guidelines" Journal of Clinical Medicine 11, no. 23: 7057. https://doi.org/10.3390/jcm11237057
APA StyleHaegele, M., Djurdjevic, A., Jordan, F., Liu, Y.-C., Mildner, L., Frey, S., Strebel, I., Clerc, O., Burkard, T., & Pfister, O. (2022). Achievement of Low-Density Lipoprotein Cholesterol Targets in Cardiac Rehabilitation: Impact of the 2019 ESC/EAS Dyslipidaemia Guidelines. Journal of Clinical Medicine, 11(23), 7057. https://doi.org/10.3390/jcm11237057